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A Central Limit Theorem for the Sock-Sorting Problem

WENBO V. LI AND GEOFFREY PRITCHARD

ABSTRACT. The problem of arranging 2n objects into n pairs in a prescribed way,
when the objects are presented one at a time in random order, is considered. Using
tools from the theory of empirical processes, we derive a functional central limit
theorem, with a limiting Gaussian process closely related to the Brownian sheet

1. Introduction and statement of results

This paper considers the following problem, which seems to have been first pro-
posed in [5]; see also [8] and [10]. (For a related problem, see [6].) A collection of n
different pairs of socks are scrambled in a laundry bag. Socks are drawn one at a
time from the bag in random order, and laid on a table. When the mate of a sock
on the table is drawn, the two are paired and put in a drawer. How much table
space is required?

Our main result is a functional central limit theorem for the table-space usage
as a function of the number of socks so far drawn. The Gaussian process occurring
in the limit is an interesting one which can be described as the diagonal of a
constrained Brownian sheet, among other representations. As a corollary, we obtain
an asymptotic distribution for the maximum space required, as n becomes large.
Simulations have shown that this asymptotic distribution closely approximates the
true one as soon as n is greater than about 20.

‘We now state our main result. Let L; be the number of socks on the table
after k socks have been drawn.

THEOREM 1.1 Let X, € C[0,1] be the usual piecewise linear interpolation of the
sequence {Lk}izo, with X, (k/2n) = Ly. Let q(t) = 2t(1 — t). Then

Xn(t) —nq(t)
2/n
Here =— denotes weak convergence with respect to the uniform norm topol-

ogy on C[0,1}, and A(t) = o(t,t) with o the Brownian sheet on the unit square
constrained to be 0 on the whole boundary of the square. In other words,

= A(1).

o(s,t) =V(s,t) —sV(1,t) —tV(s,1) + stV (1,1)

where V' is the usual Brownian sheet with Cov(V (s,t),V(s',t)) = (s A" )t AT).

The proof we will present of Theorem 1.1 will proceed by embedding the process in
the uniform distribution on [0, 1]*", and using empirical-process theory. This is the
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“slickest” proof known to us, although it is not the only one One alternative (our
original proof of this result) proceeds by finding an integral operator 7" such that
when T is applied to (a close approximation of) X, —ng the result is a martingale,
making use of a central limit theorem for martingale triangular arrays, and finally
transforming back to the original problem by applying the inverse of T" This proof
still uses the embedding in the uniform distribution. After we had completed this
first proof, it was pointed out to us by D. Mason and Z. Shi that the embedding
idea is powerful enough to give a direct empirical-process proof. A third possible
approach to this problem (suggested by T. Kurtz) is to apply a diffusion limit
theorem for Markov chains (see, for example, Chapter 11 of [7]).

The process ¢ also appears in empirical-process theory as the limit of the
Hoeflding, Blum, Kiefer, Rosenblatt empirical process; see [2].

In §2 we also consider other representations of the limit process A, and return
to the original question of the maximum table-space usage.

2. Proof and remarks

Proof of Theorem 1.1. Let {X;};_,,{Yi};—, be independent i.i.d. random samples
from the uniform distribution on [0, 1]. (X;,Y; may be thought of as the “times” at

which the socks of the ith pair are drawn.) Define empirical distribution functions
F’ﬂ? GTL by

1 & 1 &
Guls, ) = D lxicsvicg  and  Fa(t) = o > (Lxzn + Lz »
i=1

=1

for s,t € [0,1]. Let @, denote the quantile function corresponding to Fj, i.e.
Qn(u) = inf {t: F,(t) > u}. Then nG,(Qn(k/2n),Q,(k/2n)) is the number of
completed pairs after k socks have been drawn, 1.e. is (k— Li)/2. We thus see that
(X (u) — ng(u))/2y/n is within O(n™?1) of

2nu — 2nGp (Qn(u), Qnlu)) — ng(u) (1)
NG : {

uniformly in . So it will suffice to show that quantity (1) converges weakly to
A(u), using the Skorokhod topology on the space D0, 1]. To this end, write (1) as

Vn (Qn(u)2 = Gn(Qn(u), Qn (U))) — V1 (Qn(u) —u) (Qn(u) +u).
For the purpose of establishing the weak convergence, this may be replaced by
v (u? = Gp(u,u)) — Vn (v — Fu(u)) 2u.

The replacement of Q,,(u) by u in the first term is a “random time change” (see [1],
p 144), justified by the Glivenko-Cantelli theorem (@, (u) — u as.; see [4], p.56).
The replacement of Q,(u) —w by v — F,(u) is justified by the Bahadur-Kiefer
theorem (see e.g. [3]). The expression we now have can be written

Vi (u? = Grlu,u)) — uv/n(u — Gu(u, 1)) — uv/n(u — Go(1,u)).
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The following functional central limit theorem is well-known (see e.g. [9]):
Vn(Gal(s,t) = st) = Bl(s1)

where B(s,t) = V(s,t) — stV (1,1), with V the usual Brownian sheet. Since we
have reduced our process to a linear transformation of this one, we conclude that
it converges weakly to

—B(u,u) +uB(1,u) + uB(u, 1),
which is —A(u). This has the same law as A(u). O

The limiting process A can be described in several ways, one of which was given in
the statement of Theorem 1.1. Another representation (discovered as a consequence
of the alternative proof of Theorem 1.1 mentioned in the introduction) is the
stochastic integral:

aw=0-17 (2)/2(1 — 5 2dW (s),

where W is the usual Wiener process. To check this, it suffices to note that both
processes are Gaussian, and observe that their covariance structures are the same,
namely

Cov (A(s), A(t)) = (s At — st)?.

Another way to view A is as a diffusion process, described by the associated sto-
chastic differential equation. This may be easily found from the stochastic integral
representation to be

dA(t) = -2 (f—%) dt + +/2t(1 — t)dW (t), A(0) = 0.

Compare this with the equation for the more common Brownian bridge process B:

dB(t) = — (f—(tD dt +dW(t),  B(0)=0

Though A is similar to B in vanishing at the endpoints 0 and 1, its equation has
a stronger “drift” coefficient and a variable “speed” coefficient.

Finally, we return to the original problem — that of the maximum table-space
usage. An asymptotic law for this quantity is now an easy corollary of our main
result.

PROPOSITION 2.1. Let K, = max3" L. Then
K, —n/2

vn/4

where Y has a standard normal distribution.

Remark. This says that K, has the same asymptotic behaviour as L,; essentially
because for large n the maximum L will occur for k ~ n.

Proof. Let ®(a) = P (Y < «). We need to show P (( in)/5vn > a) — ®(a)
for all @ € R. Noting K, > L, gives lim, P ((K, )/ \/— > a) > ®(a). Also,
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with X,, as in Theorem 1.1 and any ¢ > 0,

. 1 1

limP(Kn>§n+§\/ﬁa)

- 11 - 11
<limP | sup Xn(t)>§n+§\/ﬁa +IEmP{ sup Xn(t)>§n+§\/ﬁa

-3 ]<e li-g|>e

<lmP|[| sup ——F—F—=>—
Pz VR

JEmp | sup Ko@onal) | gntavnenave)
i-kfze  2V7 NG

<P| sup A(t)>g +EP< sup A(t) j>c2\/ﬁ+g>
|- L |<e 4 n \o<t<1 4
The second term is 0 for any ¢ > 0, since supy<;<; A(f) < oo as. The first term

goes to ®(a) as ¢ — 0 by the Dominated Convergence Theorem, noting that
lim. o sup‘t_%|<cA(t) = A(1/2) as. O
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