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\. INTRODUCTION

Let { X ( t ) ; 0 < t < 1} be a real-valued mean-zero Gaussian process, and let
"||.||" be a semi-norm on the space of real functions on [0, 1]. The so
called "small ball estimates" or "small deviation estimates" refer to the
asymptotic behavior of

This type of problem is quite delicate, and the asymptotic decay rate
in (1 .1) , up to a constant, depends heavily on the process X(t) and the
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with G>0, H > 0 and G/H nondecreasing on the interval (0, 1). Moreover,
the functions G and H are unique up to a constant multiple. Now we can
state the first result of this paper.

Theorem 1. Let the Gaussian Markov process X(t) be defined as
earlier. Assume H and G are absolutely continuous and G/H is strictly
increasing on the interval [0, 1]. If
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semi-norm being used. The papers [see Berthet and Shi;(1) Dunker et al.;(4)

Kuelbs et al.;(8) Li;(13) Li and Shao;(16) Li and Linde(15)], together with
their combined references, cover much of the recent progress in this area.
In most of these papers, the main results determine the asymptotic
behavior in (1.1) up to some constant factor in front of the rate. Even for
Brownian motion and the Brownian bridge under various norms, these
constants are known in only a few cases.

Although small ball estimates have generated considerable interest
recently, relatively little is known, and there are very few general results
available. Actually, as it was established in a paper of Kuelbs and Li(7) (see
also Li and Linde(14) for further remarks), the rough behavior in (1.1) is
determined by the metric entropy of the unit ball of the reproducing kernel
Hilbert space associated with X, and vice versa. Thus one should not expect
to see the complete asymptotics, including constants, for small balls of an
arbitrary Gaussian process X. However, in this paper, the Gaussian
Markov processes are studied, and in this situation we are able to deter-
mine even some constants.

Let us introduce some basic facts about real-valued continuous
Gaussian Markov processes X(t) on the interval [0, 1] with mean zero.
It is known [cf. Levy;(12) Feller;(5) and Borisov(2)] that the covariance
function s ( s , t ) = EX(s) X(t) < 00, 0 < s, t < 1, satisfies the relation

and this relation actually implies the Markov property of X(t). Hence it is
easy to obtain and characterize the Gaussian Markov process X(t) with
s(s, t) = 0, 0 < s < t< 1, by



and the corresponding results in (1.5).

which imply

Example 2. Stationary Gaussian Markov processes or the Ornstein-
Uhlenbeck process. In this case,

Example 3. Nondegenerate Gaussian processes with independent
increments. In this case, we have s (s , t) = G(min(s, t)) and thus the constant
is (G(1)-G(0)) P2/8.

and
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then

First we observe that there is nothing special about the interval [0, 1]
and it can be replaced by any interval [a, b] as long as s(s, t) = 0 for s, t
in (a, b) and the analogous regularity condition (1.3) or (1.4) holds.

Next we apply Theorem 1 to some well known Gaussian Markov
processes. Let { W(t); 0 < t < 1} be the standard Brownian motion and
{B(t) ; 0 < t < 1} be a standard Brownian bridge, which can be realized as
{W(t) - t W ( 1 ) ; 0 < t < 1}.

Example 1. Consider X 1 ( t ) = t - a W ( t ) and X2(t) = t - a B ( t ) on the
interval [0, 1 ] for a < 1/2. Then we have for 0 < s < t < 1
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Next we mention that Theorem 1 is close related to the following
result about small ball estimates for Brownian motion under a weighted
sup-norm (More details are given in the next section).

Theorem A. Let W(t), t > 0, be the standard Brownian motion. If
f: (0, 1] —> (0, 00) satisfies either of the conditions:

Then,

Theorem A was proved by Mogulskii(17) under essentially condition
(H1) and by Berthet and Shi(1) under condition (H2). It is clear that the
rate e2 is not correct in both Theorems 1 and A if the integrals in them are
infinite. When the integral in Theorem A is infinite, partial estimates are
given(1) and it was called critical case. Our next theorem deals with this
critical case for both Theorems 1 and A as they are closely related. Here
we formulate our next result in terms of a weighted sup-norm for Brownian
motion. This is purely for the easy statement of the result and simpler nota-
tions in the proof. The precise statement for general Gaussian Markov
processes in the critical case can be handled similarly as in the proof of
Theorem 1.

Before we state our next result that provides tight estimates in the
critical cases under regularity conditions, we need some notation. We use
a(x) = b(x) as x —> 0 if

For any positive nondecreasing function f on (0, S) with S > 0 fixed, we
define

with t0 = S and

Note that the sequence ti is decreasing and f(ti) < f(ti-1) for 1 < i < N ( e ) .



with g(t) > 0 nondecreasing on the interval (0, 1) and h(t) > 0 on the inter-
val (0, 1). It is easy to see the connection between (1.2) and (2.1),

Other examples and the proof of the theorem will be given in Section 2.
In Section 3, we provide some final remarks and point out some applica-
tions. In particular, we also provide some results on weighted fractional
Brownian motion.

2. PROOF OF THEOREMS AND MORE EXAMPLES

One of the key facts that relates Theorems 1 and A along with its
proof is the following representation for Gaussian Markov processes

which requires the same assumptions. Otherwise, we will have
P(sup0<t<S | W ( t ) | f(t) < e) = 0 for e > 0 small.

Next, just to give a flavor of what this theorem covers, we have for
example as e -> 0

then, for some constants 0 < C1 < C2 < 00 and every e > 0,

Note that the assumptions on f ( x ) , namely f ( x ) is a positive non-
decreasing function and x/f2(x) is nondecreasing, are natural. This can be
seen from the fact that the function f ( x ) has to pass the Kolmogorov's
integral test [cf. Ito and McKean,(6) p. 33]:
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Theorem 2. Assume that f(x) is a positive nondecreasing function on
(0, S) with S > 0 fixed and x/f2(x) is also nondecreasing. Let N(e) < 00 be
defined as in (1.7). If there exist some constants 1 < c1 < c2 < 00 such that
for all £ > 0 small



Thus we need a weighted result with g(0) = 0 under the assumption, (1.3)
in Theorem 1. This can be done by two different ways. The first is along the
line given by Berthet and Shi.(1) We can use the following more general
estimate given in Li(13) for 0 < a <b

by using the relation (2.2).
Now more generally, for g(0) = 0 we would obtain the constant

(without the P2/8 in it)
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For our small deviation problem, we thus have by our representation, (2.1)

Note that there is no problem for the finiteness of supg(0) < t < g(1) h(g - 1 ( t ) )
W ( t ) | if

which is the assumption (1.3) in Theorem 1. However, when condition
(1.3) fails, we must have g(0) = 0 and h ( 0 ) = 00, and the situation is some-
what delicate. For simplicity and easy notation to compare here and in the
next section, let

Then we are essentially (if g ( 1 ) = 1) examining the small ball estimates for
W under the weighted norm. Our assumption (1.4) in Theorem 1 and the
assumption (H2) in Theorem A are same in this case. Thus our Theorem 1
follows from Theorem A under the assumption (1.4), and in this case
(g(0) = 0) we have for g(1) = 1
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rather than the one with a = 0 used in the proof given by Berthet and
Shi.(1) We also need to take care of the starting position W(g(0)) compared
with W(0) = 0, but this can be done easily since it makes no contribution
to the asymptotics at the logarithmic level. The second is along the line
given by Mogulskii(17) with necessary modifications. Thus we will not give
a detailed proof here but just point out that the length of the interval con-
sidered in Theorem 1 is not important as long as the covariance on the
interior of the interval does not vanish, which is important in the
arguments.

Next we turn to the proof of Theorem 2. Let us first consider the
upper bound. By independent increments and scaling property of Brownian
motion, it follows that

and thus the upper bound follows. Note that if N(e) = co for some e>0,
then these arguments show that

To prove the lower bound, we use the following general lower bound
on supremum of, Gaussian processes under entropy conditions. It was
established by Talagrand(18) and this formulation is given by Ledoux,(10)

[p. 257].

Lemma 1. Let ( X t ) t e T be a centered Gaussian process. For every
e> 0, let N(T, d; s) denote the minimal number of balls of radius e, under
the metric d(s, t) = (E |XS — X,| 2)1/2, that are necessary to cover T. Assume
that there is a nonnegative function \j/ on R+ such that



In particular, we have d f ( t i , t i _ 1 ) < ^ / 2 s for 1 < i < N ( e ) and d f ( 0 , t N ) < s
by using the construction (1.7) and (1.8). Hence using ti , 1 < i < N ( e ) , as
centers, we get
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and such that for some constants 1 < cl < c2 < oo and all e > 0

Then, for some constant K>0 and every e> 0,

Now back to the proof of the lower bound and note that for any s,
t e T = ( 0 , S ) , s < t ,

Thus using the fact that f ( x ) and x/f2(x) are both nondecreasing, we have
for 0 < s < t < 6

which implies the lower bound by the lemma. Thus we finish the proof by
noting that with X0 = 0, P ( s u p t e T \Xt\ <e) > P (sup S , t e T \Xs — X t \ < e ) .

Next let us compute some examples and keep in mind that a power
type function satisfies the condition (1.9).

Now using the condition (1.9) in Theorem 2, it follows that

and hence if J^ 1/f2(t) dt < oo, then N(e) is of order no more than 1/c2. In
the opposite direction, we have ti-1 — ti = e 2 f 2 ( t i - 1 ) < £ 2 f 2 ( t 0 ) for 1 <i<N
which implies that N(e) is of order at least 1/e2. On the other hand, if N(e)

Example 4. Let f ( t ) = t" on (0, 1) with a < 1/2. Then it is not hard to
see that as e -> 0, N(e)x 1/e2. In fact, we have



Then log(1/tm_1) < l/(2e2) and thus for e>0 small,

which provides the upper bound for e > 0 small.
To obtain the lower bound, let
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is of order e -2, then by Theorem 2, log P ( s u p 0 < t < f \W(t)\lf(t)<&} is of
order e-2 as well. Thus according to Theorem A, \l

0dt/f2(t) must be finite.

To see the upper bound, note that log( 1 — x)< — x for x< 1 and thus for
1<i<N and e > 0 small,

Iterating this inequality, we have

On the other hand, by the definition of N, we have

Combine (2.5) and (2.6) together, we have

Example 5. Let f(t) = ^/t log l/t on (0, e -1). Then we have as e ->0



which can also be seen from Kolmogorov's integral test.

3. SOME REMARKS

First note that for the upper bound of the Theorem to hold, we do not
need the regularity condition (1.9) on the number N(e). In fact, the
regularity condition (1.9) appears as an assumption in the lemma, and even
there it is not always needed. A slightly different lower bound can be
obtained based on the upper bound of the entropy number N(T, d; s) when
the bound is of exponential type. This can be seen from the proof given by
Talagrand,(18) which is based on Sidak's lemma and a chaining argument.

For the so called critical case covered by our Theorem 2, the following
upper bound is given by Berthet and Shi(1)
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which implies that m < N(E). Now using the fact that log( 1 — x ) > —2x for
0s£xsc 1/2, we have for 1<i<m

Iterating this inequality, we have

which provides the lower bound for e>0 small.

Example 6. Let f(t) = ^/t log log 1 / t . Then we have as c -> 0

We omit the proofs since they are similar to the proof of Example 6.

Example 7. Let f ( t ) = ^/t on (0, 1). Then we have for any 0 < s < 1,
t i = ( 1 — s2) ti_ 1. Thus we have N(e) = oo and



For s, t>0, In particular, { Y(t): t>0} has stationary increments with

and is a standard Brownian when a. = 1/2.
We first define a sequence analogous to the Brownian motion case.

For any positive nondecreasing function f on (0, S) with 6 > 0 fixed, we can
define

with t0 = 6 and

Note that the sequence ti is decreasing and f(ti) < f ( t i - 1 ) for 1 < i < N ( s ) .
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where

But this is not sharp in the light of (1 .11) for the function f(t) = ^/t log( 1 / t )
on [0, 1/e]. On the other hand, for the particular example f(t} =
^ / t l o g ( 1 / t ) , there is a way to get the correct lower bound as outlined by
Berthet and Shi,(1) based on scaling and Kolmogorov's integral test given
in (1.10). The trouble is that we do not know how it could be done in
general. But it seems that the upper bound estimate and the structure of the
partition point have something to do with Kolmogorov's integral test, as
can also be seen from Example 7.

Finally, as given by Berthet and Shi,(1) the applications of Theorem A
to Chung's functional iterated logarithm law, [cf. Kuelbs et «/.(9)], and to
the study of the local increments of W can all be extended to the critical
case. It is also seems possible to provide some interesting critical weights
for the empirical processes similar to the work of Csaki.(3)

Now for the remaining of this paper, we give some estimates along the
line of Theorem 2 for the a-fractional, Brownian motion Y(t), t > O , with
y(0) = 0 and 0 < a < 1. Note that { Y(t): t > 0} has covariance function



and thus the upper bound follows. Note that if N(E) = OO for some e>0,
then these arguments show that for 0 ^ a < 1/2

Now let

Then

and since the function y = x2", x>0 is concave for 0 < < x < l / 2 it follows
fairly easily that E ( £ i £ j ) <0 for 1 <i< N(e). Therefore, by Slepian's lemma,
with £, denoting the standard normal random variable,
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Proposition 1. Assume that f ( x ) is a positive nondecreasing function
on (0,6) with d>0 fixed. Let N(e) < oo be defined as in (3.1) with
0 <a.^ 1/2. Then, for some constants 0 < C1 < oo and e > 0 small,

Proof. The proof depends on Slepian's lemma which can be found,
for example, see Ledoux and Talagrand.(11) It is easy to see that
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To obtain a lower bound, we again try to use the general lower bound
on supremum of Gaussian processes under entropy conditions. Note that
in this case

for 0 < s < t < S.

Proposition 2. Under assumptions similar to those in the Brownian
motion case for the lower bound and the additional assumption that ti-1/ti

is uniformly bounded for i < N ( e ) — 1, we have

Note that the condition in Proposition 2 is easy to check for f ( t ) = tf

with /?<«. This case is known and is mentioned by Kuelbs et al.(8) in con-
nection with Holder norms. However, the exact formula is not given there,
and the argument is somewhat different.

Proposition 3. Define a new sequence si such that, s0 = 6

Let

Then under similar assumptions to the Brownian motion case (on M(e)),
we have

Since the proofs of Propositions 2 and 3 are similar to that of Theorem 2,
we omit the details here.
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