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Small ball probabilities are estimated for Gaussian processes with stationary 
increments when the small balls are given by various H61der norms. As an 
application we establish results related to Chung's functional law of the iterated 
logarithm for fractional Brownian motion under H61der norms. In particular, 
we identify the points approached slowest in the functional law of the iterated 
logarithm. 
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1. INTRODUCTION 

Let {X(t): 0~<t~< 1} be a separable centered 
stationary increments and assume X ( 0 ) =  0. If 

Gaussian process with 

a2(t) =E(X2(t)) ( t>0 )  (1.1) 

then stationarity of increments and X(0) = 0 imply E((X(t + h) - X(/)) 2) 
=a2(h) for t~>0, h~>0. Throughout Co[0,1] denotes the continuous 
functions on [0, 1 ] with value zero at the origin, and for x ~ Co[0, 1 ], and 
f a nondecreasing strictly positive function on (0, 1 ] satisfying f ( 0 ) =  0, we 
define 

Af(x)= sup Ix(t)-x(s)l/f(It-sl) (1.2) 
O<~s#t<~l 
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Of course, i f f ( t )  = t q, 0 <~ q <~ 1, then 2f is a classical H61der norm, and we 
will abbreviate this by writing 2q(.) instead of 2/(-). In particular, 
2o(x)=maxo<,<~ix(t)-mino<~,<.lx(t)  and perhaps it should be men- 
tioned explicitly that these quantities are norms on Co[0, 1], but not 
on C[O, 1]. 

In Section 2 we consider small ball probabilities of the form 

P(2f(X)<~a(x) / f (x))  as x--*0 (1.3) 

When X is standard Brownian motion, results for ,~.q, 0 < q < 1/2, have 
been obtained in Refs. 1 and 6. However, what we prove here applies easily 
to fractional Brownian motion as well, and to norms other than the 
classical H61der norms. When q = 0, results of this type are related to those 
obtained previously in Refs. 10 and I 1, where small ball probabilities for 
Gaussian processes are studied under the sup-norm. 

In Section 3, we present a detailed version of Chung's functional law 
of the iterated logarithm for fractional Brownian motions using general 
H61der norms. In particular, we generalize the classical results for 
Brownian motion, ~2" 3) and present a fairly complete picture of what happens 
when the limiting function is a boundary point of the limit set in Strassen's 
FLIL. Results of this type were studied in the sup-norm case for Brownian 
motion by Grill, tS) and in terms of lim-inf results for general Gaussian 
samples in Ref. 8. These later results were employed in Ref. 6, to study 
similar problems for H61der norms applied to Brownian motion and the 
Brownian sheet, and in Monrad and Rootz6n tl~ to obtain results for frac- 
tional Brownian motion under the sup-norm. Some further comments will 
be included when these results are stated in Section 3, but for now we men- 
tion that FLIL results of Monrad and Rootz6n t~~ for fractional Brownian 
motion follow from those later by setting 2 i =  20. 

2. SMALL BALL PROBABILITIES FOR ki(X) 

The main results for small ball probabilities are the following two 
theorems. 

Theorem 2.1. Let {X(t): 0 ~< t ~< 1 } be a separable centered Gaussian 
process with X(0 )=  0, and having stationary increments. Let a( . )  be given 
by (1.1), and assume 2f is as in (1.2) where f is a nondecreasing, strictly 
positive function on (0, 1 ] satisfying f ( 0 ) =  0. Then: 

(i) o'2(h) concave on [0, 1] implies that 

P( 2f( X) <~ a(x) / f (x )  ) <~ exp{ --0.17[ l /x]}  (2.1) 

where [ - ]  denotes the greatest integer function. 
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(ii) IfaZ(2x)<,OaZ(x) for O~<x~ 1/2, and some 0 e ( 0 , 4 ] ,  and 

6aZ(jx) + az((j  + 2)x) + a z ( ( j -  2)x) >/4a2((j + 1 )x) + 4 a z ( ( j -  1 )x) (2.2) 

for 0 < x <  1 and 2~j~< 1/x-2,  then 

P(2f(X)<~a(x)/f(x))<~exp{- [ 1/2x] ln(1/~(Z/x/C4-O))} (2.3) 

where tP(t) = (2re) -1/2 ~ '  e -'-/2 du. 
Theorem 2.2 presents the companion lower bounds for the upper 

bounds of Theorem 2.1. 

Theorem 2.2. Assume {X(t): 0~<t~< 1} and 2fare as in Theorem 2.1, 
and that a(x)/(xPf(x)) is nondecreasing on (0, 1] for some fl > 0. Then 

P(2f(X) ~< a(x)/f(x)) >1 exp{ -c(f l ) /x} (2.4) 

where c(fl)> 0 is an absolute constant depending only on ft. 

Remarks. (1) The proofs will show that some improvement for 
various constants is possible, but exact constants are unknown. Hence we 
stated things with simplicity in mind. It also follows from the proofs that 
estimates analogous to those in Theorems 2.1 and 2.2 will hold for 

P( sup I(X(s)l/f(s) <~a(x)) 
O<s~<t 

but they are not included. 
(2) The application of Theorems 2.1 and 2.2 to fractional Brownian 

motion will be discussed in Section 3. 

Proof of Theorem 2.1. The proof of Theorem 2.1 depends on 
Slepian's lemma which can be found, for example, in [Tong, It3) p. 10], or 
the recent book by Ledoux and TalagrandJ 9~ 

It is easy to see that 

P(2f(X) ~< a(x)/f(x)) <~ P( max IX(ix)- X((i-- 1)x)l < a(x)) (2.5) 
1 ~ i<~ l /x  

Hence put 

~,=X(ix)--X((i--1)x), i>~l 

Then E(~)= aZ(x) for i>~ 1, and if a2( �9 ) is concave it follows fairly easily 
that E(~i~/) <~ 0 for all i r j. Therefore, 
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P( max IX( i x ) -X( ( i -1 )x ) l<~a(x ) )  

~<P( max ~t~<~r(x)) 
1 <~i~ l]x 

[1ix] 
I I  e(~,<,~(x)) 

i = l  

= (r 

~< exp{ --0.17[ 1/x] } (2.6) 

where the second inequality above follows from Slepian's lemma. 
Combining (2.5) and (2.6) yields (2.1), so now we turn to (2.3). 

If g2(2x)~< O~2(x) for O~<x.< 1/2 and 0~(0 ,  4) and (2.2) is satisfied, 
we let 

qi = ~ 2 i  - -  ~2i-- I' 1 ~< i ~< 1/(2x) 

Here ~; is as before. Then a direct calculation shows that 

E(q~) = 4a2(x) - a2(2x) ~> (4 - 0) a2(x), 1 <~ i <<. 1/(2x) 

and 

E(r/ir/j) = - 1/2(6az(2 ] j -  il x) + a2((2 I J -  i] + 2)x) + a2((2 I J -  il - 2)x) 

- 4a2((2 [ j -  i] + l )x )  - 4a2((2 I J -  i] - i)x)) 

~<0 

for every 1 ~ i# j<~  I/(2x). Hence Slepian's lemma can be applied again, 
and we obtain 

P( max I X ( i x ) - X ( ( i -  1)x)l ~<cr(x)) 
l <~i<~l/x 

~<P( max Irhl ~<2o'(x)) 
1 ~< i~< U(2x) 

~<P( max qi~<2a(x)) 
1 ~<i~< l / (2x)  

[ l / 2x ]  

= I-I P(~/,~<2~(x)) 
i = 1  

[ 1/2x] 
= I-1 #(2a(x)/(E(rl2)) m) 

i = 1  

[ l~x] 
~< l--I # ( 2 a ( x ) / ( ( 4 -  o) a2(x)) '/2) 

i = l  

= exp{ - [ 1/2x] In #(2/(4 -- 0)~/2)} (2.7) 

Combining (2.5) and (2.7) yields (2.3), and hence Theorem 2.1 is proved. 
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Proof of Theorem 2.2. First we observe that 

2:( X) ~< max { sup I X ( t ) - X ( s ) l / f l t - s l ) ,  
O <<.s~ t <~ l 

Is-- t[ >~x 

sup  I X ( t ) - X ( s ) l / f  I t - s [ ) }  
O<~s~t<~l 

I s -  tl <~ x 

~<max{2 sup I X ( s ) - - X ( O ) l / f ( x ) ,  
O~<s~<l 

sup [X( t+s) -X(s) [ / f ( t ) }  (2.8) 
O<~s~<l 
O <~ t <~ x 
s+t<~l 

and understanding henceforth that s + t ~< 1 we have 

sup IX(t + s ) -X(s) l / f ( t )  
O~s~1 
O<<.t<~x 

~< sup max sup ]X( t+s ) -X(s ) l / f ( t )  
O~<s~<l j>~O x2-J-I<~t<~x2-J 

~<max sup sup [X(tWs)-X(s) l / f (x2 - j - l )  
j~>0 O~s~l O ~ t ~ x 2 - )  

~< 3 max max sup IX(t + ix2-:) 
j>~O O<<.i<~2Lx O<~t<~x2-J 

_ X( i xZ - j ) l / f ( x2 -J -1 )  (2.9) 

Now for each 0 < s < 1 we can write 

S =  ~ ~12 - l  

I = 1  

where e l=  0 or 1. Hence 

sup IX(s ) -X(0 ) I  ~< ~ max [X(i2 - I ) - X ( ( i -  1) 2-1)1 =I~(X)  (2.10) 
O~<s<~l I=1 1<~i<~21 

and 

m a x  
j>~o 

max sup IX(t + ix2-S) _ X(ix2-:) l / f (x2-J-  1) 
0~i~2J/.'r O<~t<~x2-J 

~<max max ~ max [ X ( ( m + l ) x 2 - 1 + i x 2  -j) 
j>~O O<~i<~2J/x O<~m<~21--J l = j +  1 

-- X(mx2 - l  + ix2 -J) l / f (x2 - j -  l) 

- 12(x) (2.11) 

860/8/2-10 
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From (2.8)-(2.11) we obtain 

P(2f(JO <~ a(x)/f(x)) >>- P(II(X) <~ a(x)/2 and [dX) <~ a(x)/(3f(x))) (2.12) 

Let no be an integer such that  

1/x ~ 2~ <~ 2/x 

Define 

x / =  a((3/2)-I / - .ol  x)(1 --2-P/2)/4 l =  1, 2 .... 

yj, , =  �89 -t) 

x 2#~/-/V22/a(1 -2-#/2)/,flx2-/-1) j>~O, l>~j+ 1 

Since o(x)/(xaf(x)) is nondecreasing, we have for 0 < a < l  that  
rr(ax)/f(ax) <~ aPa(x)/f(x). Hence 

xt<~ ~ (3/2)-It-"~ 
/=1 1=1 

<~ ~ (3/2)-IP a(x)(1 -- 2-a/2)/2 
1=0 

= o-(x)( 1 - 2-#/~)/(2(1 - (2/3)P)) 

~< o'(x)/2 (2.13) 

and 

l = j +  1 

I Yj, I=-~ ~ Cr(X2-(l-J-1)2 - j - l )  2#U-S)/z+JP(1 _2-P/2)/f(x2-J-I ) 
/ = j + l  

I ~ or(x2 - j - l )  
~<~ (1 - 2  -ea) 2 - e u - j -  l~+~u-j)/2+ip 

/=j+ i f ( x 2 - " -  I)  

= 1/3( 1 - 2 -p/z) o'(x2 - a -  l) 2 u+ 1)P2 -p/2/( 1 -- 2-~/2) 
f ( x 2 - / - t )  

<~ rr(x)/(3f(x)) (2.14) 
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Combining (2.10)-(2.14) we thus have 

P( 2f( X) <~ a(x)/f(x) ) 

>~P( max [X(i2-1)--X((i - 1) 2-1)[ ~<xl, l>~ 1, and 
~k l <~ i <~ 21 

[X((m + 1) 2- tx  + ixZ-J) -- X(m2-~x + ixZ-J)l 
max max 

O<~i<~2J/x 1 <~m<~2l-J f ( x 2  - j - l )  

~< Yj, I for all l>~j+ 1,j>~0) 

~>A .B (2.15) 

where 

and 

A= f i  ]-I P( lX( i2- ' ) -X(( i -1)2-Zl<~xt)  
I = 1  i~i<~21 

2~-; 24.~ 
B = f i  f i  I-[ 1-I P(IX((m+I) 2 - t x+ix2 - j )  

j = 0  l = j + l  m = l  i = 0  

_ X(m2-tx + ix2-J)l / f(x2-J-l)  <~ Yi, t) 

by Sidak's theorem (~idfik, (12) Corollary 3). If Z is N(0, 1) then 

and 

m = FI (e(IZl ~ a((3/2) -It-,01 x)( 1 - 2-P/2)/(4a(2 -t))))al 
1~1 

B =  I~I I~I (P(IZI 4(1/3)2Pu-J'/z+JP(1 - 2 - ' / 2 ) )  21/x 
j = 0  I = j + l  

To estimate A and B we note that 

(i) P( lZ l~ t )~ t / 2  if 0~<t.N<l 

(ii) e(IZl <<.st) >~exp{ --O(s) e -(s'~2/2} 

where O(s) = (1 - e-~/2) -1. 
Thus by rewriting A we obtain 

if s > 0 ,  t>~l 
(2.16) 

nO 

a = [ I  (e( IZl ~ ~((3/2)-("~ x)(X - 2 -P/2)/(4tr(2-1)))) a'. C 
I = 1  

(2.17) 
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where 

C- fi  (P(IZI ~<o'((3/2) -{t-'~ (2.18) 
I=no + 1 

Thus, recalling 2-"~ x and a(-) is nondecreasing, 

1,0 

a ) c  1-I 
/=1 

tltl 

> ~ c I - I  
I=1 

since 

nO 

(e(IZl ~ a((3/2) -C,,o-t) 2-,,o)(1 _ 2#/2)/(4a( 2-t))))2' 

, ( , ) . o - , r  _ (P(lZl ~ x ,1 2#a))) 2' 

Minkowski's inequality implies 3 "~ ;a((3/2) -C,o- ;) 2-"~ 1> cr(2-t) 

f> C H ,8,3,t!t!~"~ ( 1 -- 2-P/2)) 2' 
/=1 

by (2.16-i) 

=Cexp{-~2;(ln(8/(1-2a/2))+(no-l)In3)} 

= C exp { - 2  "0 ~ 2- ("~  2-a/2))+ (no-l)ln3)} 
/=1 

= C exp{ --2"~ (2.19) 

where cl(fl)>O is an absolute constant depending only an f l>0 .  Now 
(2.18), a( .)  nondecreasing, and x2"~ 1, together imply 

fI 
I = "0  + 1 

I=,, 0 + 1 

(P(IZI ~< a((2/3) ;-"~ x)(1 - 2P/2)/(4a((1/2) '-"0 x)))) 2' 

P(IZI ~< �88 -- 2-P/2)(4/3)P~;-"~ 

where the second inequality results from a(ax) <~ aPa(x) when 0 < a < 1 and 
x > 0 .  Hence by (2.16-ii) 

C ~ e x p  f - ~,, 210(l/4(l-2-P/2))e-(l-2-~/2)2(4/3)2B(t-"~ t 
I=,,0+ 1 
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Letting c2(fl)= 0(1/4(1--2-#/2)) we thus have 

C>~exp {-2"~ ~ 2kexp{-- (1--2-P/2)  2 (4/3)2pk/32}} 
k = l  

~>exp{ --c3(fl) 2 "~ 

where c3(fl)> 0 is an absolute constant depending only on fl>O. Hence, 
with c4(fl) = cl(fl) + e3(fl), we have 

A >/exp{ -- c4(fl) 2 "~ (2.20) 

Now we turn to estimating B by again using (2.16-ii). This yields 

B ~ > f i  f i  exp (---~ 0((1 -- 2-a/21/3 ) 
j = 0  I = j +  1 

( = exp - 0((1 - 2-#/2)/3) 2 ~ +: 
k = l  

x exp ( -- 1~ ( 1 -- 2-#/2)2 2'ok + 2PJ)} 

= exp{ -- cs(fl)/x} 

Combining (2.15), (2.20) and (2.211, and taking e(fl) = 2c4(fl)'+ cs(fl) we 
have (2.4), and the theorem is proved. 

3. FRACTIONAL BROWNIAN M O T I O N  AND H O L D E R  NORMS 

Throughout  this section {X(t): t~>0} denotes ~-fractional Brownian 
motion with X ( 0 ) = 0  and 0 < ~ < 1 .  Then {X(t):t>~O} has covariance 
function 

E(X(s) X(t)) = �89 2" + t 2a - -  I S  - -  tl 2=) (3.1) 

for s, t/> 0, and representation 

1 X(tl=;~,~{Ix-tlC2"-WZ-lxlC~-w2} dB(x) (3.2/ 
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where 

(i) k 2-.- fJR' (Ix - 1 1(2,-lv2 _ ixl{2~-l)/2)2dx 

(ii) (B(t): - -m  < t <  m) is Brownian motion, and (3.3) 

1 
(iii) ~ ( I x - t l  (z~- 1 ) /2  ixlC2=-,~/2) is interpreted to be I(o, ,j when ~ = 1/2. 

In particular, {X(t): t >/0} has stationary increments with 

E(X2( t ) )  = o-~-(t) = t 2~, t >>- 0 (3.4) 

and is standard Brownian motion when ~ = I/2. The limit set associated 
with functional laws of the iterated logarithm for {(X(t): t ~> 0)} is K~, the 
subset of functions in Co[0, 1] of the form 

fR l (Ix-tltZ~-~/Z-lxlr g(x)dx, 0~<t~<l (3.5) f ( t )  = , k~ 

In (3.5) the function g(.)  ranges over the unit ball of L2(R~), and hence 

, g - ( x )  dx  ~ 1 (3 .6 )  

Take 0 ~< q < 0r and set 

Hq, o = { f ~ C o [ O ,  1]: lira sup [ f ( t ) - f ( s ) l / l t - s l q = O }  (3.7) 
t ~ O  s,t~[O, 1] 

0~<ls--tl~<~ 

If f eKe,  then the Cauchy-Schwartz inequality and a change of variables 
easily implies If(t)-f(s)t<~lt-sl ~ for all s , t ~ [ O ,  1], and hence for 
0 ~< q < a we see K~ c Hq.o. Furthermore, the set K =  K, is the unit ball of 
the Hilbert space H u which generates the Gaussian measure # = s on 
the separable Banach space Co[0, 1 ] under the norm 2 0 or the sup-norm. 
The next lemma yields even more, and shows H~, actually generates/~ on 
the real separable Banach space (Hq, o, J-q) provided 0 ~< q < ~. It also gives 
the small ball probability for ~[q(X). 

L e m m a  3.1.  
0 ~< q < ~, then 

If {X(t): 0~< t ~< 1} is a-fractional Brownian motion and 

P(XEHq.o )  = 1 (3.8) 
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and there exist constants 0 < c < C < oo such that as e & 0 

- Ce -1Its-q) <<. log P((Xq(X')  <~ e) <~ -- ce -1/ t~-ql  (3.9) 

Remark. We abbreviate (3.9) by writing log P(2f(X) ~< e) ~ - e -  ~/(~-q). 

Proof. Take q'e(q,a).  Since a-fractional Brownian motion has 
stationary increments with a2 ( t )= t  2~ both Theorems 2.1 and 2.2 apply 
to a-fractional Brownian motion. In particular, Theorem 2.2 implies 
P(~.q,(X)<oo)>O, and hence by the zero-one law for Gaussian norms 
[Fernique ~4)] we have 

P(~.q,(X) < o(D):  I 

Now q'>q and an easy calculation yields (3.8). Furthermore, when 
f ( x ) = x  q with 0 , .<q<a,  then r  ~-q ,  and Theorems 2.1 and 2.2 
combine to imply (3.9). Hence the lemma is proved. 

I f f e  Hu, the Hilbert space generating/1 = .s on Hq.o, then l lfll .  
denotes the H : n o r m  o f f ,  and we point out the well known fact that Hu 
is a subspace of Hq.o with 2q(f) <~ C I[fll, for some c < oo and a l l f e  H~. The 
next lemma describes the behavior of translates of small balls by elements 
in H/,. 

Lemma 3.2. 
motion, then 

- �89  Ilfll~ + log  P(2q(X) <~) ~<log P(Aq(X-f)<~e) 

~<log P ( 2 q ( X )  <~ e) -- �89 IIf~ I1~ 

where f ,  is the unique element of H~ such that 

IlL II. = inf{ II gll/,: ,~.q(f - g) <<. e} 

Furthermore, we have 

lim IIf.ll. = Ilfll, 
E ~ 0  

If f z H ~ ,  0~<q<a,  and X is a-fractional Brownian 

(3.10) 

(3.11) 

and if c, C are the constants in (3.9), then for f e H ~ , ,  r > 0  

lira t -2 log e (2q (X-  tf) <. t -2 t~ -q ) r )  >1 -- �89 Ilfll~ - Cr-(l/(~ (3.12) 

and 

lim t -21ogP(2q(X-t f )<~t-2(~-q)r)~- �89 - c l / ~ - o "  (3.13) 
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Proof The inequality in (3.10) appears in [Kuelbs et aL, tIT) Th. 2] 
and (3.11) follows easily by adapting the ideas in Lemma I of Grill tS) to 
arbitrary centered Gaussian measures. The inequalities in (3.12) and (3.13) 
follow from Lemma 3.1, and an argument adapted from Theorem 3.3 of 
de Acosta. c3) Lemma 3 of Kuelbs and Li t6) adapted these arguments to the 
case of H61der norms for/~ Wiener measure, but with some slight changes 
they work equally well for (3.12) and (3.13). Hence the lemma holds. 

The following contains functional LIL results related to Chung's LIL, 
and except for constants is quite precise even when Ilfll~, = 1. We write Lx 
to denote max(l,  logex) and L2x to denote L(Lx). 

Theorem 3.1. Let {X(t): t 1> 0} be 0~-fractional Brownian motion with 
X(0) = 0 and 0 < ~ < 1. Let K =  K~ denote the unit ball of H~,, the Hilbert 
space which generates/z = Sa(X) on (Hq, o,/],q) where 0 ~< q < ~. Let 

~l,,(t)=X(nt)/(2n2~L2n) 1/2 (0~<t~<l ,n>t)  (3.14) 

Then the following hold: 

A: I f f eK ,  Ilfll~, < 1, then w.p.1 

0 <l im (L2YI) (2t~t-q)+l)/2 2q(qn-f) < ~ (3.15) 
I t  

and iffeHt,,  Ilfl[~ ~> I, then w.p.1. 

lim (L2n) t2(a-q)+ 1)/2/~q(/~n-f) = 
I I  

(3.16) 

B: I f f~K,  Ilfll~, = 1,f=Sh where h is a continuous linear functional 
on the real separable Banach space (Hq, o, 2q) with Sh denoting the 
Bochner integral E(Xh(X)), then w.p.1. 

0 < lirn (L2n)  (2(~-q) + 1)/(2(a-q + 1)) 2 q ( q , , - - f )  < ~ (3 .17)  
n 

C: I f f e K ,  [[fill, = 1, bu t f r  for some h in the dual of (Hq.o, tq), 
then w.p.1. 

lira ( L n )  (2(~-q) + 1)/c2(~-q+ 1)) ,~q(l~ n _ f )  = 0 
n 

(3.18) 

Remarks. (1) If I[fl[oo denotes the sup-norm on C0[0, 1], then [If[[o~ ~< 
;to(f) ~<2 Ilfll~ for a l l f E  Co[0, 1]. Hence when q =0 ,  Theorem 3.1 implies 
Theorem 4.3 (except for the estimate on the constant) and Theorem 4.4 of 
Monrad and Rootz6n. (1~ Of course, these theorems also yield Theorem 3.1, 
when q = 0. 
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(2) The results in (3.15) and (3.16) are analogues of classical results 
for standard Brownian motion obtained by Csaki ~2~ and de Acosta c3~ for 
the sup-norm on Col0, 1]. The inequalities in (3.17) and (3.18) are 
motivated, as are those in (4.10) and (4.11) of Monrad and Rootz~n, ~1~ by 
the results obtainable from Kuelbs et al. ~8~ for i.i.d, samples of 0c-fractional 
Brownian motion. In fact, the relevant power of L2n in (3.17) and (3.18), 
and also in (4.10) and (4.11) of Monrad and Rootz6n, ~1~ is derived via 
Theorem 1 in Kuelbs et al. ~8~ In Kuelbs and Li, ~6~ we showed how sample 
results obtained from Kuelbs et al., c8~ combined with scaling arguments, 
apply to the analogues of A, B, C in Theorem 3.1 for Brownian motion and 
the Brownian sheet. Much of that approach would also apply directly here, 
but those parts of the argument where independence is required need some 
modification. Hence we proceed directly to the problems at hand. In the 
parts of the proof where independence is involved we now use the method 
employed in Monrad and Rootz6n ~~ suitably modified. 

The proof of Theorem 3.1 will proceed via a sequence of Lemmas, the 
first of which are Lemmas 3.1 and 3.2. The next is a analogue of standard 
results when applied to 20 of the sup-norm, see, for example, Fernique. ~4~ 
However, for the H61der norms we are unaware of a result which applies 
directly, so we include a complete proof. 

L e m m a  3.3. Let { Y(t): 0 ~< t ~< 1 } be a separable, centered, real-valued 
Gaussian process with incremental variance satisfying 

( E ( ( Y ( t + h ) -  Y(t))2))l/2<~(h)<~c~,hP(fl>O) (3.19) 

Then, for ( % ) - 1 x >  1 and 0~<q<fl  

1 exp{ x) 2} P(2s(r3>~x)<.- ~ -O((c~) -~ 

where O is a positive constant independent of c~, and x. 

Proof Understanding that s + t is always taken to be less than or 
equal to one, we first observe 

2 q ( Y ) ~  sup sup I Y ( s + t ) -  Y(s)l/t q 
O~<s~<l 0<t~<l 

~< sup sup sup I Y ( s + t ) -  Y(s)]/2 -(j+l)q 
O~<s~<l j>~O 2-J-I<~t<~2 - j  
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Hence 

where 

and 

~<3 sup sup sup [Y( t+i2-J)  - Y(i2-J)[/2 -cj+l)q 
j>~O O~<i~2J O<~t~2-J 

oo 
~<3sup sup ~ max [ Y ( ( m + l ) 2 - 1 + i 2  -j) 

j>~O O<~i~.~<2J I = j + l  O~m<~21-J 

_ Y ( m 2 - t +  i2-J) l /2-u+ i)q (3.20) 

P(2q(Y)>>.x)<~. ~o P max [ Y ( ( m + l ) 2 - ~ + i 2  -j) 
j>.~O i= I I O<~m<~21-) 

-- Y (m2- t  + i2-Y)l/2-U+ l)q >~ 3)  

") j 21- J 

<~ Z ~, ~. Z P ( I Y ( ( m + I )  2 - t + i 2 - j )  
j>~0 i = 0  I = j + l  m = O  

-- Y ( m 2 - t +  i2-J)l/2-fJ+l)q>~ yj, lX) (3.21) 

yj, t= 2 - (# -  ~')lt-J)k#, ~ 
2 p - r -  1 

0 < ~ < f l ,  kp. ~, = 3 

y j , /=  1/3 
I = j + l  

Since (3.19) hold, and letting Z be a N(0, I) random variable, we have 

e(] Y((m + 1 ) 2-* + i2-J) - Y(m 2-1 + i2 -J)l /2-u+ l)q ~ yj, 12 ) 

~< P( Izl > /y ,  ,2 - u +  1 ~qx/~(2-,)) 

<~ e-u2/2 du 
,I 

where 

aj, t=  Yz I x2  -(J+ l)q/6(2-j) >~ cfIk#,  ~ ,2(a-r)~l-j)x2-cj+ ')q" 2at 

= k# r2 -qc~  x x2r~t-y) + (p- q)j 
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Hence 

P(~t'q (Y)~X)~ Z 
j>~0 / = j + l  

j~>O I = j + l  

�9 exp{ - 1/2(k/~. r2 --q)2 (C~-Ix)2  22ru-j) + z(a- q)y} 

21 f~j.t e --u2[2 du 

2t/(ka. y2 -qc~ 1 x 2 m -  j) + ca- q)J) 

~<(ka. r2-2q) -1 .  ~] ~ 2 t+j 
j>~0 I~>1 

x(exp{--l(kl,i, yN-q)2(c~lx)2227'+2(p-q)J}) 2 

j=O 1/> 1 

1 
~<~ exp{ - O ( c ; '  x) 2} 

where 0 is a positive constant independent of cq, and x. Hence the lemma 
is proved. 

The next lemma modifies a result we learned from an early version of 
Monrad and Rootz6n. ~1~ 

Lemma 3.4. Let 0 < c c < l  and fix 0 < q < q ' < e .  Let d , = K  +"-r), 
n r = r ' f o r r l > l  a n d 0 < y < l .  Let 

1 (Ix - t l ~2=-1 v2 _ Ixl c-~=- w2) dB(x), Yr(t) = flxl r k~ 0 ~< t ~< 1 (3.22) 

where { B ( t ) : - o o < t < c o }  is standard Brownian motion, and /~= 
(d,_,/nr, dr/n,). Let 0 < f l < y .  Then, for 6=min(2fl(0t--q ' ) ,  y--fl ,  
( 1 - y)(2 - 2~), (2~ - 2q') y} there is a constant C ~ (0, co ) depending only 
on ~ such that uniformly in t, h, r. 

a~(t, h) = E(( Y,(t + h) - Y,.(t) 2) <~ Ch2q'r -~ (3.23) 
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Proof. If e = 1/2, recall the kernel is interpreted to be/to,  q(x). Then, 
for h~>0 

0 t/> ( r -  1 )"- Y/r r 

a~(t,h)= ( r -  1 ) " - r / r " -  t O<~t<~(r-1)"-r/r"<t+h 

h O<~t<~t+h<~(r-1)"-r/r'<~h ^ r -r 

fh2q'l "-(l-2q')r if h~<r -r  
=(r-2q'rr-r(l-2q')~h2q'r-11-2q')~' if h>r  -r (3.24) 

Hence (3.23) holds for C =  1 when 7=�89 and d = ( 1 - 2 q ' ) y .  
If 0 < ~ <  1, ~ #  I/2, let 

f2(y) = l l k~ f ly -  It21 ~2=-'~/2- [y+ 1121 (2='- 1)/e) --cx3 < y <  oO 

Then ~= f2(y) dy = 1 by definition of k= and for: 

(a) 0 < c~ < 1/2, differentiation shows f2(y)  is increasing for 
0 <  y <  1/2 and decreasing for y >  1/2 with f ( y ) =  f ( -  y), and 
hence f2(y)  ~< 1/k~ on [0, oo). 

(b) 1 / 2 < ~ < 1 ,  the function x ~z~-1~/'- is concave on [0, oo), so 
fZ(y) ~ 1/k ] on [0, oa). 

Hence, changing variables implies 

a~.(t, 17)=h 2~ f f2(y) dy 
e l y  + 1/h + 1/21 ~ lr/h 

and for 0 ~< q < q' < 0c, this implies 

a~.(t, h)=h2q'h2(a-q')f f2(),) dy 
lY+ t/h + 1/21 dg lr/h 

If 0 ~ h  ~< r -p, then (3.25) and ~a f2(y) dy ~< 1 implies 

a~.( l, h) <~ h2q'r -2p~-q') 

Hence assume h >~ r-& Then 

(3.25) 

(3.26) 

l y+t /h+ I/21r 

implies 

i.I --)' 
[Y + t/h + 1/21/> - -  

1" 
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o r  

r - )' 
0~< lY+ t/h + 1/21 ~<--~- 

For lY + t/h + 1/2[/> r 1 - Y / h  w e  have (since 0 ~< t ~< 1) 

y+l /2>>. ( r~-" - l ) /h  

or 

r I - ), 

y + I/2 -7- 

Thus for r > 2 ~'- 1 

fb'+,/h + ,/21a~l-;'/h f2(y)  dy <~ 2 f~7_~_lvhf2(y) dy 

~< 2 f,.,-,'/r f 2 (y )  dy 

~Cfrlm-~,/(~h) y2~ 
C h 2 -  2otl.-(l -- ),)(2-- 2g)  

where C e  (0, oo) depends only on c~ but differs from line to line. 
Now 

r - Y  

0 <<. I Y + t/h + 1/21 ~< - -  
h 

implies 

-(r-~'  + t)/h <~ y + 1/2 ~< (r - r -  t)/h 

Since f2 (y )  ~< 1/k~, 

' 

_ _- f2 (y)  dy <~ 2r-"/(hk,) 2 

Combining (3.27) and (3.28) we have for r>~21/(t-r) 

crrZ(t, h) ~ h2~{ Ch2-2~'r -( '  -,,)~z-2~,) + 2r-~,/(hkj_} 

(3.27) 

(3.28) 
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Since we are assuming h>>.r -p  and ?>f l ,  then for 0<h~< 1 we have for 
some new C, depending only on 0c, that 

tr2( t, h) <~ Ch2~{ r -(I  -r)(2-2a)+ r-Or-p)} 

<<. Ch2~r -~ (3.29) 

for ~ > 0 as in the hypothesis. Putting (3.26) and (3.29) together now yields 
(3.23), so the lemma is proved. 

Lemma 3.5. I f f ~ K = K ~ a n d g ( . ) = f ( 2 ( . ) )  on [0, 1] w i t h 0 < 2 < l ,  
then for 0~<q<0t 

2 q ( f - g ) < ~ 2  11-21 ~-q 

Proof Since g ( . ) - - f (2 ( . ) )  

(3.30) 

2 q ( f - g ) =  sup I ( f ( t ) - f ( 2 t ) ) - ( f ( s ) - f ( 2 s ) ) l  [ t - s l  -q 
O~<a<t~<l 

If 0 ~< s < t ~< 1, then we have two cases: 

(a) 0~<As<2 t< t~< l  and 

(b) O<~As<2t<~s<t<<.l. 

If (a) holds, then (3.5) implies there exists h such that ~R h2(x) dx<<. 1 
and 

J(f(t) - f(At)) - f ( s )  - f(2s)) I 

- ~. k~ (Ix-~1 `2"- I,'~- Ix-  Z,I ̀ 2~-'''2) h(x)ax 

~< I t - 2 t l = +  ]s-2s l==(s=+t~)(1  - 2 )  = 

where the last inequality follows by the Cauchy-Schwartz inequality 
applied to each of the integrals and then a change of variables. However, 
for (a) holding we have sit < 2 and hence 

I t -  sl - q =  t -q I1 -8 / t l -q<~t  -q I1-21 -~ 
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Thus if (a) holds 

I ( f ( t )  - f ( 2 t ) )  - ( f ( s )  - f ( ; t s ) ) l  It - sl - q  <~ t - q ( s  ~ + t ~) I1 - 21 ~ - q  

<~22t ~'-q I1 - 2 1  ~ - q  

~<2 I1 --21 ~-q 

since 0 ~< t ~< 1. 
If (b) holds, then by a similar argument  
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[ ( f ( t )  -- f ( 2 t ) )  -- ( f ( s )  -- f(As))[ = I ( f ( t )  - - A s ) )  -- (f(J. t)  -- fO.s))  I 

~< I t - s l = + 2 =  I t - s l  = 

= ( l + A  ~) I t - s l  ~ 

However ,  when (b) holds 

[ t - s l ~ - q - - t  ~-q  I1 - s / t l ~ - q < ~  II - 2 1  ~-q 

so putt ing these inequalities together we get 

) . q ( f - g )  < 2 I 1 - 2 1  ~-q 

and (3.30) holds. 
Lemma 3.6 is adapted from A. de Acosta's Lemma 5.3. (3) 

L e m m a  3.6. Let m,n ,  r be positive integers with m<<.n<<.r and 
a,  = (2n2~L2n)1/2 for n ~> 1, and 0 ~< q < ~ < 1. Then for f e Hi, ,  It the law of  
~-fractional Brownian mot ion  on Hq.o,  and 1/2 < p  ~< ( 2 ( c t - q )  + 1)/2 

(Z2n)  p ,~.q(X(n(. )) /a n - f )  

>>. (n /m)  q (m/r )  ~ ( L z m )  p ~,q( X(m(. )) /a m -- f )  

- - 2 ( r / m )  q (Z2r)  v 11 - -m/r[  ~-q  [[fl[~ 

-- ( r /m)  q ( L z r )  p I1 - a m / a r [  2 q ( f )  (3.31) 

Proof.  Since X ( n ( ( m / n ) ( .  ) ) ) =  X ( m ( . ) ) ,  by rescaling we have 

(Z2n) p ) .q(X(n(.  )) /a n - f )  

= ( L 2 n ~ P 2 q ( X ( n ( . ) ) - a , , f )  
\ a , /  

>>. (L2n)P sup I (X(nt )  -- a n f ( t ) )  
a,, O<~(n/m)s<(n/m)t<~l 

-- ( X(ns )  -- anY(s))I /I  t - s I q 
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I( X ( m v ) - a , , f (  (m/n)r) ) -  ( X(mu) - a , , f (  (m/n)u) )[ (L2n) p 
sup [m/n[ q ]u - v[g a n  0~<u<v~<l 

--(L21"l)P(l'l~ \-m// ~q ( X ( m ( ' ) ) - - a , , f ( m  ( ' ) l l  

( n  ~ q (L2r)P/~f(X(l'l'l(. ) ) - a n g  ( �9 ))  ( 3 . 3 2 )  

\ m /  a r 

where g ( . ) = f ( ( m / n ) ( . ) )  (since ((L2r)P/a,.)<~((L2m)r/a,,,) when L x =  
max( 1, loge x) and 1/2 < p  < (2(oc - q) + 1 )/2. Since a,, /" ~ ,  we thus have 

Aq(X(m(. )) -- a n g(. )) >/~q(X(m(. ) -- am f )  - arAq(f - g )  

- ( a t - a m )  2q(f)  (3.33) 

and since f~H~, ,  Lemma 3.5 implies 

2 q ( f - g )  ~< 2 l1-m/ , ' l  ~'-q IIfL (3.34) 

Combining (3.32)-(3.34) we have (3.31) and the lemma holds. 

Lemma 3.7. Under the assumptions of Theorem 3.1, (3.15) and 
(3.16) hold. 

Proof  Let n r = exp{ r/(Lr) r where r -- q) > (2(0c - q) + 1 )/2. Then 
by (3.13) for any ~ > 0 and r sufficiently large 

Pr = P( ( 2L2n,.) (2ta-q) -1)/2 "~q( ~l,,, - f )  <~ b) 

~<exp{-(LEnr)(l[fl[~+x/~cb-1/(~ (3.35) 

Hence by taking bo = b > 0 sufficiently small we have ~,. pr < oo. Hence by 
the Borel-CanteUi lemma 

lim (L2tlr) (2(~-q)+ 1 ) / 2  fl;q(~lnr - f ) / >  bo > 0 (3.36) 
r 

Furthermore, applying Lemma 3.6 for n~_ 1 ~< n ~< n~ it follows that 

lim (L2n) (2(~- q) + i)/2 2q(q,, - f )  
it 

~>bo--2 lim (L2n~) (z(~-q)+ ])/z 1 - n ~ - I  " -q  Ilflll, 
r n r 

- t i m  (Lzn,)  (2('-q)+ l)/z 11 - a  .... ,/a,,,[ 2q(f) 
r 

= bo > 0 (3.37) 



Gaussian Processes w i t h  S t a t i o n a r y  Increments Under lt6lder Norms 381 

since n r = e x p { r / ( L r )  r with ~b (0~-q )>(2 (~ -q )+  I)/2. Hence the left- 
hand side of (3.15) holds. 

If Ilfll, > 1 and Pr is as in (3.35), then no matter how large b is, we 
have ~ p ~ < o o  provided C ~ 6 < [ [ f l ] ~ - l .  Hence the Borel-Cantelli 
lemma and Lemma 3.6 yield (3.16) when Ilfll,, > 1. 

If IIfL= 1 we fix b as large as we like, and then choose ~ > 0  
sufficiently small so that 

cb  - 1 / ( ~ - q ) - ~  > 0 

Again ~,~ p~ < ~ ,  so Lemma 3.6 implies that (3.16) holds as b is arbitrarily 
large. 

Thus it remains to show the right-hand side of (3.15) if [[fl[t, < 1. For 
this we define 

Zr( t  ) = ;{ 1 (Ix - t] ~2=- ,vz _ Ixl ~2~-1,/=) d B ( x )  
dr-I <~ l.xl <~dr} kct 

X A t )  = X ( t )  - Z~(t)  

(3.38) 

(3.39) 

for t~>0, d~=r  ~+~1-~'), 0 < 7 <  1. Then the Z~'s are independent, and the 
right-hand side of (3.15) will follow if we show with probability one that 

lim (L2nr) (2(~-q)+ I)/2 2q(Z,(nr(. ) ) /a , , - - f )  < oo (3 .40)  
r 

and 

lim (L2nr)  (2<~-q)+ ~)/2 }~q( l~tr( nr( . ) ) /a, , ,)  = 0 
r 

(3.41) 

for some subsequence n r ,'~ o0. 
For i =  1,2, e > 0 ,  b > e ,  let 

An(i) = { (2Lznr)  p~' q" ') 2q( Zr(nr(  " ) )/a.,-- f )  <~ b} 

Br(i) = { (2L2n~) p~' q' i) ~ q ( X r ( n r ( .  )))/a,, > e} 

C,.(i) = { (2L2nr) p(~" q' i) 2q (qnr  __ f )  << b - e} 

(3.42) 

where 

fl(~, q, 1 ) = (2(o~ - q) + 1 )/2 

fl(~, q, 2) = (2(co--q) + 1)/(2(~-- q + 1)) 
(3.43) 

$60/8/2-11 
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if for all e > 0 

Now (3.12) implies that for all 3 >  0 and r sufficiently large 

P(Cr(1)) >f exp{ --Z2n~( Ilfll~ + x/~ C(b - ~)-l/(a-q) .+ N/t~  5 ) }  (3.45) 

Hence, if n r = r  r and ~ > 0  is such that x / ~ +  [Ifl[ 2 < I, then by taking b 
sufficiently large we have 

P(C~(1)) = oo (3.46) 
r 

Thus (3.45) and (3.46) combine to imply 

P(Ar(1))--- oo (3.47) 
r 

P(B~( 1 )) < ~ (3.48) 
r 

Now (3.48) for all e > 0  implies (3.41), and (3.47) is exactly that 

~ P((2L2nr)~2(~-q)+l)/2 2q(Zr(nr(.))/a,, - f ) < ~ b ) = c x 3  (3.49) 
r 

Hence, since the Z,.'s are independent, the Borel-Cantelli lemma yields 
(3.40) once (3.49) holds for some b < oo. Thus it remains to show (3.48) for 
all e > 0 .  

To verify (3.48) recall {Y~(t):O<~t<~l} of Lemma3.4.  Since 
dr = r r +  ( 1 - 9 , )  n r  ~ ?.r w e  s e e  

{X,.(/): O<<.t <~n,.} -~ {n~ Yr(t/nr): 0~<t~<nr} (3.50) 

Hence by (3.50), and Lemmas 3.3 and 3.4, for all r sufficiently large 

P(Br(1 )) = P(2q(Xr(nr(" ))) > ea,,r(2L2n,.) -c~-~- q) + 1)/2) 

= P(2q( Y~((. ))) > e(2L2n~)-t~-q)) 

~< ~ exp { - O(cr-~) - i  e2(2L2n~) -2c,-  q)} (3.51 ) 

Thus (3.48) holds, and the lemma is proved. 

Cr( i ) c Ar( i ) u Br( i ) (3.44) 
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Lemma 3.8. Under the assumptions of Theorem 3.1, (3.17) holds. 

Proof.  If IIf~, II = 1 and f =  Sh where h is a continuous linear func- 
tional on (Ha. o, 2q), then by Proposition 1 of Kuelbs et aL ~7) 

lim (1 -IIf~ll~,)/O = 2 Ilhll, (3.52) 
6 ~ 0  

where Ilhll, is the norm in the dual of (Hq.o, 2q), andf~  is as in (3.11) of 
Lemma 3.2. An easy computation also yields that for a > 0 ,  II(af)~ll,,= 
a II(f)a/~ I1~,. Hence by Lemma 3.1 and the right-hand side of (3.10) there is 
a constant c such that for n~= e x p { r / ( L r )  ~} we have that 

p~ = P((2L 2 nr)c~-(~- q) + 1 )/(2(r -- q) + 2) ~ q ( t ] . , , r / a n r  - -  f )  <~ b) 

= P(2q(X-  (2L2n~)l/z f )  <~ b(2L2nr)-C~-q~/~2(~-q~ +2~) 

~< exp{ - (Z2n,.) II(c~/(2t2n~)1/2)fll ~ 

- cb - l/l~- q~(2L2n~ ) - 1/12~- q) + 2~} (3.53) 

with ~ = b ( 2 L 2 n r )  -(~'-q)/(2(~-q)+2). Hence by (3.52) for each 7 > 0  and r 
sufficiently large 

p,. ~< exp{ - L 2 n r ( 1  - 2  Ilhll, (1 + y) b(2L2n,.)-I~-q~/~2~'-q~+2~-l/2) 2 

- cb -1/~, - q)(2L2 n~)n/~2(~,- q ) +  2)} 

~< exp { -- L2nr  + (2 II h II, ( 1 + •) b - cb - i /~ - q))(2L2 n,) 1/(2(, - q) -~ 2)} (3.54) 

Hence for b > 0 sufficiently small, ~ r  p~< oo and the left-hand side of 
(3.17) holds by applying Lemma 3.6 as in Lemma 3.7 with ~b(0c-q)> 
(2(0c-- q) + 1)/2. 

To prove the right-hand side of (3.17) we need some independence, 
and recall the events in (3.42) with n,. = r  r, i = 2 ,  and fl(0q q, 2) as in (3.43). 
I f f r = f - f ( L 2 n r )  -~2~'-~+1~/~2~'-q~+2~, then for r sufficiently large 

P(C,.(2)) >/P(2q(rl,,, - Jr) ~ ~ ( 2L2nr)  -~2(~- q)+ 1)/(2(~- q)+ 2~) 

provided ( b - e ) / 2  > ~q( f ) .  Hence Lemma 3.1 and Lemma 3.2 and IIfllu = 1 
imply there is a constant C > 0 such that for r sufficiently large 
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P(C,(2)) ~> 2 - '  exp {--L2nr [If~, [L~, 

- - C  ( ~ - ~  (2L2n,.) -(`2'~-q) + 

= 2 - l  exp { - L , _ n , +  (Z.~n,) l/(2(a-q)+2) 

x (2__ f (~)-l/(a-q) 21/(2fa-qI+ 2)) } 

l )/(2(a - q) + 2)) + 1/2) - 1/{~ - q) } 

(3.55) 

Thus for b > 0 sufficiently large 

P(C,.(2)) = co (3.56) 
r 

and in view of (3.44) with i = 2 we have 

y '  P(A,.(2)) = co (3.57) 
r 

provided 

P ( K ( 2 ) )  < co (3.58) 
r 

for all e > 0 .  Now the events {A,.(2), r~> 1} are independent, so (3.57) and 
the Borel-Cantelli lemma imply that P(A,.(2) i .o.)= 1. Given (3.58), this 
then implies P(Cr(2) i .o.)= 1 for sufficiently large b, and hence the right- 
hand side of (3.17) follows. Hence it remains to verify (3.58). 

�9 ,4 r r+(l -~') Recalling { Y~(t): 0 ~< t ~< 1} of Lemma 3.4, since nr = r', ..~= 
0 < y < l ,  then (3.50) holds. Thus we see as in (3.51), by applying 
Lemmas 3.3 and 3.4, that 

P(Br(2)) ~< P( 2q( Yr(" )) > e( 2L,-n,.) 1/2-~(2~-q~ + 1~/~2~- q) + 2~) 

01 exp{ -- O(cr-'~) - i  e2(2Lzn,) -(~,- q)/t2t~,-q)+ <~ 2)} (3.59) 

Then (3.58) holds, and the lemma is proved. 

Lemma 3.9. Under the assumptions of Theorem 3.1, (3.18) holds. 
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P r o o f  The proof of (3.18) follows as in the second part of 
Lemma 3.8. Here, s incef:~ Sh for some h in the dual of (Hq, o, ),q), w e  have 
by Proposition 2 of Kuelbs et alJ 7) that 

lim (1 -IIf~ll) /~ = ~ (3,60) 
, ~ 0  

Hence by defining 

C,. = { ( 2 L z n , )  ~2~- q~ + 1 i/~2~-q)+ 2~ 2q(r/,,, - f )  < 2b)} 

we have 

P( Cr) = P()Lq(X- (2L2n,.) 1/2 f )  <~ 2b(2L2n,.) -r 

>1 P ( ) L q ( X -  ( (2L2n~/Z) f ) 6 )  <~ b(2L2n,.  ) --(ot--qJ/(2(ot--q)+ 2)) (3.61) 

with ~ = b ( 2 L 2 n r )  -~-q)/12t~-q)+2).  Again, since ( a f ) a = a ( f 6 / a ) ,  we have 
from (3.61) and Lemmas 3.1 and 3.2 a Cs (0 ,  oo) such that 

P(C,) >/exp { - L2 n,. ll( f)a/~2z.z,,,),/2 [l~, - Cb - ~/l~ - q)( 2 L z  n~) 3/~2~ - a)+ 2)} 

(3.62) 

Since (3.60) holds, for every M > 0  we can take r sufficiently large 
(depending on M), such that 

I l f  a/~2L,_,,y- I1~, <~ 1 - M .  6/( 2L2n,.) ~/~- (3.63) 

Since O=b(2Lzn , . )  ~'-q)/~2~'-q)+2) we have from (3.62) and (3.63) that for 
all r sufficiently large 

P ( C , )  >1 �89 exp{ - L 2 n ,  + ( M b  - Cb-~ /c~-q) ) (ZLzn , )  ~/~2~'-q)+2~} (3.64) 

Thus for any b > 0, no matter how small, we can take M sufficiently large 
so that 

M b  - Cb - t / t~ -q )  >1 0 

For such M we have (3.64) holding provided r is sufficiently large, and 
hence the probabilities in (3.64) diverge. 

Hence define the analogous of B,(2) and A,.(2) by 

and 

B,. = { (2L2 n,.) 12(~- q) + 1)/~2~,,- q)+ 2) 2q( X,(n, .( .  ) )/a,,,) > b} 

A, = { (2L2 n,.) (2(~- q~ + l ~/~2~,-q)+ 2) 2q( Z,.( n,.(. ) ) /a, ,  -- f )  <~ 3b} 
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Then the divergence of the probabilities in (3.64) for arbitrarily small b > 0 
implies 

~, P(Ar) = oo (3.65) 
r 

provided 

for such b > 0, since 

P(Br) < oo (3.66) 
r 

C,.cAruB,.  

Since the events {Ar: r~>l} are independent, (3.65) and the Borel- 
Cantelli lemma implies P(A r i .o.)= 1, and (3.66) implies P(B,. i .o.)=0. 
Thus P(Cr i .o.)= 1, and the lemma is proved, provided (3.66) holds for 
b > 0  arbitrarily small. Now (3.66) holds using d,.=r r+(1-~'), nr= r", and 
(3.50) as in (3.59) with e = b. Thus the lemma is proved. 

Combining Lemmas 3.7-3.9 we have the theorem proved. 
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