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Abstract: Let B(t) be a standard Brownian motion in R'. We prove that

) log (T'/a(T)) + 2loglog T 1/
i oT) )

sup |B(t)| = g a.s.

T—co T—a(T)<t<T

under suitable conditions on a(T) .

1. Introduction
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Let {B(t),t > 0} be a standard Brownian motion in R'. There are various types of laws

of iterated logarithm that are known for B(t) for different types of norms. For sup-norms,

we know (see Chung [2])

— 1
T = 5.
P, T loglog T2 OigngB(t)l V2 as

and (see Chung [1], Jain and Pruitt [7])

‘ 1/2
lim (loglogT) sup |B(t)| = Z s

sr—— m
T—oo

pi

For Lo-norms, we know (see Strassen [10])

. 1 T 8
T TriogioT y B# =15 as

and (see Donsker and Varadhan [5])

. loglogT [T _, 1
I%I%O—JT—/O B (t)dtzg a.s.
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They have the same nature that B(t) is being considered only on [0,7]. What happens
if B(t) is on [T — a(T), T] for a(T) > 0 ? The case regarding (1.1) on [T — a(T), T] can
be obtained easily by using (1.1) and the Levy’s laws of iterated logarithm

v 1
B TR T |B(T)| =2 as. (1.5)

The case regarding (1.3) and (1.4) on [T — a(T'),T) are investigated in Li [8] and [9]. In
this paper we investigate the case regarding (1.2) on [T — a(T), T]. We have the following
results.

Theorem. Let a(T) satisfy the conditions

(z) 0<a(T)<T, a(T) is a non-decreasing function of T, for 0 < T < oo;

(19) a(T)/T is non-increasing as T — oo; or
(%) limrea(T)/T =p, 0< p< 1.

If im0 log(T'/a(T)) - (loglog T)~! = oo, or if limy_,e log(T'/a(T)) - (loglogT)™* < oo
and limr_0o a(vT) /a(T) < co for some v > 1, then

m ¢(T)  sup |B(t)| =2 as. (1.6)
Tooo T—a(T)<t<T 2
where

og (T/a(’ oglo 1/2
o(T) = (1 g (T/ (’1227—;21 g | gT) ,

After circulating the preprint of this paper, Prof. A. Féldes kindly pointed out a close
related result in [3]. Namely

T
lim ¢(T inf su B(t+s)== a.s. 1.7
Tseo o )0<tST—a(T) OSsSaI.)(T) 15( ) 2 (1.7)
The difference is that we only look at the last interval of length a(T). Thus (1.7) provides
a lower bound for our result. Since the lower bound is the relative easy part to prove, we
also include a proof for completeness.

Next we give here the following examples to illustrate what our theorem tells us.

Ezample 1. For z 2 0, let a(T) = (1 + z)~'T , then (1.6) tells us by the change of
variable that

lim (M) v su |B(t)| = T s (1.8)
T—oo T xTStS(S—H)T IRV "

If z =0, (1.8) becomes (1.2). It is somewhat strange that (1.8) is true no matter what
z 2 01s. One might expect (1.8) has something to do with the zeros of B(t) . In fact, for
almost all w € (1, there exist Tj(w) such that

B(ka(w)) =0 k= 1,2, ce s kljm Tk(w) = Q.
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Hence we can see in a very rough sense (we use =~ ), for %(T") = (T~ loglog T)*/2,

lim 9(T)  sup |B(t)] = JLm 3 (Ti(w)) sup |B(®)]

T—cco <t (z+1)T 2T, (W)Lt {2+ 1) Tr (W)

; , ~
= lim §(Te(w)) ogf£<w)l3(t)l” 7

The problem, however, is to make this precise.

Ezample 2. Let a(T) = T — T where 0 < @ < 1. Then (1.6) says that
. loglog T 1/2 T
Jii B{t)|=—= a.s. 1.9
Nate that we can give a trivial proof of (1.9) by (1.1) and (1.2) as below
Mo T\ 172
im (log logT )

T—oo

sup |B(1)]

Te<t<T

. loglogT 12 i
< I ' B)| = — .8.
< fm (20) " 1s01= oo
, 1/2 ‘ 1/2
< Jm (BETVT B+ nm (PERET) T G (B
T—oo T 0<t<T Too T Ta<i<T
and
— (loglog T\
lim (og ng) sup |B(t)|=0 a.s.
T—sco T 0<t<T>

But our next example shows that the above proof is not always going to work when the
interval [T' — a(T), T'] becomes shorter.

Ezample 3. Let a(T) = T — T(logloglog T)~! and a(T) = T/(log T)® separately where
a > 0. Then (1.6) gives that

ey 1/2
lim (.loglogT) sup |B(t)| = . as
T—co T(logloglog T)~1<t<T \/g
and
/2
. (log T)* - log logT) ! T
lim su B{t)| = a.s.
T—co ( T T—-T(logT)E-agthl ®) 2V2+a

Ezample 4. Let a1(T) = ¢, a9(T) = clogT, a3(T) = cT* where 0 < o < land c>0isa
constant. Then (1.6) says that

lim (logT)*? sup |B(t)| = z Ve as.

TS0 Tme<t<T 2

im sup |Bt)|==-vc as. ;
T—oo T—clogT<t<T 2
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logT' 12 T c
i Bt} = — - 5.
T]—l—{%o( Te ) T—cglalgthl ® 2 V1i<a *°

Hence we see from (1.6) that a(T") = clogT is the critical function, i.e. under our
conditions (7) and (i),

0 as. if Tlim a(T)/logT =0
lim sup  |B()| =¢ 7m/c/2 as. if Th_%o a(T)/logT = c
T—oo T-a(T)St<T oo a.s. if Tlim a(T)/logT = oo

We give the proof of our theorem and some lemmas in next section. Our Lemma
1 and Lemma 2 are the useful probability estimates for Brownian motion, which have
independent interest. Now we need some notation for next section. Let ¢ stand for a small
positive number given arbitrarily, and C' denote various positive constants independent
of k and n , whose values might change from line to line. f(g) ~ g(¢) as € — 0 means

lime o f(e)/g(e) =1.

2. Proof of Theorem

The key estimates for the proof of our theorem is the following lemma of small ball
type.
Lemma 1. Leta=a., b="b. andb>a > 0. Then as (b~ a)e™? — o0, ac™2 — oo and
e — 0,

€ ™ b—-a
<elmw K .. e
d (f;ié’b Bl < 5) K- %o ( § & )

where K is a positive constant independent of €.

Proof. Define 7 = 7(z) = inf{t > 0 : |B,(t)| = &} where B,(t) is standard Brownian
motion starting from z, |z| < b. Since exp{AB,(t) ~ A\*t/2} is a martingale, we have by
optional stopping theorem, E exp{\B,(7) — A27/2} = exp{—Az}. Replace A by —)\ and
solve the two equations, we have

Bexp{-X/2} = (€ +€7) /(e + &)
Thus we have by making a partial fraction expansion and inversion of this Laplace trans-

form, the density function of the random variable 7,

T o~ T 72
f-(t) = 50 I;J(._l)k@k + 1) cos <(2k + 1)%> exp{—(2k +1)?- é?t}

By integration on ¢ we obtain

P(sw B0 <e) = Plr@>9

0<t<e

= (=1F < 71'-’13> =L T
= . 2k + 1)=— —(2k+1)%. =1}

| >

3
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In particular, for € small, the dominating term is, at k& = 0,

4 T e
7 (z)-exp{“ézz‘}'

Now by conditioning,

[ ZP (assggb IB(t)IVS g,B(a) = :v) dP(B(a) < z)

e 1 2
= P B.(t)| <e]-- —= gy,
[-s (ogstgg---al Bl < E) vV 27rae ’

Hence as (b — a)e™2 — o0, ag™® — oo and € — 0,

P (sup B < a)

a<t<b

P (sup B(t)| < e)

a<t<b
4 72(b—a), (¢ T 1 29,

— exp{~= 8e2 } e <_~> ' 27&'0,8 oz

4

2e
7T2 (b - a) 1 ) & *62‘3/2/20.
= = exp{——————&32 }/_1 cos (my/2) - -—__27me dy

€ ™ b—ag

where K = 16/7%+/2m. This finishes the proof.
Our next lemma provides estimates for the correlations.
Lemma 2 For any &' >a’>b>a>0and s >0, s >0, we have

P ( sup |B(6)| <5, sup |B() < )

a<t<bh o/ <tV

< P( IB(t){s’s)~P( wp | 15(0] <)

a<lt<b o/ —b<t<¥ —b

< (a,cib)l/Q‘P(sup |B(t)| §s> ~P< sup |B(t)] Ss')

a<t<h of <Y

Proof. First, let us prove the first inequality. By the fact that for Brownian motion the
past and the future are conditionally independent given the present (see Theorem 9.2.4
in Chung [2]), we have

P ( swp (B <s, swp |BE) < )

a<t<h a’ <t<¥

- [r(gmpiss. s 15015150 == ) 2p(e0) <o

a<t<h

= /_iP(sup |B(t)| < s|B(b) = :c) : P< sup |B(t)| <§'|B(b) = m) dP(B(b) < z).

a<i<b a! <t<H
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Now note the following inequality for any b>a2>0,¢>0and z € R,

P (sup |B(t) + | < 6’\ <P <sup, |1B(t)] < 6‘) :
a<t<b / a<t<b

It is a particular case of Theorem 2.1 of Hoffmann-Jgrgensen, Shepp and Dudley [6]

which is a well known fact about the measure of the translated ball for the centered

Gaussian measures. Hence by using the fact that the Brownian motion has independent

and stationary increments, we have

P( sw 1B <1B0) = :c)

q'StSb’

a’ <t<b

= P| sup [B(t)—B(b)+z|<s|Bb) = x)

= P <('Isup |B(t) — B(b) + 2 < s’)

<Y

= P sup |B(t)+z| < s')

a’ —b<t<b' ~b

< P sup |B(t)] < s’) :

a’ —b<t<b' —b

We thus obtain

Pl sup [B(t)| <s, sup [B()|<s
[ )

a<t<b o/ <<y

IA

fsP<aség§blB(t)lSslB(b)=w)"P( sup rB(t)ISS')dé<B<b><x)

—s ' ~b<t<b ~b

- P(sup |B<t>fss)-P< sup IB(t)ISS’).

a<t<b ' —b<t<b/—b
To prove the second inequality, we have by the basic properties of the Brownian motion

( s |B() < )

a’ —b<t<b —b

P
= /OOP< sup blB(t)ISS'IB(a’—-b):x)dP(B(a'—-b)<x)

—c0 @' ~b<t<h —

8

= / P (m sup  |B(t)~ B(a' —b)+ x| <5 | Bla' - b) = :c) dP(B(d' —b) < )

—b<t<h —~b

8

8

o

8

- /_ - < sup [B(t)—B(a’—bH—xiS’s’)dP(B(a'—b)<x)
(

a/ —b<t<b —b
/
—00
1 1 372

= <><>P B)+z|<d| ———— —_—\d
f_w 098;15_'0,! (t) x!_S) ﬁ————ZW(a,_b)eXp( 5o —p)9e

sup |B(t) +z| < s') dP(B(d' —b) < 1)

0<t<b —a
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IN

(a/‘fb)w/_ZP (0;;9_a, |B(2) + ] gs’) - \/%exp(—a.&-)dx
-7 (ﬁib)l/z/_fof’( sup |B(t)+$l38'>dP(B(a’)<x)

0<t< —a!

d 1/2
= <4
(a, — b) P (JZ_‘%EI,/ |B()] < s)

where the last equality follows from the first part of this proof backward. This finishes
the proof.

The following is a well known version of the Borel-Cantelli lemma.
Lemma 3 If A; are events such that 3 ;>; P(Ax) = oo and

i 1 2oty P(ARAD
oo Dopey opq P(A)P(A))

then P(Ag 1.0)=1.

<1,

Now we turn to the proofs of our theorem. They are similar to that in Li [9] for Ly-norm
given Lemma 1 and Lemma 2. So we only provide main steps of the proof and crucial
differences for completeness.

Let us note that under our conditions (z) and (#:), our theorem becomes

. o 1/2
lim (oglogT)

T—o0

T
su Bt)|=—=p a.s. ,
T—a(T)pStSTl ( )I \/gp

This can be easily derived as follows if our theorem holds under our conditions (%) and (i2) .
ForO0<p<lande>Osmall, wehave 0 < T — (p+e)T <T—a(T) <T—-(p—e)T<T
if T' is large and thus

0<p< 1.

lim (loglogT)l/2 “u B 7r( 1)
— = — Y a.s.
T—ro0 T T—(p+e)£")‘_<_'t§T V8 P

loglog T\ /2
i (E2ET) s (50

>
Too T—a(T)<t<T
N loglogT>l/2 T

>  lim - su Bt)| = —=(p—¢) a.s.
im (L) s [BI= Telo-2

For p = 1, the above argument also works by using (1.2) as the upper bound. Hence, for
the rest of this section, we assume conditions (¢) and (#z) hold and limp_,o a(T)/T = p <
1. Now we formulate the following three statements which together imply our theorem.
(D) lm ¢(T)  swp_ [B@)Z5 as.

T—oo T—a(T)<t<T 2

(IT) If imr e a(T)/T = 0, then

- (m_g (T/a(T))

lim Bl <5 as.

T—co

1/2
su
a(T) ) T—»a(T)I;tST
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(1) If limp o log(T/a(T)) - (loglog T)™! < oo and Timy_,o, a(vT)/a(T) < oo for some
v > 1, then

lim ¢(T)  sup |Bt)| <= as.
T—oo T—a(T)<t<T 2

Let us first show (I). Define
Tl =1 s Tk+1 - 510,<Tk+1) = Tk (21)

where e; = 1~ (1 —¢2)2 and 0 < € < 1. Note that T — £1a(T’) is a strictly increasing
and continuous function by our conditions (i) and (ii). Hence T} in (2.1) is well defined
and Ty > T}, limgoo T = 00 . Since

&(T) > ((log (T/a(Ty)) + 2log log Ti) /a(Tir1))
and T~ a(T") £ Tiy1 — a(Tiq) for Ty > T > T, |, it is sufficient to show

<log (T /a(T})) + 2log log Tk> 1z
a(Tkt1)

Note that for k large, Ty — a(Tk) > Ti(1 — p)/2 . Thus by Lemma 1, we have for k large

log (Tx/a(Tk)) + 2loglog T3, \ */*
F ( < a(Ti11) )

lim

k—o00

sup |B()| >

Tit1=0(T i1 )<t<Ty,

(1-¢) as (2.2)

t\3|>1

sup _[B(t)] < (1 —e))

Thy1~a{Tiq1)<t<T

(1= ( a(Tsr) )1/2
= P su B} < . .
<Tk+1—a(Tk-iI—)1)StSTk l ( )i - 2 lOg(Tk/a(Tk)) + 2log log Ty,

. o(Te)  \"* log(Ti/a(Ty)) +2loglog Ty (T — Ties + a(Tis))
= ¢ (Tk+1-';<1:rk+1>> P (“ ooy Ty )

1/2 S
o(T41) ) e (__log(Tk/a(Tk)) +2loglog Ty () gl))

= C.

(Tk+1 = &(Tie+1) 2(1-¢)?
- . ( ) )1/2 | <a(Tk)_)(l+€)/2 | ( . )1+s
- Tk+1 - G(Tk+1 Ty, log T},
. < >1/2‘<£ﬁ>1/2'( 1 >1+e
- T — a(T;c T log T
< c. Ty — Ti

(T — a(T3))2T3% - (log Ti)™**
- T;

) Tk Tk—Tl_(_—E < /k dz

T (log T)

Hence by the Borel-Cantelli lemma, we obtain (2.2) which shows (I).

Ti—; z (log :1;)1+E

Now turn to the proof of (IT). Let T}, be the unique solution of the equation
z/a(z) =k where B=2(1+¢)/(2+¢)> 1L (2.3)




289

Then Tyy1 > Tk and limg_, 7% = co . Define the events

rE)T a 12
A’“z{ 101 5 ( (Tk)Tk))> }

Ti—a(T3)<t<Tx 2 log(Tk/a(

We then show P(Ag i.0.) = 1 by Lemma 3 which in turn gives us (II). Note that
Ti/a(T) = k°. Hence by Lemma 1 and the choice of 8 in (2.3), we have for k large

o(Ty) )1’2 1og(Tk/a<Tk>)> -1
P(Ay) > C- cexp | ~————= | > C - (klogk
(4e) ((T,c — a(Tv)) log(Te/a(Tr)) P (\ 2(1+e)? (klog k)

which shows 3751 P(Ax) = 0 .
For given § > 0 small, define kg large such that for [ > k& > ko, we have

S (o1 (24)
k<I<(6~141)k"

(—141)k -
< 2/ (1:5 —-1- kﬁ) M2 1Ry < C.
k+1

Note that for [ > k and 8 > 1,
T, — a(Th) = Tip1 — a(Tesr) = (5 + 1)Pa(Tera) — a(Ties) > kPa(Ti) = T

Hence for given & , ko < k < n, we can split the set {{ : ko < k¥ <! < n} into two parts,

Ly = {l: k<k<l, T1—af) 2T >6T—a(T)} ;
Ly = {l : k0<.k<l, 5(Tl-—a(T¢))2Tk}

Ifl € Ly , then by Lemma 2,

T - a(Th)
Ti = a(Tt) — T

Note that by the proof of Lemma 2, we also have for kg < k& <1

1/2
P(ArA) < ( ) P(A)P(A) < (1 - 8)™Y2P(Ax) P(4)).

| (A4 o) \?
P<A’°Al)SP(A'“)“P(n-a<n>-s‘rlkpsm-n'3(t) =3 <1og(Tz/a(Tz))> ) 23]

Ifle Ly, then
07 kPa(Ty) = 67 T, > T — a(Th) = (I° — Da(Ty) > (1° — 1a(Ty)
which gives k < | < (67* + 1)k . Now for [ € L; , we have by Lemma 1,

(1+e)m a(Ty) 1/2
d (Tl_a(Tl)E;;};tSﬂ_Tk Bl < 2 (log(Tl/a(Tl))> ) (2.6)
a(Th) 2 log(T;/a(T1))
< o (rmmmn) = (e

< O (T/a(T) ~ 1~ Te/a(Te) ™2 - (Ti/a(Ti)/C+
C- (18 —1-k) 7 11en,
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Hence we have by combining (2.4), (2.5) and (2.6)

Y > P(AA)

ko<k<n lelj

< ¥ (cPa) ¥ (lﬁ_l_ka)—lﬂ,l_lw/z)

kp<k<n k<l<(6—14+1)k
< C > P(4).
ko<k<n
Now by Lemma 3, (II) follows from limy, e > 5y P(Ai) = oo and the estimates
2> P(AA)
k=1 I=1
= Y P(A)+2 >, P(AA)
k=1 1<k<i<n
n ko n n n
= EP(A}C) -l-ZZ Z P(AkAl) +2 Z Z P(AkAl) + 2 Z Z P(AkAl)
k=1 k=1 l=k+1 k=ko-+11€L; k=ko+11€L2
< (14 2k +20) Y P(A) + (1—6)72 373 P(Ak) P(A).
k=1 k=11=1

Now turn to the proof of (III). Define 71 = 1 , Tiy1 — a(Tk41) = Tk Then for k
large,

klim T, = 00 and 1> Tk/Tk+1 > (1 - p)/2 > 0. (27)
Thus
Ty - (log Ty,) - (log log Tx)/? < C' - Th—s - (log Tx—1) - (log log Ti—1)*/2. (2.8)

Define the events

_ (I+e)m a(Tk) 1/2
e {Tk‘—aé};)pstsTk BOl=" (4(108(Tk/ o(Tk)) + 2log long)) }

We then show P(Bj i.0.) = 1 by Lemma 2. By our assumptions for case (IIT) and the
fact that if € > 0 is small enough, we have

log(T/a(T)) < 27 -loglog T. (2.9)
Hence by Lemma 1, (2.9) and (2.8), we have for k large
G(Tk) ) 1/2
P(By) > C-
B0 2 C (=R e T T
log(T%/a(T%)) + 2loglog Ty
xp | —
2(1+¢)?
> ) a(Tk)
- Ty - log T - (log log T})*/2
Tk dz
> C-
2 /Tk_1 z - log z - (loglog )1/2
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which shows 3741 P(Bg) = o .

Since a(T) is non-decreasing, we observe that a(2(1 — p)~'T")/a(T) < C for T large by
iterating imy .. a(vT)/a(T) < co for some v > 1 if necessary. Hence by (2.7), we can
define kg large such that for [ > kq ,

oT}) < C- a(Ti_y). (2.10)

Note that for [ > k+ 1, T} — a(T}) > Tk41 — a(Tky1) = T . Hence for given § > 0 small
and ko < k < n, we can split the set {I : ky+1<k+1<1[<n} into two parts,

Ly = {l: k+1l<k+1<l,Ti—aT)>T>6T —a(h)} ;
Ly = {l : ko+1<k+1<l,6(ﬂ—a(ﬂ))2Tk}
Ifl € Ly, then by Lemma 2,

P(BuB) < [ =2= a(m) )" P(By)P(B) < (1—6)"Y2P(B,)P(B)) (2.11)
ST - - T R = RIEED: "
Note that by Lemma 2, we also have for kg < k < [
P(ByBr) (212)
, (1) ( a(T}) >1/2
< P(Bg)-P B@)| <L . .
< P8y (Tz—a(n)-leﬁtsn—»n Bl =5 log(Ty/a(Ty)) + 2loglog T;

If I € Ly, then Ty > §(T; — a(T})) = 8T;.., which gives Ty < T)_y < §~*T, . Now for
| € Ly , we have by Lemma 1, (2.9) and (2.10),

(1+e)m ( a(T}) )1/2\
P su B()| < :
(Tl—a(Tl)—TkI;tsTl—Tk B )l - 2 lOg(Tl/a(TE)) + 2loglog T
c o (@ N7 [ log(Ti/a(T))) + 2loglog T,
= T, — a(Ty) — T P 2(1 + )2
< C- a(Z) -
(T: - a(T) - Te)2 - T3/
< ¢ a(Tl—‘l) 172
(Tt = a(T) = T2 - T}/
T dz
< y .
> C /Tz—2 (x _ Tk)1/2 . pl/2°
Hence we have by combining (2.12) and the above estimate,
Y. > P(BiB)
ko<k<n lE€L,
Tir dz
< Y lerd ¥ ) (2.13)
ko<k<n ( Tr <Ty—1 <(6~14+1)T% Tiz (:t: - Tk)1/2 -zt/?
1+ 1)Ty dz
< . :
< Y (C P(By) /Tk @ —T)2- x1/2)

ko<k<n

< C Y. P(By).

ko<k<n
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Now similarly to what we did at the end of the proof of (II), P(B; i.0.) = 1 follows
from (2.11), (2.13) and limp o 5y P(Bi) = 0o . Thus we complete the proof of (III)
and hence finish the proof of our theorem.
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