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Some Shift Inequalities for Gaussian Measures

WENBO V. L1* AND JAMES KUELBS*

ABSTRACT. Let p be a centered Gaussian measure on a Banach space B and suppose
heH,, the generating Hilbert space of .. If E is a Borel subset of B, we establish some
inequalities between p(B) and w(E+h) which are similar in spirit to the isoperimetric
inequality for Gaussian measures, We also include some applications to precise large
deviation probabilities for ..

1. Introduction

The Cameron-Martin formula provides a precise equality for shifts of a Gaussian
measure, and here we present a related inequality. If ~,, is the canonical Gaussian
measure on R™ the shift inequality takes the following form. Throughout ®()
denotes the standard normal distribution on R and || - || the usual Euclidean
norm on R”

Theorem 1. Let v, be the canonical Gaussian measure on R” and assume E is
a Borel subset of R". If 8 € (—o00,00) is such that u(F) = ®(0), then for every
A € Rt and h € R™ with ||A]ls = 1 we have

B0 — [A) < p(E+ AR) < (0 + |A]) (1.1)

Remark. If v,(F) = 0 (or v,(E) = 1), then by taking ®(—oco) = 0 and ®(+o0) =1
we see (1.1) is valid for all A € R'. Hence we assume 0 < u(E) < 1 throughout
It is also easy to see from the proof that both inequalities in (1.1) can only be
achieved by a half-space perpendicular to h, one for the upper bound and one for
the lower bound, but as |A| — oo at least one side of the inequality always becomes
trivial. Of course, the parameter A in (1.1) can always be absorbed into the vector
h without loss of generality, see (1.3) below.

By a monotone class argument, and some well-known properties of Gaussian
measures, one can easily extend Theotem 1 to a Banach space. Hence we will
not include details of the proof of this extension, but restrict ourself to a precise
statement. Here B denotes a real separable Banach space with norm | - || and
topological dual B*, and X is a centered B-valued Gaussian random vector with
= L(X). Hence p is generated by a Hilbert space H » which is the closure of

B) ={[paf(z)du(z): f € B*} in the inner product norm given on S(B*) by

(S1,S9), / fa (z) (12)
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We use || - ||, to denote the inner product norm induced on H,, and for
well known properties; and various relationships between u, H,, and B, consider
Lemma 2.1 in [K]. These properties are used freely throughout the paper, as well
as the fact that the support of p is Hy; the B-closure of H,. Then Theorem 1
implies:

Theorem 1’ Let 1 be a centered Gaussian measure on B and assume F is a Borel
subset of B. If § € (—o0,00) is such that u(E) = ®(6), then for every h € H,, we
have

(0 — [hll) < p(E+h) < (0 + [1h]],.). (1.3)

Although we have never seen Theorem 1 or 1’ in print, they are perhaps
known by some experts. We learned this after circulating our Gaussian symmetriza-
tion proof of the result, and eventually several much simpler proofs emerged in
discussions with Michel Ledoux. We thank him for his interest and contributions
to these results. We present the simplest of these proofs below, and also some ap-
plications of the shift inequality in hopes that it will become more widely known.
Ouwr first application deals with the relationship of large deviation results for a
Gaussian measure and the shift inequality. This gives another perspective to [KL].
The other applications are intuitive and easily believed, but we do not know how
to prove them without the shift inequality. Also, our Theorem 2 in Section 3 pro-
vides a sharper result than Theorem 1 when the set E is convex or bounded. All
these results are of isoperimetric type over different classes of sets.

2. Proof of Theorem 1

As mentioned earlier, our first proof used the Gaussian symmetiization of sets,
but one can also prove the result using Ehrhard’s symmetrization of functions de-
veloped in [E]. The proof we give here is based on the Cameron-Martin translation
theorem as used in the proof of Theorem 3 by [KS]

Let (z,y) denote the canonical inner product on R and take
F ={x e¢R™: (z,h) <0} where v,(F) = ®(f) = v,(E). Then by the Cameron-
Martin theorem '

B+ A2 — [ Mo (0)
E

(21)
< / N oy () + / Mo, (2),
J ENE ENFe

and, similarly,

Y (F + AR)eNIME2 > / e dryy () + / e Mdn,(z)  (22)
ENF EenF

(F), m(ENF) = v(E) = m(ENF), and 7(E°NF) =

Since v, (E) = 7n
v (E N F), we have

’Yn(F)

Y(ENF) =y (E°NF). (2.3)
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Combining (2.1), (2.2) and (2.3) we see
(B + Ah) < ynF + Ah) = @0 + [A]). (24)

Thus the upper bound in (1.1) holds, and (1.1) follows from the following lemma.

Lemma. If the upper bound in (1.1) holds for all Borel subsets F and all A > 0,
then (1.1) holds as stated.

Proof. As mentioned previously, if #(E) =0 (or u(E) = 1) the result holds for all

X € R by setting = —oo (o1 § = +00), so we assume 0 < u(E) < 1. For any Borel
set A with 0 < p(A) < 1, we let 8(A) € R! denote the unique number satisfying

B(6(4)) = u(A)
Now w(E + Ah) = 1 — p(E€ + Ah), and if A > 0 the upper bound in (1.1)
implies
(B + AR) < ®(O(E°) + N).

Now by symmetry we also have ®(6(E°) + ) = 1 —®(0(E) — |\|)for A > 0, so by
combining the above when A > 0 we have

W(E + AR) > ®(8(E) — |A).

Thus the lower bound also holds for all A > 0

Now if both the upper bound and lower bound in (1.1) hold for all Borel sets
£ and all X > 0, then it also holds for A < 0. This follows since A < 0 and p
symmetric implies

H(E + Ah) = u(E — |AB) = p(—E + |\lh)

Symmetry also implies

Hence (1.1) for A > 0 implies
(0 = [A) < p(—E +[A[h) < &0+ [A],
and combining the above we thus have for A < 0 that
(6 — |Al) < p(E+ Ah) < (6 +[A])

Thus (1.1) holds for A < 0 as well, and the lemma has been proved. Hence Theorem
1 is proven. 0
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3. Additional Comments and Comparisons

Let A denote a symmetric (not necessarily convex) subset of R™, h € R", and
S ={z:|{(z,h)| <a} If 7, is the canonical Gaussian measure on R™ and a > 0
is such that v, (A) = 7,,(S), then Theorem 3 of [KS] implies

TS+ h) < (A +h) (3-1)

Of course, this result also extends to their Theorem 3 using standard arguments

just as Theorem 1 implies Theorem 1’. Combining (3.1) and the ideas in the proot

of the previous lemma, we see
V(S +h) < Ya(A+h) < (T + h) (3.2)

where T = {z : | (z,h)| > b} and b > 0 is such that v, (A) = 7,(7"). Our Theorem
1 is equivalent to the following:

Theorem 1”. If E is a Borel subset of R*, h € R*, H_ = {z: (z,h) < a}, and
H, = {z:{x,h) > b} where a and b are such that v,(E) = vo(H_) = vu(Hy),
then

Yo(Hy + 1) <y (E+h) <y, (H-+h). (33)

Our next result is a more general form of Theorem 1”7. In particular, it pro-
vides sharpet estimates than Theorem 1” when the set E is convex or bounded.

Theorem 2. Let E be a Borel subset of R®, h € R”, and suppose
EC{z:a<({z,hy<d}. (34)
IS ={z:a<{x,h)<b},S¢ ={z:c<(z, h) <d}, are such that

W (S-) = W (Sy) = ylE),

then
Yu(S4 + ) S V(B +h) <yn(S-+h) (3.5)

Proof. By the Cameron-Maitin formula we have

B ) = 2 [ e, a) (36)
E

and )
Yu(S- +h) = 67|\hH§/2/ e = dy, (). (3.7)

Furthermore,
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and for all z € EN(S_)%,y € S_ N E° we have (z,h) > b > (y,h) > a. Hence

/ e~ @R dy, (2) < e Py (BN SS)
BASe

= e Py, (S_ N E°) (3.10)

< / My (y),
S_nNEc

since v, (£ NS ) = 4,(S_ N E). Combining (3.6)—(3.10) we thus have
V(B + h) < va(S- + 1),

which is the upper bound in (3.5). The proof of the lower bound is similar, and
hence Theorem 2 is proven i

As a consequence of Theorem 2, we give the following result which provides
a sharper estimate than Anderson’s inequality for the upper bound, and the well
known result for the lower bound regarding the shift of symmetric convex set. Of
course, Theorem 2 applies to arbitrary Borel (not necessarily symmetric) sets as
well,

Corollary. Let C be a symmetric convex subset of R® and h € R". Then
max (v (S+ -+ h), exp(—[|7]3/2)72(C)) < 7a(C + h) < min(y,(S— + h), 1 (C))

where

S_ = {aj : —magg(y,h) < (z, h) §b},5+: {x:c< (@, h) gngag{y,m},

ye

are such that v,(5_) = v,(5+) = v.(C)

Proof. Since C' is symmetric convex, we have

C . h) < < :
CC {x max (y,hy < {z,h) < I;lgg{(y,h)}

Thus (3.11) follows from Theorem 2 and the following well known facts about the
shift of symmetric convex set (see, for example, [DHS]):

eXP(*Hhug/Q)’Vn(C) < 7 (C +h) <7 (C). (3.12)

Note that if the symmetric convex set C is unbounded in the direction of A, then
we can simply take d = oo in (3.4) and the set S, is a half space in this case.

It is easy to see that in a variety of cases our new bounds are better than the
simple but very useful facts given in (3.12), in particular when ||h||3 is large. This
is obvious in terms of the upper bound, but the lower bound is also better when
¢ < 0 and ||h||2 is large. This is interesting since one also knows that

m(C + h) ~ exp(=[|h]|3/2)7.(C) as [|h]l2 — oo
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As can be seen from Theorem 2, the bounds provided here take into account the
relative size of C' in the direction of the shift, as well as the magnitude of v,(C)
and ||A]2.

Now we examine how these results relate to “isoperimetric inequalities” over
different classes of sets, and mention some related open problems from this point
of view. Let B(R"), S(R™), and C(R™) denote the class of Borel sets, symmetric
Borel sets and convex sets in R™, respectively. Fix 0 < o < 1. Theorem 1 tells us

sup{yn(E +h) 1 v.(E) = o, E € B(R")} = v (H_ + h) (3.13)

for any h € R™ where H_ = {z : (z,h) < a} is the half space such that v,(H-) =
o, and
inf{v,(E + 1) : 7.(E)=a,FE ¢ BR™)} = v.(Hy + h) (3.14)

for any h € R® where I, = {x : (z,h) > b} is the half space such that v,(H) =
«. The extremal set in (3.13) is given by H_ and by H, in (3.14). They are unique
up to sets of measure zero.

Our Theorem 2 implies in particular that for any 2 € R"

sup{n(C +h) : 7,(C) = a,C € C(R™) and C C {z : a < (z,h) < d}}
= Ya(S- + k) (3.15)

where S_ = {z:a < {z,h) <b} is the slab such that 7,(5 ) = «, and for any
h 6 Rn,

inf{y,(C +h) : 7,(C) = a,C € C(R™) and C C {x:a < (z,h) < d}}
= v, (S, +h) (3.16)

where Sy = {z:c < (z,h) > d} is the slab such that v,(Sy) = «. The extremal
sets here are given by S_ in (3.15) and by Sy in (3 16), and again are unique in
the sense indicated above.

Equation (3.2) implies in particular that

Sp{ra(A -+ 1) u(A) =, A € SRV} = (P + 1) (317)
for any h € R™ where P_ = {z : | {z,h) | < a} and a is such that v,(P_) = o, and
inf{v, (A+h) : 1(4) =a, A€ S(R")} = v (Py +h) (318)

for any h € R™ where Py = {z : | {z,h)| > b} and b is such that v,(P;) = . The
extremal sets are given by P_ in (3.17) and by P4 in (3.18), and are unique as
before

Thus for the simple shift operation there are a variety of isoperimetric results
over different classes of sets On the other hand, there are other useful operations
on sets where much less is known at present. Here we only mention two well known
ones, namly, addition and dilation of sets
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The isoperimetric property for Gaussian measures states that
inf{ve (B + AK) : 7(E) =a, E € BR™)} = v, (H + A\K) (3.19)

for any A > 0 where K = {z ¢ R" : |z||z < 1} and H is a half'space such that
Y(H) = o. Here A+ MK = {a+ Mk : a € Ak € K}, and v, () is the inner
measure obtained from +,. The relation (3.19) is very powerful, and provides
the best results in a variety of settings. It is due independently to Borell[Bo] and
Sudakov-Tsierlson[ST]. A beautiful extension for convex Borel sets using Gaussian
symmetrizations was given by Ehrhard in [E]. If the inf in (3.19) is replaced by
sup, then the righthand term easily is seen to be one. On the other hand, it seems
to be a very hard problem (also for sup instead of inf) if we replace £ € B(R")
in (3.19) by E € S(R") N C(R"). In particular, the extremal sets depend on the
parameter o and the number A > 0 as can be easily seen in R2. For example, let
Ky = {(z,y) : 2 +y*> < ¥’} and S, = {(z,9) : |z| < a} where a and b are such
that f(b) = v2(Kp) = 12(Ss) = g(a). Note that

f(b) = i// e~ @2 qpdy =1 - e V2
‘ 27 22+ y2<p? ’

=1 —$2/2d
g(a) _\/QF/ x

and
Yo (Ky + AK) = 12 (Kyga) = f(b+X),  72(Se + AK) = 12(Sarr) = gla+ A).

It is easy to see that with fixed b > a > 0 from [f(b) = g(a), f(b+A) > gla + )
for X sufficiently large. On the other hand, we have

o —p2/o _ B 2b et
SRI4 V] = b =01 = £0) = b1~ ta) = == |

e /24y

——a2/2 _ 0
SRl axg(‘“”\)'
for a > 0 sufficiently small since b > a is also very small It should also be noted
that the first inequality conjectured in Problem 3 of the book [Lif], page 277, is
false. The extremal set is neither a slab nor a ball depending on diflerent values
of o and A as seen in the above example.

For the dilation operation it is known that any fixed 0 < a <1

=0

inf{yp(AE) : 7 (FE) = o, E € B(R")} = v,(AH) (3.20)

for any A > 1 where H is a half space such that v,(H) = a. The relation was
first given in [LS] for v, (F) > 1/2 in connection to the exponential integrability of
seminorms of Gaussian random vectors. On the other hand, it is still a conjecture
if we replace E € B(R™) in (3.20) by E € S(R") N C(R™). It was shown in [KS]
that if the set F is totally symmetric, that is, symmetric with respect to each
coordinate, then the conjecture holds.
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4. Some Applications of the Shift Theorem

Ouwr first application involves the connection between large deviation probabilities
and the shift inequality for Gaussian measures. If a; and b; are non-negative, we
write a; << by if imy_,e0 a¢/b; < 00, and a; = by if both a; << b; and by << a.
Here we assume D to be an open convex subset of B and p is a centered Gaussian
measure on B. The parameter t is strictly positive. If D N H w7 and 0 ¢ D, then
Proposition 1 of [KL] showed there exists a unique point A € D and f € B* such
that h = Sf, D C {z: f(z) > f(R)}, and inf ||lz||2 = inf [lz||2 = [|A]%. The point
zeD zeD

h is called a dominating point of D. Hence by the Cameron-Martin theorem
mwwwmw~m+w:am&ﬂwmﬂ/ e duz) (A1)
H(D—h)

where h = Sf. Since f(x) > f(h) for all z € D and f is a centered Gaussian
variable it is easy to see that

p(tD) <<t~ exp {~*||hll}/2}, (42)

which provides an upper bound on p(¢D).
For a lower bound we consider the lower bound in the shift inequality applied
to the middle term in (4 1). This implies

u(tD) > (6, — A, (43)

where 0, satisfies
WD — 1)) = (6;) (4.4)

Since (D — h) is a subset of {z: f(z) > 0} for ¢ > 0 we have p(t(D —h)) < 1/2
and thus 6; < 0. Hence if D is also an open ball in a 2-smooth Banach space, then
Corollary 1 of {KL] implies

Jim t(5 — w(t(D — 1) < o0 (45)

Now (4 4) and (4.5) with §; < 0 combine to imply 0 < —§; < ¢! as t — oo. Hence
(4.2) and (4.3) imply as t — oo

(D) =t exp{(0; — t|hllu)?/2} =t~ exp{—?||hll/2}

Of course, the crucial things to prove in the above are that the dominating
point exists, and (4.5) holds. This is done in [KL}, but once these things are known,
the shift inequality applies nicely for the lower bound. This is the more delicate
part of the argument, and what was done in [KL] was to show the integral in (4.1)
to be of size 7! as t — oo. These approaches are essentially equivalent, but the
shift inequality is definitely more direct.

If U is the open unit ball of B in the norm | - ||, then easy examples in R"
show that for various norms || - || we do not have

Jim. PX et(U—-p)=1/2 (4.6)
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for every p € R™, ||pl| = 1. For example, if £{X) = u, where p is the standard
normal distribution on R, and || - || is an £°° or £! norm, then the limit in (4.6) is
279 when p is one of the corners of the closed unit ball U. On the other hand, our
next result will show that there always exists p, ||p]| = 1, such that (4.6) holds
Hence at such p the boundary of U is rather flat. This is obvious in many cases,
and intuitively clear, but the result below is completely general. Also, we do not
know how to prove this result without the shift inequality.

Proposition. Let U be the open unit ball of B. Then there exists h € 8U such that
tlim w(t(U —-h)) =1/2. (4.7)

Proof. Let K be the unit ball of H,, D = U¢, and recall p is a centered non-
degenerate Gaussian measure. Hence K # {0} and if

Ao =sup{\ > 0: K C U},

we have \g/X N D # ¢. Hence take h € A\gK N D. Then ||h]|, = Ao > 0, ||1]| =1,
and by Lemma 2.1 in [K]| we have

o*= sup (/;LfQ(x)d#(w):: sup [l2]1®

Iz <1 zeK
Thus o2 = \; 2, and [LT, p. 87] implies that, as t — oo,
p(tD) = exp{—t*||h[%/2 + ()t} (4.8)

where lim e(¢) = 0. Hence if p(¢D) = ®(6;), then tlim 0y = —oo and we also have

t—o00
p(tD) = exp{—07/2 — log V/2r — log |0;| + 6(t)} (4.9)

where lim 6(¢) = 0. Combining (4.8) and (4.9) it is easy to check that

i—o0

6, = ~tllh], +~(t) (4.10)

where lim +(¢) = 0. Thus
t—00

c(t)t = thlluy(t) —¥2(t)/2 — log V2r —log | — tl|hll, + ()] + 6(t),

and hence

()
"=,

as t — oo Now u(t(U — h)) = 1 — u(t(D — h)), and by the shift inequality and
(4.10) we have

7 log (Ve [Rl,t) + oft ™) (4.11)

1/2 < ju(t(D — b)) < ®(0, + [t 1R,) = B(1(1)) < 1/2+ 4(2) (412)
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Furthermore, (4.12) implies v(¢) as given in (4.1) is non-negative as t — co. Taking
complements, as { — 0o

1/2 = (@) < pU - h)) <1/2

where tlim ~(t) = 0. Thus (4.7) holds. O

Finally we present two miscellaneous inequalities which are intuitively obvi-
ous, but seemingly not so easy to prove without the shift inequality. They are as
follows.

L If F is any norm bounded Borel subset of B with p(E) > 1/2 and h € H,,,
|h]|, = 1, then p(E° + Ah) converges to one as A — oo at a rate slower than the
u-measure of the half space {z € B : (z,h)~ < A}. This follows immediately from
Theorem 1 since for A >0

p(E€ 4+ Ah) < OO+ N)
where ®(0) = u(E°) <1/2. Thus # <0 and
BB+ AB) < B(\) = (o s (3, B) <

since {z,h)~ is N(0,1) when (h], =1

II. Let C be an open cone strictly smaller than a half space with vertex at the zero
vector in B and assume u(C) > 0. If h € H,NC, ||h||, = 1, it is easy to see that
)\lim w(C+Ah) =0 and /\lim #(C 4+ A(—h)) = 1. Since the map A — p(C + Ah) is

easily seen to be continuous by the Cameron-Martin formula and the dominated
convergence theorem, we take Ag such that u(C + Agh) = 1/2. Then, as A — oo,

p((C+ A(=h))%) =1 — u(C + A(—h))
=1—pu(C+ Xoh + A+ Xo)(—h))
>1—®\+ Xo)

by the upper bound in the shift inequality for £ = C 4 Agh. Hence as A —
00, p({C + A(—h))¢) goes to zero faster than the p-measure of the half space
{z: {z,h)™ < —Xg— A}
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