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Existence of small ball constants for fractional 
Brownian motions 

Wmho V. LI ‘. Werner LINDE I, 

_____- -~ 

Abstract. Let {I?. (t), 0 < t < I} be a fractional Brownian motion of order -I t: (0. 2). and 
let f?(t) = 13, (t) be the standard Brownian motion. We show the existence of a 
t‘. E (0.x) such that: 

where u-, is an explicit constant and 
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L’existence de la &mite pour l’asymptotique des petites boules 

du mouvement brourtien fractionnaire 

I 
I 
.f 

n.y(‘) = I‘((? + 1)/2) 
(l - s)‘~-“~~dI~(s) 

,, 
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Version francaise abrhghe 

Soit {B,(t) : 0 < t < l} le mouvement brownien fractionnaire d’ordre y E 
{B?(t) : 0 5 t 5 l} est le processus gaussien centre avec la fonction de covariance 

E (LjJt)B,(s)) = ;(lcq + (tl? - (s - tl’). 

Dans [7] et [6] on a demontre que 

Naturellement, on se demande si la limite ci-dessus existe. Notre resultat principal dit 
Plus precisement, nous montrons : 

(0,2). Alors, 

SE <o. 
> 

que c’est vrai. 

THEOR~ME. - Soit {By(t) : 0 5 t 5 1) le mouvement brownien fractionnaire d’ordre y E (0,2) et 
soif B(t) = Ill(t) 1 e mouvement brownien ordinaire. On a : 

= linlE2’Y lOg$ 
E-4 

Sup [b’t’-,(t)l 5 E/U? 
o<t<1 

4 

( 1% 1 

-l/2 

a - I?((7 + 1)/2) y-l + ?-- 
((1 _ 4kW - (-s)wP)2& 

et 

w*,(t) = l I 
.t 

F((? + 1)/a) 
(t - .s)(‘-1)‘2dB(s). 

. 0 
Une simple consequence du theoreme precedent et des resultats dans [9] est : 

1. Introduction 

Let {B,(t) : t 2 0) denote the y-fractional Brownian motion with Bi (0) = 0 and 0 < y < 2. 
Then {B?(t) : t > 0} is a Gaussian process with mean zero and covariance function 

E (U,(t)B,(s)) = ;(l.q + ItI7 - Is - tl’) 

It was proved in [7] and [6] that 

A natural and important question is the existence of the above limit. It was shown in [4] that this 
limit exists if the Gaussian correlation conjecture holds. The main purpose of this Note is to show that 
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the limit in (1 .l) exists and is related to a more attractable Gaussian process. During the preparation 
of this paper, Professor Q. Shao has informed us that he obtained a different proof of the existence 
of the constant for B-,(-t) and his paper is in preparation. 

THEOREM I. 1. - Let { 13, (t), 0 5 t 5 1) be a fructional Brownian motion C$ order y E (0,2) nnd 
let B(t) = Bl(t) be the standard Brownian motion. Then 

4 
( .L ) 

--l/2 
(1. ;, = I‘((-/ + 1)/2) y-.1 + ((1 - s)(7-l)/2 - (4w)/~)2~~,s 

and 
1 

I’ 

t 

M/-r(t) = I-((y + 1)/2) 
(1: - s)+‘~‘2dB(.s). 

1 0 

(1.2) 

(1.3) 

In the Brownian motion case, i.e. y = 1, it is well known that C1 = 7r2/8 and (I] = 1. 
As a simple consequence of the above theorem and results in [9], we have 

One of the key step in our investigation of n?(t) is the following useful representation when y # 1 
(see [51), 

where n-, is given in (1.2), W-, (t) is given in ( 1.3), and 

1 0 

z-f(t) = I-((y + 1)/Z) 
{(t _ pw _ (-,5)(?-1)/2}dB(cs). 

, i’ --(x: 

Furthermore, IV, (2) is independent of 2, (t). Observe that the centered Gaussian process W,(t) is 
defined for all /j > 0 as a fractional Wiener integral. Thus rjc:,(t) will be called ,fractionul Wiener 
process of order /j. 

The remaining of the paper is organized as follows. In section 2, we estimate the small ball rate 
for W,:?(t) for any r”/ > 0 and show the existence of the constant for L%‘,?(f). In section 3, we give 
the proof of Theorem 1.1. 

2. Fractional Wiener processes 

THEOREM 2.1. - For any p > 0, 

lim ~~/‘log$ sup IJV:j(t)l < E = -k:,j: 
F’O ( o<t<1 ) 

where 0 < k,j = - inf,>” E’/!’ log $(~up~<~<~ IlV~(t)l 5 E) < 33. 
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Prmf: - The lower estimate for all i-l > 0 

is given in [3]. But when :j = y < 2. the estimate follows easily from (1.1) and 

which is a direct consequence of representation (1.4) and Anderson’s inequality. Thus we only need 
to show the upper bound and the existence of the constant. 

Let Fj(t) = r((ij + 1)/2)M’((f) for simplicity. Then for any .I’ > 0 and 0 < X < 1, we have 

where Y,,x(t) = ,/;;‘(t - .s) (l-L)‘“dU(s) Note that the processes Iri,x(f), 0 < f 2 1, and 

E,,(t) = ,,;)t -s) ( ‘-‘)/‘tl13(s). 0 < t < X: are jointly independent of the process F,,(t) - Elj,x(l) = 

,[J(t - .s)( ‘-‘)/‘d~(.s), X 2 t 5 1. Furthermore, Anderson’s inequality implies that for any real 
number (1, 

(t - .s)+‘~“)clU(s) 

Thus by lirst conditioning on tlII-3j.s). 0 5 s < X. then using (2.3). we obtain from (2.2) that 

where the last equality follows from simple substitution and scaling. Taking X = l/rr and iterating 
the above procedure, we have for any :I’ > 0 and any integer 1). 

which finishes the proof by following exactly the same argument as the proof of Prop. 2.1 in [ I] 

3. Proof of Theorem 1.1 

From (2.1) and Theorem 2.1. it is clear that 

So we only need to show the lower estimate. We need the following result which was established 
in [8] and reformulated in [2]. page 257. 
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LEMMA 3.1. -Let (Xl)tET be u centered Guussian pmvss. Fop. e\Bep E > 0. let N(T. (1; E) denote 
the minimal nwnher of balls qf rudius E, under thr (pseudo-)metric 

Proof. - Note that for any s. / E (0. 1) = T and s < t. with s.,(r) = r{(r + 1)/2)Z,(f), 

*o 

(i_, 

2 

d!$. t) = E(X (̂f) - x,(s))z = E ((I - I,, pw - (.s _ .t,)(?-‘)l’)tlB(l,,) 
1 Ill = 1, ( (f _ (,)i’-iii’ - (,s - rr)!‘-l’/‘)2(~,(r = 1‘ (if _ s + 1,)1’-w _ ,,i:-:!2)2(1 ,,,,. 

II 

Since by the mean value theorem 

l(t - s + ,,)(-r-J)/2 

we have 

&,(,s.f) 5 (2 - qyq1, - 3) <s-(2--r)‘2 

for 0 < s < f < 1. When .s = 0. it follows 

d:(O. t) = t- . (IX (1 +,l,)(?--l)/2 _ r,~-~-:);‘)2(171, 
I ( 

which implies d,(O,t) 5 Ct^/’ with CT > 0 only depending on y. For any c > 0 small, we define 
numbers 0 < lo < tl < . . by: to = (z/C’)‘/’ , so that d-,(0. to) 5 E, and for i 2 1 by 

(2 - 7)-w((, _ t,&;J;-)j2 = & 

Let M(E) = min{,tr : t,, > 1). Then for 1 < i 6 N(C) we obtain: 

ti = f,-](I + (2 - P)‘%‘ij’) > tj-I(l + (2 - #L’L-). 

thus by iterating: 

1 > tTJyc)-l > t(l(l + (2 - y)‘%)Y(‘) -l = (+-y-i(l + (2 _ l.)wE)-v~J-l~ 

which implies M(E) < (4~~~ log( l/c) for some c > 0. Hence, using t,, [) < i 2 IV(C) - 1. as centers, 
we finally get N(T. &; t-) 5 iv(r) < (‘~-l log( 1,‘~) which finishes the proof by Lemma 3.1. 
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To obtain the lower bound of Theorem 1. I, we have for any 0 < 6 < 1: 

since W?(t) and Z,(t) are independent of each other. Thus 

So we obtain the desired lower bound with cl, = k-C~~G’? by taking 5 ---i 0. 
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