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ABSTRACT. Consider the curve C = {(t, f(t): 0 < t < 1}, where f is ab- 
solutely continuous on [0, 1]. Then C has finite length, and if Ue is the &- 
neighborhood of f in the uniform norm, we compare the length of the shortest 
path in UE with the length of f. Our main result establishes necessary and 
sufficient conditions on f such that the difference of these quantities is of order 
e as e -* 0. We also include a result for surfaces. 

1. INTRODUCTION 

Let f be absolutely continuous on [0,1], and consider the curve C { (t, f (t)) 
0 < t < 1}. Then C has finite length given by 

L(f) = V21 + (f'(s))2 ds, 

and since L(f) = L(g) when f differs from g by a constant, we assume throughout 
that f (0) = 0. Let 

g = {h': h is absolutely continuous on [0,11, h(0) = O 

and for 6 > 0 set 
L(f,6)= inf L(h), 

lIf -hII <6,hcg 

where llhll = supo<,<1 lh(s)l denotes the usual sup-norm. In a probability problem 
encountered recently (see [G] and [KLT] for background and the related problem), 
we were motivated to consider the asymptotic behavior of L(f) - L(f, 6) as 6 -* 0. 
In particular, we want to determine for which absolutely continuous f do we have 

(1.1) lim (L(f) -L(f, 6))/6 = cf 

where 0 < Cf < oo, and what is cf? The answer appears in Theorem 1 below. 
A verbal description of the shortest path in a general region connecting two given 
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points of that region can be found in [L, p. 36]. However, we found it of no use in 
this problem. Now we need some further notation. 

If f is a real-valued measurable function on [0, 1], then by a version of f we mean 
a measurable function g, finite everywhere on [0,1], such that g = f almost every- 
where with respect to Lebesgue measure. If f has a version of bounded variation, 
then it is easy to see that there is one and only one function A of bounded variation 
on [0,1] such that A f f a.e., A is right continuous on [0,1), and left continuous at 
one. We call this the canonical version of f. Finally, we write V(g) to denote the 
variation of a function g on [0,1]. 

The answer to the question above is the following result. 

Theorem 1. Let f be absolutely continuous on [0,1] with f(0) = 0, but Ilf > 0. 
Then 

(1.2) lim (L(f) - L(f, 6))/6 = Cf 

where 0 < Cf < 00 if ay(s) = f'(s)/(1 + (f'(s))2)1/2 has a version of bounded 
variation on [0,1]. Furthermore, 

(1.3) Cf = IA(I)l + V(A) 

where A is the canonical version of -y(s) on [0,1]. 

Remarks. (A) If f (t) 0 on [0, 1], then L(f, 8) = L(f) = 1 and Cf = 0. Hence the 
assumption lf || > 0 is a necessity if we want Cf > 0. 

(B) If we replace the sup-norm by an LP-norm, 1 < p < oo, in the definition of 
L(f, 8), then it is natural to ask if (1.2) still holds with Cf E (0, oc). The following 
example shows this is not the case. Indeed, our first example shows that even for 
the simplest choice of f (t), (1.2) fails for any LP-norm, 1 < p < 00. 

(C) Example 1 also suggests that the proper rate of convergence when 1 < p < 00 
and -y(s) has a version of bounded variation might be 8P/(P+l). Example 2 shows 
this is not the case. 

Example 1. Let f (t) = t, 0 < t < 1, and set 

h6(t) ={ 1-X6,p, - Xb,p <1 < 1, 

where x6,p = ((p + 1)8P)1/(P+1). Then for 1 < p < oo fixed and 6 > 0 sufficiently 
small 

1 

|f -h61 = - (t -(1- x6,p))Pdt = XP+1/(p + 1) = 6p. 

F'urthermore, 
L(h6) = \/-(1 - x6,p) + x6,p, 

and hence using the LP-norm in the definition of L(f, 8) we have 

lim (L(f) -L(f, 6))/6 > lim (L(f) -L(h6))/6 

= lim(V2 - 1)x6,p/6 = oo 

since 1 < p < oo. 
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Example 2. In this example, we only consider the L1-norm. Its purpose is to 
show that if f (t) = 1- (1 -t)2, 0 < t < 1 then 

lim (L(f) - L(f, 6))/6 = 1, 

and hence the obvious conjecture suggested by Example 1 is false. Given f (t) as 
above, we have that the functions -y and A of Theorem 1 are -y(s) = A(s) = 1-s, 0 < 
s < 1. To compute 

L(f,16)= inf L(h), 
I)f-h I1<6,hE ( 

we easily see that it suffices to take h E G such that 0 < h(s) < f (s), 0 < s < 1, 
and h'(s) > 0 a.e. on [0, 1]. Thus if g = h - f, then g(s) < 0 on [0, 1] and the 
constraint Ij f -h 1 = 6 implies fJ g(s)ds = -8. Looking ahead to the proof of 
Theorem 1 we see from (2.5) and integration by parts that any h E g constrained 
as above satisfies 

L(h) > L(f) + j (s)ds 

since -y(s) = 1 - s. Hence L(h) > L(f ) - 6, so 

lim (L(f) - L(f, 6))/6 < 1. 

Hence it remains to show we can find a function h6 E g such that IIf - h61 = 6 
and 

lim (L(f) )- L(f, 8))/8 1. 

We use Lagrange multipliers to find the function h6 (see, for example, [T]), and 
recall that we may assume 0 < ha(s) < f(s),0 < s < 1, h6 G , and h$5 > 0 on 

[0,1]. To find the possible (local) extremal points for ol v+ y'2dt on D = {y E 
C1 [0, 1]: y(O) = 0} under the constraining relation 

(1.4) j (1 (1-t)2-y)dt = 6, 

we have for some 3 and all v(t) E C1 [0, 1], v(0) = 0, that 

fl / [1 

(1.5) 10 l- (y')2 v'(t)dt = j (t)vdt. 

Integration by parts on the right side of (1.5) implies 

fl )/ Cl 

(1.6) V//I 
- 

(y/ 2v'(t)dt =o (I - t)v1(t)dt. 

Since (1.6) holds for all v(t) E C1 [0, 1], v(0) = 0, we have 

(1.7) Y'/( 1+(y') 2= (1- t) O < t < 1. 
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Solving (1.7) when p3> 0 (< ? 0 does not provide a solution for our problem since 
then y' < 0), we have 

____-p2 (1 _____ dx = 2 1 (1 - t)2 _23 

Hence from the constraining relation (1.4), 3 is the solution of the equation 

ir 1( 
_-2 

I - arcsin - ) =I -3 6, 

and it is easy to see that 3 -* 1 as 6 -* 0. Thus 

lim(L(f) - L(h6))/6 

li1 (j1 ( )2- 1+ ?(y/)2) dt) 

-lim (2-1 arcsin)/i (4- (! arcsin132n 
03-,1 \2 3 ,I \4 2/3j / 

- 1. 

The first proof we obtained for Theorem 1 was very constructive, but this ap- 
proach failed when we tried to prove a similar result for surfaces. Our second 
approach is contained in the proof of Theorem 1 below, and applies to surfaces 
as well. Unfortunately, the result we can prove for surfaces is not as complete as 
Theorem 1 in that the precision of (1.3) is lacking. The scaling idea in our second 
approach emerged in some discussions with Tom Ilmanen, and we thank him for 
his interest in these results. 

2. PROOF OF THE THEOREM 

Throughout f E g and -y(s) = f'(s)/(1+(f'(s))2)1/2. If F(x) = (1 +X2)1/2, then 
F'(x) = x/(1 + X2)1/2, F"(x) (1 + x2)-3/2, and for f,g E , Taylor's formula 
implies for almost all s C [0,11] that 

(1 + (h'(s))2)1/2 - (1 + (f (S))2)1/2 

(2.1) 

+ f'()(h/(1)f/s) (hl(s) f-(S) 
(1 + (f'(S))2)1/2 (h2(s)- (s)) + ( I + (rT(S))2)3/2 

where r(s) is between f '(s) and h'(s). The proof will now proceed via a sequence of 
three lemmas. We write Cj [0, 1] to denote the continuously differentiable functions 
on [0,1] which are zero at zero. 

Lemma 1. Let f E !g with IIf I > 0 and assume 

1 

(2.2) T(g) = y / y(s) gl(s) ds (g 
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where -y(s) = f'(s)/(l + (f'(s))2)1/2. If 

(2.3) A sup T(g) < oo, 
geg 

11 g11 <1 

then 

(2.4) lim (L(f) - L(f, 8) )/6 = Cf 

where 0 < Cf < 00. Furthermore, Cf = A. 

Proof. Since f is absolutely continuous with f (0) = 0, (2.1) implies with g = h-f f 
g that 

(2.5) L(h) > L(f) + T(g). 

Now L(f,8) = inf L(h), and hence (2.3), (2.5), symmetry, and homogeneity 
heG 

imply 

(2.6) L(f, 8) > L(f) - A. 

Thus, 

(2.7) lim (L(f) - L(f, 6))/6 < A. 

On the other hand, by integrating (2.1) we see 

(2.8) L(h) < L(f) + T(g) + e(g) 

where 0 < e(g) < fL (g/(s))2ds. Thus fix e > 0, and observe that (2.3) implies the 

linear functional T has a unique continuous extension, call it T, to all of Co [0, 1], 
and we also have 

(2.9) A= sup T(g). 
geCo [0,1] 

11g11 <1 

Since Co' [0, 1] is sup-norm dense in Co [0, 1], and hence also in g, and T is symmetric, 
we have go E Co'[0I 1] with go < 1 such that 

(2.10) T(go) < -A + e. 

Let g6 = 6go for 6 > 0. Then g6 E Col[0, 11, Ig 91 < 6, and by homogeneity T(ga) < 

8(-A + e). Furthermore, since go E Co'[0, 1], we have fL(go(s))2ds - b < 00, hence 

(2.11) e(g6) < 62b. 

Thus (2.8) implies if h6 = g6 + f that 

(2.12) L(h6) < L(f) + 8(-A + e) + 62b. 

Hence by definition of L(f, 6) we have 

(2.13) L(f, 6) < L(f) + 6(-A +,E) + 62b, 

and therefore 

(2.14) A -e < lim (L(f) - L(f, 6))/6. 

Combining (2.7) and (2.14), we have (2.4) with Cf = A < oo. That A > 0 follows 

easily since f E g with IIf 11 > 0. Hence Lemma 1 is proven. 
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Lemma 2. If A = sup T(g) where T(g) is as in (2.2), then A < oo if -y has a 
gEg 

111<1 

version of bounded variation on [0, 1]. Furthermore, if A < oo, then A = A(1)I + 

V(A) where A is the canonical version of -y. 

Proof. Assume -y has a version of bounded variation on [0,1] and let A be the 

canonical version of -y. Since 9 D Co [0, 1], we then have for g E Co [0, 1] that 

T(g) = j (s)g'(s)ds j A(s)g'(s)ds 

(2.15) = j A(s)dg(s) 

= A(1)g(1) 
- 

g(s)dA(s). 

Since A is of bounded variation, (2.15) implies T has a unique extension to Co [0, 1] 

such that 
sup T(g) < o0, 

11g1<?l 

and hence A < oo. Further, since A is right continuous on [0,1) and left continuous 

at 1 (remember A is canonical), we have 

1 

(2.16) T(g) = Ygd[, g E Co[O,1], 

where ,u = A(1)61 - A, and 61 and A are mutually singular. Hence V(,a) A(1)I + 

V(A), and by the Riesz Representation Theorem (and duality), we have 

(2.17) A= sup T(g) = sup T(g) =A(1) I+V(A). 
ge II<,I? llgll <1 ll< 

Conversely, if A < oo, then as in Lemma 1 the linear functional T has a unique 

continuous extension T to all of Co [0, 1]. Hence by the Riesz Representation Theo- 

rem there exists a function A of bounded variation on [0, 1] such that for g E Co [0, 1] 

(2.18) T(g) = j g(s)dA(s) = j(A(1) - A(s))dg(s), 

where the last equality is by integration by parts. Hence for g E Co' [0, 1] we have 

j(A(1) - A(s))g'(s)ds = -y(s)g'(s)ds, 

and this implies 'y(s) = A(1) - A(s) a.s. Thus Lemma 2 is proven. 

To complete the proof of Theorem 1 it now suffices to show that 

lim (L(f) - L(fA 6))/6 < oo 

implies A < o0. This is accomplished by showing the following: 
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Lemma 3. If A is given by (2.3) and A = oo, then 

(2.19) lim (L(f -L(f, 6))/6 = oo, 

and -y does not have a version of bounded variation. 

Proof. First we show that if A = oo, then 

(2.20) sup T(g) = oo. 
gec' [0,1] 

11g11< 1 

For this we take M > 0 arbitrarily large and e > 0 small. Since A = oo, there exists 
go eE go,o = 1, such that T(go) > (M + 1)/(1 + e). Now g' E L1[0, 1], and hence 
there exists 3 [0,1] -* IR continuous such that 

l I(u) -go(u)Idu<,E. 

Letting h(s) = J. (u)du,0 < s < 1, we have hE Co'[0,1] and since Iy < 1, we 
have for 0 < e < that 

T(h) = y(s) h' (s)ds = y(s)g(s)ds 

> j y(s)g(s)ds - E 0 

> M/(1 + E). 

Since M is arbitrarily'large, this gives (2.20) since 

s 

llhl = sup I ?J(u)dul < IlgoII +6 < 1+6. 

To finish the proof we again take M > 0 arbitrarily large, and since (2.20) holds, 
select go E Co' [0, 1] such that 

T(go) < -M 

and IgoII < 1. Then for g9 = 8go and h6 = g6 + f we have from (2.1) that 

L(f) 6) < L(ha) < L(f) + 6(-M) + 62b 

where b = fo(go(s))2ds < oo. Since M is arbitrary, this implies (2.19). The proof 
of Lemma 3 is now completed by applying Lemma 2 to see A = oo implies -y does 
not have a version of bounded variation. 

To complete the proof of Theorem 1 we observe that Lemmas 1 and 3 combine to 
give (1.2) with 0 < Cf < 00 iff A < oo, and they identify Cf with A. Finally, Lemma 
2 links A < oo to -y having a version of bounded variation as required. Hence the 
theorem is proved. 
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3. A RESULT FOR SURFACES 

Using the ideas in the proof of Theorem 1 we can establish a result for surfaces. 
First we describe the necessary notation. Let U be an open subset of 1R2. Then 
f E L 1,(U) if f C L1(V, dxdy) for all open sets V such that the closure of V is a 
compact subset of U. If f E Ll (U), then the function g E Ll (U) is said to be 
the weak partial derivative of f with respect to x in U if 

(3.1) J f (x,I) ax q$(x, y)dxdy = - g(x, y)q(x, y)dxdy 

for all q$ continuously differentiable with compact support in U, i.e. E C1 (U). Of 
course, a similar definition holds for the weak partial derivative of f with respect to 
y on U, and we denote both the weak partial derivatives and the ordinary partial 

derivatives of f by "f and "f . Let Df = af f and set lDf 12 = (f 
2 

If f: U --* R we say f is in the Sobolev space W1'1(U) if f E L1(U) and the weak 
partial derivatives both exist and are in L1(U). For f E W1 l(U) we define the 
W' '(U) norm by 

(3.2) lf w1'1(uu = J (f I + lDf J)dxdy. 

Let Q = [0,11] x [0,1], Q? = (0 1) x (0,1), and set 

(3.3) El = C(Q) n W','(QO) 

where C(Q) denotes the continuous functions on Q. If f C N, then 

(3.4) S(f) =Jj + Df2 dxdy< oo, 

and S(f) represents the surface area of the graph 

Gf = {(x, y, f (x, y)): (x, y) E Q}. 

Iff EC(Q), 6 > 0, let 

(3.5) S(f,6) = inf S(h) 
lIf-hil <6 

where is the sup-norm on C(Q). Throughout this section we also use Lip(Q) 
to denote the Lipschitz continuous functions on Q. Our result for surfaces is the 
next proposition. 

Proposition 1. Let f C NH. If F(u, v) = (I + u2 + v2)1/2 and 

(3.6) Tf (h)= ] grad F af af ) Dhdxdy (h E 'N) 

is such that 

(3.7) Af = sup Tf(h) < oo, 
hE- 

1h11?<1 
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then 

(3.8) lim (S(f S(f , 8))/6 = Af, 

and f non-constant implies Af > 0. Furthermore, if f E H and 

(3.9) sup Tf(h) = oo, 
hEL%,p(Q) 

11 h11< 1 

then 

(3. 10) lim (S(f S(f, 8))/6 = oo 

Remark. Proposition 1 clearly lacks the precision of (1.3), but if we replace H in 
(3.5) by a linear subspace M of H containing Lip(Q), and satisfying 

(3.11) Af = sup Tf (h) = sup Tf (h), 
hEM hEL%p(Q) 

11h1<1 11h11<1 

then 

(3.12) lim (S(f) - S(f, 8))/6 = Af, 

regardless of whether Af is finite or infinite. This improvement follows since the 
scaling argument applies even if Af = oo when (3.11) holds. Of course, M = Lip(Q) 
obviously satisfies (3.11), but by applying the approximation ideas in [EG, p. 123] 
it is easy to see that M = {f: 3 open set Vf D Q and f c W'l1(Vf) n C(Vf)} 
also does. 
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