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ABsTRACT. For arbitrary positive integers h and m, we con-
sider the family of all rooted trees of height h having exactly m
vertices at distance h from the root. We refer to such trees as
(h, m)-trees. For a tree T from this family, we consider a simple
random walk on T which starts at the root and terminates when
it visits one of the m vertices at distance h from the root. Con-
sider the problem of finding a tree in the family on which the
expected time of a random walk is minimal (an extremal tree).
In this paper we present some properties of extremal trees for
arbitrary h and m, completely describe extremal (2,m)- and
(3, m)-trees, describe a lower bound for the expected time of
any (4, m)-tree, and refute the conjecture that the complete bi-
nary tree is extremal in the class of all (h,2")-trees with the
degree of the root at least 2.

Introduction

All missing definitions related to probability and Markov chains can be
found in [2], and those related to graph theory can be found in [8].

Let the greatest distance of any vertex from the root, the height of T, be
h. A vertex at a distance k, 0 < k < h, from the root is said to be at {zer
k. An (h, m)-tree is a rooted tree of height h having exactly m vertices at
tier h. Let Q(T) be a set of all walks W = vov; ... v, in T such that v is
the root, vy, is at tier h, and v; is at tier h implies ¢ = n. Let dr(u) denote
the degree of a vertex u in T, i.e., the number of edges of T' incident to u.
We define the probability Pr{W} of a walk W € Q(T) to be equal to the
product of [dy(v)] " for all vertices of a walk W, excluding the last.
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Let X be arandom variable representing the length of a walk in Q(T'), and
let E[X] be the expected value of X, i.e., E[X] =Yy cq 7y £(W) Pr{W},
and we will refer to it as the ezpected time of a random walk. In this paper,
we are concerned with the following:

Problem Given two positive integers h and m, we wish to find an (h, m)-
tree on which the expected time of a random walk is minimal. We refer to
such a tree as being extremal.

The above was considered by Lee [3] for the class of “spherically sym-
metric trees,” that is, trees in which the degrees of all vertices at the same
tier are the same. This reduces the analysis of the problem to that of a
Markov process on a path of length h. Let us describe the case in which
a complete solution (for spherically symmetric (h, m)-trees) was obtained.
Suppose there exists a positive integer k such that m = (k—1)2k*~3. Then
the unique extremal tree (Lee tree) has the degree of the root and of ver-
tices at tier h equal to 1, the degree of the vertices at tiers 1 and h — 1
equal to k, and all other vertices of degree k + 1. If such k does not exist,
the expected time for the path still can be calculated for all m and this
expected time provides a lower bound for the expected time for all spheri-
cally symmetric trees. It was shown that this bound is achieved if and only
if m = (k—1)2k"~3 and k is an integer. Problems related to random walks
on various families of graphs were considered by many authors. Here we
mention just [1] and references therein.

In this paper we present some properties of extremal trees for the class
of all (h,m)-trees and arbitrary positive integers ~ and m (Section 1) as
well as descriptions of the extremal tree for h = 2,3 and all integer values
of m (Section 2). Then we discuss the relationship between the expected
time of the Lee tree and the expected time of any rooted tree of height 4
(Section 2).

In Section 3 we provide a counterexample to a conjecture which moti-
vated our research (see [3] and references therein). A particular case of
this conjecture, which we disprove, can be stated as follows: Among all
(h, 2")-trees with the degree of the root at least two, the complete binary
tree is the unique extremal tree. We close by stating a new conjecture.

1 General Results

We begin by exhibiting a simple operation on a tree that strictly decreases
the expected time.

Lemma 1.1 Let T be an (h,m)-tree. Let the tree T’ be constructed by
adding a vertex v at tier h and joining any vertexr w at tier h—1 in T to
v. Then, T is an (h,m + 1)-tree and E[X'] < E[X].

60




Proof: Let d = dp(w), then d+1 = dpr(w). Our proof is based on an idea
known as coupling (see, e.g., [5]). We introduce a tree T* that “couples” T'
and T'. T* is created from T by pruning ». The probabilities of moving
from one vertex to another, however, will not change. In other words, in
T*, if u is a neighbor of w distinct from v, then the probability p(w,u) of
moving from vertex w to vertex v in one step is ﬁ. We would like to point
out that a tree in the context of the coupling method is not just viewed
as a graph but as a graph together with a probability distribution on its
walks.

Let W be a walk in 7" that does not visit v. It must have the exact same
probability in T* because these transition probabilities have not changed.
So, what about walks that do visit v in 7’7 Such walks visit v only once,
when they reach tier h. Let W be such a walk in 7. In order to have W
correspond to a walk in T*, we must distribute the remaining ﬁ among
the transition probabilities of exiting vertex w in T*. We can distribute
them in any way we choose to create a new tree T**. As long as we increase
the probability p(w,u) where u is at tier A, then the expected time in tree
T** is less than the expected time in tree T".

The validity of this point can be seen by traversing W in T” and its
counterparts in T** simultaneously. The walk W in T' must split into walks
in T** instead of visiting v. According to the distribution of the transition
probabilities in 7™*, some walks will conclude with one more step traversing
some wu (where u is at tier k) instead of traversing wv. These walks will
not change the expected time. But, some walks will return to the parent of
w. This means that these walks will take at least 3 steps to complete after
visiting w.

Without loss of generality, we choose to create T** by equally distributing
Eflﬁ among the transition probabilities of exiting w. So, if u is one of the d
neighbors of w in T**, then p(w, u) = 2?1-'1'{”?2(&%5 = 1. Therefore, if X** is
a random variable representing the length of a simple random walk in 7%,
E[X**] < E[X]. It is clear, though, that T** = T. Then, E[X’] < E[X]. O

By repeated application of this lemma, we obtain the following:

Corollary 1.2 For a fized h, let Ty, be an extremal (h, m;)-tree and X,
the length of a walk in Q(Tm,) for ¢ =1,2. If my > ma, then E[Xn,] <
E [ X,

We consider the class of all (h, m)-trees. A leaf in any graph is a vertex
of degree 1, and an internal leafin a rooted tree is a leaf at a tier other than
0 or h. The following lemma states that any random walk which enters an
internal leaf is “wasting time.”

Lemma 1.3 An extremal tree has no internal leaves.
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Proof: The original proof of this lemma (see [6]) did not make use of
the coupling method. As was suggested by David Wilson [7] we can again
utilize coupling.

Let T be a tree with an internal leaf v with neighbor w and TV = T'\ {v}.
Let X be the random variable representing the length of a random walk on
T and Y be the random variable representing the length of a random walk
onT". We wish to couple X and Y appropriately to show that E[X] > E[Y].
Let W = wpw ws - - - wr, be a walk in Q(T') and let W’ be a walk in Q(T").
We say W “is coupled to” W' if the following procedure results in W':
Whenever w; = v and w;i+1 = u then we delete both w; and w;;.

It is trivial to observe that every walk in Q(7') is coupled to exactly one .
walk in Q(T"). So we create a joint probability density function

Pr x{W}, if W is coupled to W’
0,

Prxy{W,W'} = {

otherwise.
Note that
> Prxy{W,W'}=Pry{W’}
we(T)
Z 1 ﬂw(u)
Prxy{W,W'} = Pry{W} <—_—1) =Pr x{W},
i T~ (degr(w))

where 7w (u) denotes the number of times that W visits u. So, we use this
idea to compare the expectations of X and Y

E[X]= ) Prx{W}Ww)
we(T)

Y Pray W Wew)

WeQ(T) W e(T")

> S Prxy{W,WHW)

W e(T') WeQ(T)

v

The inequality occurs because if W is not coupled to W', Pr x vy {W, W'} =
0 and if W is coupled to W', {(W) > £(W’). So we have

EX]> ) Pry{W}(W')=E[)
WreQ(T?)

And, in fact this inequality is strict because for each W’ there exists
at least one W (with positive probability) which is coupled to W’ with
LW) > (W), O

As a result, we shall from this point forward only consider trees without
internal leaves. Our goal now is to prove Thecrem 1.4.
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Theorem 1.4 The root of an extremal tree has degree 1.

Proof: Suppose there is an extremal tree T where the root has degree d.
T can be decomposed into d trees T}, 1 < i < d, each of height h and
each with a root of degree 1. Let X; be the random variable measuring
the length of a walk in T;. Without loss of generality, these indices can be
chosen such that E[X] < E[X3] <... < E[X4].

We define p?0 to be the probablhty that a walk in Q(T;) returns to the
root. In the tree T, let E9>H[X;] denote the expected length of a walk
given that the walk does not return to the root, and E°~%[X,] denote the
expected length of the first return to the root given that the walk does
indeed return to the root. Then, by the law of total probability, we have

[Xi] = (1 - p?7%) E*RX.] + p) 70 (B[ X:] + E[X:)]) (1)

We now turn our attention to the entire tree T. By the law of total
probability according to the tree T; in which the walk begins, we obtain

d
1
: E Z 1 0—»0 E0=>h [XI] + p?_‘)OEO—}O[X,;] +p?—»—>OE[X]] (2)
Solving the above equation for E[X] and using (1), we get

5 [(1-50) B> +300E°(X,]

E[X] ==
> -5
3 10-509) B

- : 3
Z 1-p2)

which is a weighted average of the E[X;]’s.

This implies that the expected time on one of the subtrees is at most
that of the original tree if the root of the original tree is not a leaf. Adding
vertices in the manner described by Corollary 1.2 strictly lessens the time. O

2 Results for h=2,3,4
In this section we collect our results on the problem in cases when /A = 2, 3, 4.
Theorem 2.1 (i) The extremal tree for h = 2 and any m is a star with

m + 2 vertices, with the center of the star at tier 1. The ezpected time for
this tree is 2 + %
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(ii) Let h =3 and m = k? + a, where 0 < a < 2k. Let t be the number of
vertices at tier 2. If 0 < a < k—1, E[X] achieves its minimum only when
t==k. If k+1 < a < 2k, E[X] achieves its minimum only when t = k+1.
If a =k, E[X] achieves its minimum if and only if t =k or t = k+ 1.

The minimum is
(k—a)(1+ 2
3+%+2ﬂ-—r—l,, +2£ o~ 0<a<k

E[X]= — 2

3+%+2é'31—3",2,(r;—§l k< a<2k.

Proof: The proof of (i) is a much shorter version than that of (ii) which
we present below. By Theorem 1.4, the extremal tree has onevertex at tier
1. Its degree is denoted to be £ + 1. If v; is a vertex at tier 2, 1 < i < ¢,
then let the degree of »; be d;. Therefore, Zf=1 d;, =m+t.

Let Ey be the expected time of the walk initiated from the root of the
tree. Let F; be the expected time of the walk initiated from the vertex at
tier 1. Let F5; be the expected time of the walk initiated from v; at tier
2, 1 <1 <t. We have the following system of equations:

Ey = 14+ E

¢
E, = 1+H%E0+H%2E2,i ()
By = 1+4E.

Solving these equations gives us the following expression for Ey = E[X]:

t4+1
EiX] = 2] ———— 1}
=1+ <t—2§=1%>

For a fixed ¢, the sum Ele d; is fixed. Since each d; is a positive integer,

by Jensen’s inequality, Zle ;}‘- is a minimum if and only if max {d;} —
<i

112'ir<1t {d;} <1 and that this set of values of d;’s is unique. If we let s = (2],
_1'_

then we obtain that an extremal graph contains ts+t —m vertices of degree
s+ 1 and m — s vertices of degree s+ 2 at tier 2.

Thus the minimum E[X] is of the form E[X] = 1+ 2 (K‘L,,ﬁéﬁ%nﬂi)

which for a fixed m is a function of £ only. It can be shown that the
minimum for E[X] occurs when t = kif 0 < a < k—1, whent = k+1
ifk+1< a<2k andwhent=kort=k+1if a = k. The proof is
elementary. See Chapter 3 in [6] for all details. O

In the case of h = 4 and arbitrary m we fail to describe extremal (4, m)-
trees, but if m = (k—1)2k, where k is a positive integer, it can be shown that
the Lee tree defined in Section 1 is the only extremal tree. Its expected time
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isd+ Z%_:l%g. It can also be shown that the function of k in the expression of
the expected time on the Lee tree serves as a lower bound for the expected
time on an arbitrary (4, (k — 1)2k)-tree. This is achieved using elementary
methods such as Jensen’s inequality and Lagrange multipliers: The details
can be found in [6].

3 Counterexample and Conjecture

The counterexample to the conjecture described at the end of the Intro-
duction was constructed in the following three steps.

1. Let H; and H, be two identical (h, 2" !)-trees with the degree of the
root being 1. Let H be a tree obtained from H; and Hs by identification
of their roots. Then H is an (h, 2*)-tree with the root of degree 2. If pJ—0,
i = 1,2, denotes the probability that a walk in Q(H;) returns to the root,
then p—° = p3~0, E[H:] = E[H2], and (2) implies

(1 —p"O)E[H:] + (1 — p§0) E[H,]
(1-p3"% + (1 -39

E[H] =

= E[H4].

2. Consider an (8,27)-tree By in which the root has degree 1 and each
vertex at tiers 1 to 7 has exactly two children. By identifying roots of two
copies of such tree, we obtain the complete binary (8, 28)-tree B. From step
1, E[B] = E[By].

3. Let Cp be an (8,27)-tree given by Figure 1, and C be the tree
obtained from two copies of Cy by identifying their roots. From step 1,
E[C] = E[Co]. By direct computation, we have E[By] = 1281 ~ 20.0156
and E[Co] = 1897 ~ 20.0083, which implies E[C] < E[B]. Hence C is a
counterexample.

The following new conjecture was motivated by the discussion in the last
section, numerical evidence and [3].

Conjecture 3.1 If k is a positive real root of the polynomial f(z) = {z —
1)2z"—3 —m, then
k+1 4 -2k
EX] >

and this bound is achieved if and only if k is an integer.
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