Existence of small ball constants for fractional Brownian motions

Wenbo V. LI^a, Werner LINDE^b

^a Department of Mathematics, University of Delaware, Newark, DE 19711, USA E-mail: wli@math.udel.edu

^b Institut für Stochastik, FSU, Ernst-Abbe-Platz 1-4, 07743 Jena, Germany E-mail: lindew@minet.uni-jena.de

(Reçu le 10 avril 1998, accepté le 12 mai 1998)

Abstract. Let $\{B_{\gamma}(t), 0 \le t \le 1\}$ be a fractional Brownian motion of order $\gamma \in (0, 2)$, and let $B(t) = B_1(t)$ be the standard Brownian motion. We show the existence of a $C_{\gamma} \in (0, \infty)$ such that:

$$\lim_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon\right) = \lim_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |W_{\gamma}(t)| \le \varepsilon/a_{\gamma}\right) = -C_{\gamma},$$

where a_{γ} is an explicit constant and

$$W_{\gamma}(t) = \frac{1}{\Gamma((\gamma+1)/2)} \int_0^t (t-s)^{(\gamma-1)/2} \mathrm{d}B(s),$$

© Académie des Sciences/Elsevier, Paris

L'existence de la limite pour l'asymptotique des petites boules du mouvement brownien fractionnaire

Résumé. Soit $\{B_{\gamma}(t), 0 \le t \le 1\}$ le mouvement brownien fractionnaire d'ordre $\gamma \in (0, 2)$ et soit $B(t) = B_{1}(t)$ le mouvement brownien ordinaire. Nous montrons l'existence d'une constante $C_{\gamma} \in (0, \infty)$ telle que :

$$\lim_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon\right) = \lim_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |W_{\gamma}(t)| \le \varepsilon/a_{\gamma}\right) = -C_{\gamma},$$

où a₂ est une constante explicite et

$$W_{\gamma}(t) = rac{1}{\Gamma((\gamma+1)/2)} \int_{0}^{t} (t-s)^{(\gamma-1)/2} \mathrm{d}B(s).$$

© Académie des Sciences/Elsevier, Paris

Note présentée par Paul DEHEUVELS.

0764-4442/98/03261329 © Académie des Sciences/Elsevier, Paris

W.V. Li, W. Linde

Version française abrégée

So t $\{B_{\gamma}(t): 0 \leq t \leq 1\}$ le mouvement brownien fractionnaire d'ordre $\gamma \in (0, 2)$. Alors, $\{B_{\gamma}(t): 0 \leq t \leq 1\}$ est le processus gaussien centré avec la fonction de covariance

$$\mathbb{E}\left(B_{\gamma}(t)B_{\gamma}(s)\right) = \frac{1}{2}(|s|^{\gamma} + |t|^{\gamma} - |s - t|^{\gamma}).$$

Dans [7] et [6] on a démontré que

$$-\infty < \liminf_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon\right) \le \limsup_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon\right) < 0.$$

Naturellement, on se demande si la limite ci-dessus existe. Notre résultat principal dit que c'est vrai. Plus précisément, nous montrons :

THÉORÈME. – Soit $\{B_{\gamma}(t): 0 \leq t \leq 1\}$ le mouvement brownien fractionnaire d'ordre $\gamma \in (0,2)$ et soit $B(t) = B_1(t)$ le mouvement brownien ordinaire. On a :

$$\lim_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon\right) = \lim_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |W_{\gamma}(t)| \le \varepsilon/a_{\gamma}\right) = -C_{\gamma},$$

 $o \dot{u} \ 0 < C_{\gamma} = -\inf_{\varepsilon > 0} \varepsilon^{2/\gamma} \log \mathbb{P} \big(\sup_{0 \leq t \leq 1} |W_{\gamma}(t)| \leq \varepsilon/a_{\gamma} \big) < \infty,$

$$a_{\gamma} = \Gamma((\gamma+1)/2) \left(\gamma^{-1} + \int_{-\infty}^{0} ((1-s)^{(\gamma-1)/2} - (-s)^{(\gamma-1)/2})^2 \mathrm{d}s \right)^{-1/2}$$

et

$$W_{\gamma}(t) = \frac{1}{\Gamma((\gamma+1)/2)} \int_0^t (t-s)^{(\gamma-1)/2} \mathrm{d}B(s).$$

Une simple conséquence du théorème précédent et des résultats dans [9] est :

$$\liminf_{T \to \infty} \left(\frac{\log \log T}{T} \right)^{\gamma/2} \sup_{0 \le t \le T} |B_{\gamma}(t)| = \liminf_{T \to \infty} a_{\gamma} \left(\frac{\log \log T}{T} \right)^{\gamma/2} \sup_{0 \le t \le T} |W_{\gamma}(t)| = C_{\gamma}^{\gamma/2}$$

1. Introduction

Let $\{B_{\gamma}(t): t \ge 0\}$ denote the γ -fractional Brownian motion with $B_{\gamma}(0) = 0$ and $0 < \gamma < 2$. Then $\{B_{\gamma}(t): t \ge 0\}$ is a Gaussian process with mean zero and covariance function

$$\mathbb{E}\left(B_{\gamma}(t)B_{\gamma}(s)\right) = \frac{1}{2}(|s|^{\gamma} + |t|^{\gamma} - |s - t|^{\gamma}).$$

It was proved in [7] and [6] that

$$-\infty < \liminf_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon\right) \le \limsup_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon\right) < 0.$$
(1.1)

A natural and important question is the existence of the above limit. It was shown in [4] that this limit exists if the Gaussian correlation conjecture holds. The main purpose of this Note is to show that

Existence of small ball constants for fractional Brownian motions

the limit in (1.1) exists and is related to a more attractable Gaussian process. During the preparation of this paper, Professor Q. Shao has informed us that he obtained a different proof of the existence of the constant for $B_{\gamma}(t)$ and his paper is in preparation.

THEOREM 1.1. – Let $\{B_{\gamma}(t), 0 \leq t \leq 1\}$ be a fractional Brownian motion of order $\gamma \in (0,2)$ and let $B(t) = B_1(t)$ be the standard Brownian motion. Then

$$\lim_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon\right) = \lim_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |W_{\gamma}(t)| \le \varepsilon/a_{\gamma}\right) = -C_{\gamma},$$

where $0 < C_{\gamma} = -\inf_{\varepsilon > 0} \varepsilon^{2/\gamma} \log \mathbb{P} \left(\sup_{0 \le t \le 1} |W_{\gamma}(t)| \le \varepsilon/a_{\gamma} \right) < \infty$,

$$a_{\gamma} = \Gamma((\gamma+1)/2) \left(\gamma^{-1} + \int_{-\infty}^{0} ((1-s)^{(\gamma-1)/2} - (-s)^{(\gamma-1)/2})^2 \mathrm{d}s\right)^{-1/2}$$
(1.2)

and

$$W_{\gamma}(t) = \frac{1}{\Gamma((\gamma+1)/2)} \int_0^t (t-s)^{(\gamma-1)/2} \mathrm{d}B(s).$$
(1.3)

In the Brownian motion case, i.e. $\gamma = 1$, it is well known that $C_1 = \pi^2/8$ and $a_1 = 1$. As a simple consequence of the above theorem and results in [9], we have

$$\liminf_{T \to \infty} \left(\frac{\log \log T}{T} \right)^{\gamma/2} \sup_{0 \le t \le T} |B_{\gamma}(t)| = \liminf_{T \to \infty} a_{\gamma} \left(\frac{\log \log T}{T} \right)^{\gamma/2} \sup_{0 \le t \le T} |W_{\gamma}(t)| = C_{\gamma}^{\gamma/2}.$$

One of the key step in our investigation of $B_{\gamma}(t)$ is the following useful representation when $\gamma \neq 1$ (see [5]),

$$B_{\gamma}(t) = a_{\gamma}(W_{\gamma}(t) + Z_{\gamma}(t)), \quad 0 \le t \le 1,$$

$$(1.4)$$

where a_{γ} is given in (1.2), $W_{\gamma}(t)$ is given in (1.3), and

$$Z_{\gamma}(t) = \frac{1}{\Gamma((\gamma+1)/2)} \int_{-\infty}^{0} \{(t-s)^{(\gamma-1)/2} - (-s)^{(\gamma-1)/2}\} \mathrm{d}B(s).$$

Furthermore, $W_{\gamma}(t)$ is independent of $Z_{\gamma}(t)$. Observe that the centered Gaussian process $W_{\beta}(t)$ is defined for all $\beta > 0$ as a fractional Wiener integral. Thus $W_{\beta}(t)$ will be called *fractional Wiener* process of order β .

The remaining of the paper is organized as follows. In section 2, we estimate the small ball rate for $W_{\beta}(t)$ for any $\beta > 0$ and show the existence of the constant for $W_{\beta}(t)$. In section 3, we give the proof of Theorem 1.1.

2. Fractional Wiener processes

Theorem 2.1. – For any $\beta > 0$,

$$\lim_{\varepsilon \to 0} \varepsilon^{2/\beta} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |W_{\beta}(t)| \le \varepsilon \right) = -k_{\beta},$$

where $0 < k_{\beta} = -\inf_{\varepsilon > 0} \varepsilon^{2/\beta} \log \mathbb{P} \left(\sup_{0 < t < 1} |W_{\beta}(t)| \le \varepsilon \right) < \infty$.

1331

W.V. Li, W. Linde

Proof. – The lower estimate for all $\beta > 0$

$$\liminf_{\varepsilon \to 0} \varepsilon^{2/\beta} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |W_{\beta}(t)| \le \varepsilon \right) > -\infty$$

is given in [3]. But when $\beta = \gamma < 2$, the estimate follows easily from (1.1) and

$$\mathbb{P}\left(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon\right) \le \mathbb{P}\left(\sup_{0 \le t \le 1} |W_{\gamma}(t)| \le \varepsilon/a_{\gamma}\right),\tag{2.1}$$

which is a direct consequence of representation (1.4) and Anderson's inequality. Thus we only need to show the upper bound and the existence of the constant.

Let $\widehat{W}_{\beta}(t) = \Gamma((\beta+1)/2)W_{\beta}(t)$ for simplicity. Then for any x > 0 and $0 < \lambda < 1$, we have

$$\mathbb{P}\left(\sup_{0 \le t \le 1} \left|\widehat{W}_{\beta}(t)\right| \le x\right) = \mathbb{P}\left(\sup_{0 \le t \le 1} \left|\int_{0}^{t} (t-s)^{(\beta-1)/2} \mathrm{d}B(s)\right| \le x\right) \\
= \mathbb{P}\left(\sup_{0 \le t \le \lambda} \left|\widehat{W}_{\beta}(t)\right| \le x, \sup_{\lambda \le t \le 1} \left|Y_{\beta,\lambda}(t) + \int_{\lambda}^{t} (t-s)^{(\beta-1)/2} \mathrm{d}B(s)\right| \le x\right) \tag{2.2}$$

where $Y_{\beta,\lambda}(t) = \int_0^{\lambda} (t-s)^{(\beta-1)/2} dB(s)$. Note that the processes $Y_{\beta,\lambda}(t)$, $0 \le t \le 1$, and $\widehat{W}_{\beta}(t) = \int_0^t (t-s)^{(\beta-1)/2} dB(s)$, $0 \le t \le \lambda$, are jointly independent of the process $\widehat{W}_{\beta}(t) - Y_{\beta,\lambda}(t) = \int_{\lambda}^t (t-s)^{(\beta-1)/2} dB(s)$, $\lambda \le t \le 1$. Furthermore, Anderson's inequality implies that for any real number a,

$$\mathbb{P}\left(\sup_{\lambda \le t \le 1} \left| a + \int_{\lambda}^{t} (t-s)^{(\beta-1)/2} \mathrm{d}B(s) \right| \le x\right) \le \mathbb{P}\left(\sup_{\lambda \le t \le 1} \left| \int_{\lambda}^{t} (t-s)^{(\beta-1)/2} \mathrm{d}B(s) \right| \le x\right).$$
(2.3)

Thus by first conditioning on dB(s), $0 \le s \le \lambda$, then using (2.3), we obtain from (2.2) that

$$\mathbb{P}\left(\sup_{0\leq t\leq 1}\left|\widehat{W}_{\beta}(t)\right|\leq x\right)\leq \mathbb{P}\left(\sup_{0\leq t\leq \lambda}\left|\widehat{W}_{\beta}(t)\right|\leq x\right)\mathbb{P}\left(\sup_{\lambda\leq t\leq 1}\left|\int_{\lambda}^{t}(t-s)^{(\beta-1)/2}\mathrm{d}B(s)\right|\leq x\right)\\ =\mathbb{P}\left(\sup_{0\leq t\leq 1}\left|\widehat{W}_{\beta}(t)\right|\leq x/\lambda^{\beta/2}\right)\mathbb{P}\left(\sup_{0\leq t\leq 1-\lambda}\left|\widehat{W}_{\beta}(t)\right|\leq x\right)$$

where the last equality follows from simple substitution and scaling. Taking $\lambda = 1/n$ and iterating the above procedure, we have for any x > 0 and any integer n

$$\mathbb{P}\left(\sup_{0\leq t\leq 1}\left|\widehat{W}_{\beta}(t)\right|\leq x\right)\leq \mathbb{P}\left(\sup_{0\leq t\leq 1}\left|\widehat{W}_{\beta}(t)\right|\leq n^{\beta/2}x\right)^{n}$$

which finishes the proof by following exactly the same argument as the proof of Prop. 2.1 in [1].

3. Proof of Theorem 1.1

From (2.1) and Theorem 2.1, it is clear that

$$\limsup_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\bigg(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon \bigg) \le \lim_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\bigg(\sup_{0 \le t \le 1} |W_{\gamma}(t)| \le \varepsilon/a_{\gamma} \bigg) = -k_{\gamma} a_{\gamma}^{2/\gamma}.$$

So we only need to show the lower estimate. We need the following result which was established in [8] and reformulated in [2], page 257.

Existence of small ball constants for fractional Brownian motions

LEMMA 3.1. – Let $(X_t)_{t \in T}$ be a centered Gaussian process. For every $\varepsilon > 0$, let $N(T, d; \varepsilon)$ denote the minimal number of balls of radius ε , under the (pseudo-)metric

$$d(s,t) = (E|X_s - X_t|^2)^{1/2},$$

that are necessary to cover T. Assume that there is a nonnegative function ψ on \mathbb{R}_+ such that $N(T, d; \varepsilon) \leq \psi(\varepsilon)$ and such that $c_1\psi(\varepsilon) \leq \psi(\varepsilon/2) \leq c_2\psi(\varepsilon)$ for some constants $1 < c_1 \leq c_2 < \infty$. Then, for some K > 0 and every $\varepsilon > 0$ we have $\mathbb{P}(\sup_{s,t \in T} |X_s - X_t| \leq \varepsilon) \geq \exp(-K\psi(\varepsilon))$.

LEMMA 3.2. – For any $0 < \gamma < 2$,

$$\lim_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |Z_{\gamma}(t)| \le \varepsilon \right) = 0.$$

Proof. – Note that for any $s, t \in (0, 1) = T$ and $s \leq t$, with $X_{\gamma}(t) = \Gamma((\gamma + 1)/2)Z_{\gamma}(t)$,

$$\begin{aligned} \mathrm{d}_{\gamma}^{2}(s,t) &= E(X_{\gamma}(t) - X_{\gamma}(s))^{2} = E\left(\int_{-\infty}^{0} ((t-u)^{(\gamma-1)/2} - (s-u)^{(\gamma-1)/2}) \mathrm{d}B(u)\right)^{2} \\ &= \int_{-\infty}^{0} \left((t-u)^{(\gamma-1)/2} - (s-u)^{(\gamma-1)/2}\right)^{2} \mathrm{d}u = \int_{s}^{\infty} \left((t-s+u)^{(\gamma-1)/2} - u^{(\gamma-1)/2}\right)^{2} \mathrm{d}u. \end{aligned}$$

Since by the mean value theorem

$$\left| (t-s+u)^{(\gamma-1)/2} - u^{(\gamma-1)/2} \right| \le |t-s|u^{(\gamma-3)/2},$$

we have

$$d_{\gamma}(s,t) \le (2-\gamma)^{-1/2}(t-s) s^{-(2-\gamma)/2}$$

for $0 < s \le t < 1$. When s = 0, it follows

$$d_{\gamma}^{2}(0,t) = t^{\gamma} \int_{0}^{\infty} \left((1+u)^{(\gamma-1)/2} - u^{(\gamma-1)/2} \right)^{2} du.$$

which implies $d_{\gamma}(0,t) \leq Ct^{\gamma/2}$ with C > 0 only depending on γ . For any $\varepsilon > 0$ small, we define numbers $0 < t_0 < t_1 < \cdots$ by: $t_0 = (\varepsilon/C)^{2/\gamma}$, so that $d_{\gamma}(0,t_0) \leq \varepsilon$, and for $i \geq 1$ by

$$(2-\gamma)^{-1/2}(t_i-t_{i-1})t_{i-1}^{-(2-\gamma)/2} = \varepsilon.$$

Let $N(\varepsilon) = \min\{n : t_n > 1\}$. Then for $1 \le i \le N(\varepsilon)$ we obtain:

$$t_i = t_{i-1} (1 + (2 - \gamma)^{1/2} \varepsilon t_{i-1}^{-\gamma/2}) \ge t_{i-1} (1 + (2 - \gamma)^{1/2} \varepsilon),$$

thus by iterating:

$$1 \ge t_{N(\varepsilon)-1} \ge t_0 (1 + (2 - \gamma)^{1/2} \varepsilon)^{N(\varepsilon)-1} = (\varepsilon/C)^{2/\gamma} (1 + (2 - \gamma)^{1/2} \varepsilon)^{N(\varepsilon)-1},$$

which implies $N(\varepsilon) \leq c \varepsilon^{-1} \log(1/\varepsilon)$ for some c > 0. Hence, using $t_i, 0 \leq i \leq N(\varepsilon) - 1$, as centers, we finally get $N(T, d_{\gamma}; \varepsilon) \leq N(\varepsilon) \leq c \varepsilon^{-1} \log(1/\varepsilon)$ which finishes the proof by Lemma 3.1.

W.V. Li, W. Linde

To obtain the lower bound of Theorem 1.1, we have for any $0 < \delta < 1$:

$$\mathbb{P}\bigg(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon\bigg) \ge \mathbb{P}\bigg(\sup_{0 \le t \le 1} |W_{\gamma}(t)| \le (1-\delta)\varepsilon/a_{\gamma}\bigg)\mathbb{P}\bigg(\sup_{0 \le t \le 1} |Z_{\gamma}(t)| \le \delta\varepsilon/a_{\gamma}\bigg)$$

since $W_{\gamma}(t)$ and $Z_{\gamma}(t)$ are independent of each other. Thus

$$\liminf_{\varepsilon \to 0} \varepsilon^{2/\gamma} \log \mathbb{P}\left(\sup_{0 \le t \le 1} |B_{\gamma}(t)| \le \varepsilon \right) \ge -k_{\gamma} (1-\delta)^{-2/\gamma} a_{\gamma}^{2/\gamma}.$$

So we obtain the desired lower bound with $C_{\gamma} = k_{\gamma} a_{\gamma}^{2/\gamma}$ by taking $\delta \to 0$.

Acknowledgements. The authors are very grateful to Th. Dunker (Jena) for helpful discussions and for pointing out a misuse of notation in the early draft.

(¹) Supported in part by NSF.

References

- [1] Kuelbs J., Li W.V., Small ball estimates for Brownian motion and the Brownian sheet, J. Th. Probab. 6 (1993) 547-577.
- [2] Ledoux M., Isoperimetry and Gaussian Analysis, Lectures on Probability Theory and Statistics, Lect. Notes in Math. 1648, Springer-Verlag, 1996, pp. 165–294.
- [3] Li W.V., Linde W., Approximation, metric entropy and small ball estimates for Gaussian measures, Preprint, 1998.
- [4] Li W.V., Shao Q.M., A note on the Gaussian correlation conjecture and the existence of small ball constant for fractional Brownian motions, Preprint, 1997.
- [5] Mandelbrot B.B., Van Ness J. W., Fractional Brownian motions, fractional noises, and applications, SIAM Rev. 10 (1968) 422–437.
- [6] Monrad D., Rootzén H., Small values of Gaussian processes and functional laws of the iterated logarithm, Probab. Th. Rel. Fields 101 (1995) 173–192.
- [7] Shao Q.M., A note on small ball probability of Gaussian processes with stationary increments, J. Th. Probab. 6 (1993) 595-602.
- [8] Talagrand M., New Gaussian estimates for enlarged balls, Geom. Funct. Anal. 3 (1993) 502-526.
- [9] Talagrand M., Lower classes for fractional Brownian motion, J. Th. Probab. 9 (1996) 191-213.