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Small Ball Probabilities for Gaussian Processes with
Stationary Increments Under Holder Norms'
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Small ball probabilities are estimated for Gaussian processes with stationary
increments when the small balls are given by various Holder norms. As an
application we establish results related to Chung’s functional law of the iterated
logarithm for fractional Brownian motion under Holder norms. In particular,
we identify the points approached slowest in the functional law of the iterated
logarithm.
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1. INTRODUCTION

Let {X(r):0<:<1} be a separable centered Gaussian process with
stationary increments and assume X(0)=0. If

(1) =EXXt))  (t>0) (1.1)

then stationarity of increments and X(0)=0 imply E((X(z+ h)— X(2))?)
=g*(h) for t=0, h=0. Throughout C,[0,1] denotes the continuous
functions on [0, 1] with value zero at the origin, and for xe C,[0, 1], and
f a nondecreasing strictly positive function on (0, 1] satisfying f(0) =0, we
define

A(xy=sup |x(t) —x(s)|/f(|r—s}) (1.2)
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Of course, if f(¢) =17, 0< g <1, then A is a classical Holder norm, and we
will abbreviate this by writing 4,(-) instead of A.(-). In particular,
lo(X)=maxg ¢, ¢, X(¢)—ming,<; x(z) and perhaps it should be men-
tioned explicitly that these quantities are norms on C,[0,1], but not
on C[0,1].

In Section 2 we consider small ball probabilities of the form

P2 X) <a(x)/f(x)) as x—0 (1.3)

When X is standard Brownian motion, results for 1,, 0 <g<1/2, have
been obtained in Refs. 1 and 6. However, what we prove here applies easily
to fractional Brownian motion as well, and to norms other than the
classical Holder norms. When g =0, results of this type are related to those
obtained previously in Refs. 10 and 11, where small ball probabilities for
Gaussian processes are studied under the sup-norm.

In Section 3, we present a detailed version of Chung’s functional law
of the iterated logarithm for fractional Brownian motions using general
Hélder norms. In particular, we generalize the classical results for
Brownian motion,** and present a fairly complete picture of what happens
when the limiting function is a boundary point of the limit set in Strassen’s
FLIL. Results of this type were studied in the sup-norm case for Brownian
motion by Grill,®” and in terms of lim-inf results for general Gaussian
samples in Ref. 8. These later results were employed in Ref. 6, to study
similar problems for Holder norms applied to Brownian motion and the
Brownian sheet, and in Monrad and Rootzén!? to obtain results for frac-
tional Brownian motion under the sup-norm. Some further comments will
be included when these results are stated in Section 3, but for now we men-
tion that FLIL results of Monrad and Rootzén!'? for fractional Brownian
motion follow from those later by setting A,= 2.

2. SMALL BALL PROBABILITIES FOR A (X)
The main results for small ball probabilities are the following two
theorems.

Theorem 2.1. Let {X( 101 1} be a separable centered Gaussian
process with X(0) =0, and having stationary increments. Let o(-) be given
by (1.1), and assume A, is as in (1.2) where f is a nondecreasing, strictly
positive function on (0, 1] satisfying f{0)=0. Then:

(i) o*(h) concave on [0, 1] implies that

P2 (X) <o(x)/f(x)) <exp{ —0.17[1/x]} (2.1)

where [ -] denotes the greatest integer function.
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(il) If 6?(2x) < Bo?(x) for 0 < x < 1/2, and some Ae(0, 4], and
60%(jx) + > ((j+2)x) +0*((j—2)x) 240 ((j+ 1)x) +4c*((j—1)x) (22)
for0<x<1land 2<;<1/x—2, then

P, (X) <a(x)[f(x)) <exp{ —[1/2x] In(1/@(2/./4-0))}  (23)

where ®(t)=(27) "2 [ e~"” du.
Theorem 2.2 presents the companion lower bounds for the upper
bounds of Theorem 2.1.

Theorem 2.2. Assume {X(#):0<t<1} and A, are as in Theorem 2.1,
and that ¢(x)/(x”f(x)) is nondecreasing on (0, 1] for some > 0. Then

P(A(X) < o(x)/f(x)) = exp{ —c(B)/x} (24)

where c(f) >0 is an absolute constant depending only on f.

Remarks. (1) The proofs will show that some improvement for
various constants is possible, but exact constants are unknown. Hence we
stated things with simplicity in mind. It also follows from the proofs that
estimates analogous to those in Theorems 2.1 and 2.2 will hold for

P( sup [(X(s)|/f(s) <a(x))

O0<sx1

but they are not included.
(2) The application of Theorems 2.1 and 2.2 to fractional Brownian
motion will be discussed in Section 3.

Proof of Theorem 2.1. The proof of Theorem 2.1 depends on
Slepian’s lemma which can be found, for example, in [ Tong,''* p. 10], or
the recent book by Ledoux and Talagrand.®’

It is easy to see that

P(Ar(X) <o(x)[f(x)) < P( max |X(ix)— X((i—1)x)| <o(x)) (23)

1<igx
Hence put
&= X(ix)— X((i—1)x), izl

Then E(&2)=03(x) for i>1, and if ¢*(-) is concave it follows fairly easily
that E(£,£;) <0 for all i# j. Therefore,
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P( max |X(ix)— X((i—1)x)| < a(x))

I<igl]/x

<P( max ¢;<o(x))

I<iglx
[1/x]
< JT PEi<a(x))
i=1

= (@(1)V]
<exp{—0.17[1/x]} (2.6)
where the second inequality above follows from Slepian’s lemma.
Combining (2.5) and (2.6) yields (2.1), so now we turn to (2.3).
If 62(2x) < Bo*(x) for 0<x<1/2 and Ae(0,4) and (2.2) is satisfied,
we let

ni=8x—Cxu_1> 1<i<1/(2x)
Here £, is as before. Then a direct calculation shows that
E(n?) =40%x)—0*(2x) > (4 —0) o¥(x), 1<i<1/(2x)
and
E(nin)= —1/2(60*(2 |j~ilx) + (2 |j~i| +2)x) + o*((2 | j — i = 2) x)
—40*((2 [j—il + 1)x) —40((2 | j —i] = i)x))
<0

for every 1 <i#j<1/(2x). Hence Slepian’s lemma can be applied again,
and we obtain

P( max |X(ix)—X((i—1)x)| <o(x))

I<igl/x

<P( max |7, <20(x))
1<i<1/(20)

<P( max #,<20(x))
1<i<1/(2x)
[1/2x]
= [l P(n:<20(x))
i=1
[1/2x]
=[] oQ2o(x)/(En})"?)

[’:Zil
< [1 2Qo(x)/((4~86)a*(x))"?)

i=1

=exp{ —[1/2x] In B(2/(4 — 6)'?*)} (2.7)
Combining (2.5) and (2.7) yields (2.3), and hence Theorem 2.1 is proved.
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Proof of Theorem 2.2. First we observe that
A{X)<max{ sup |X(t)— X(s)|/f |t~s]),

O0<s#r<1
Is—tlzx

sup | X(¢) — X(s)I/f [t —sD)}

0ss#r<1
ls—tfl<x

<max{2 sup |X(s)— X(0)|/f(x),

0<sx<1
sup |X(¢+s)— X(s)|/f(2)} (2.8)
0gsx<1
O0<r<gx
s+r<1

and understanding henceforth that s+ <1 we have

sup | X(z+s)— X(8)|/f(2)
0<sx1
0<r<sx

< sup max sup | X(t+5) — X(s)|/f(2)

oss<1 J20 xa-j-lgrgx2-/

<max sup sup | X(2+s)— X(s)|/f(x27171)

JZ0 o0gs<l O0<r<x2-/

<3max max sup |X(t+ix277)

j20 0<i<¥x O rgx2—/
— X(ix2 D ff(x2 -0~ (29)

Now for each 0 <s <1 we can write

o0

s=Y, g2~

=1
where ¢;,=0 or 1. Hence
sup |X(s)—X(0)| < 2 max |X(12 N—X((i—-1)27Y =1(X) (2.10)
0gs<1 1<is2

and

max max sup | X(t+ix27)— X(ix2 )| f(x27/71)

j=20 0<i<2ix Ogr<x2—/

<max max ) 1 X((m+1) x27 ' +ix27)
=0 0si<2)/x 1=j+1 o<m<zl
— X(mx2 7'+ ix2 )| [f(x27/7 Y
Eib(xv (2J1)

860/8/2-10
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From (2.8)—(2.11) we obtain

POAAX) < a(x)[f(x)) 2 P(I|(X) <a(x)/2 and I,(X) <a(x)/(3f(x))) (2.12)
Let n, be an integer such that

1/x<2™2/x
Define
x,=0((3/2) V=™ x)(1 —2-82)4  |=1,2,.
J’j,l=%0'(xzﬂl)
x 20U=DQIH( — 272771y i 0,12 j+1

Since o(x)/(x?f(x)) is nondecreasing, we have for O<a<1 that
o(ax)/f(ax) < a’o(x)/f(x). Hence

(3/2) 7V ="g(x)(1 - 2772)/4

1

©
PIETES
I1=1

18

)

<3 G2 alx)1—257)2

=o(x)(1 —277%)/(2(1 - (2/3)))

<o(x)/2 (2.13)
and
1 & . . o .
Z yjl_§ z a(x2‘(’_"‘1)2_1_1)2’3“-1)/2‘”5(1rZ-p/z)[f(xZ_J_l)
I=j+1 I=j+1
1 & ag(x27/7h ) e
<= (1 —2-FRy2—BU—Jj=\+BU-D2+ 8
3,2, fe2 )

a(x2=/71)
f(x2=/7h)

<a(x)/(3f(x)) (2.14)

— 1/3(1 _2—11/2) 2(j+1)/12—ﬁ/2/(1 _2~ﬂ/2)
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Combining (2.10)-(2.14) we thus have
P(A(X) <a(x)/f(x))

>P( max_|X(i27) = X((i—1)27)<x, [>1, and
I<ig?

367

IX(m+1)2 % +ix2=7) — X(m2~'x + ix277)]

max max ,
0<i<V/x 1sm<-] f(x277=h)

<y, for all l>j+1,j>0>
=>A4-B

where

-1] POXG2-Y) — X((i—1) 2| <x,)
I=1 i<

1 igig2!

N

and

[-<) @0 2= 2J/x
B=T1 II TII IIPUX((m+1)2""%+ix27)
Jj=01I=j+1 m=1 i=0
—X(m2~ %+ ix2 )| [f(x27 ") <y, )
by Sidak’s theorem (Sidak,"® Corollary 3). If Z is N(0, 1) then
A=TT (P(1Z1<a((3/2) "=l x)(1 —277P) )(4a(2 1))
i=1

and
=1 I (PUZI<(1/3) 2R =n=+ik(] w2yl
J=0 I=j+1

To estimate 4 and B we note that

() P(Z|<ty=y2  if 0<r<]

(i) POZ|<st)zexp{—0(s)e "} if 5>0,1>1
where 6(s)=(1 —e~*?)~1,

Thus by rewriting 4 we obtain

ﬁ (P(Z] <o((3/2)~" =D x)(1 — 2-P2)(4o(2-)))?- C

(2.15)

(2.16)

(2.17)
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where

C= ﬁ (P(1Z] <o((3/2) 4= x)(1 - 2772)/(4a(27))))*  (2.18)

I=nm+1
Thus, recalling 2™ < x and o(-) is nondecreasing,

A42C ﬁ (P(1Z] < 0((3/2) =0 =" 27)(1 - 272)/(45(2~"))))*

=1

> T1 (P1Z] <3y (1—292)))%

=1

since Minkowski’s inequality implies 3" ~/g((3/2) =" ~"2-") > g(27)
ny
>C[I G (1-2772)
I=1

by (2.16-i)

ny

= Cexp {— 2/(In(8/(1 = 2572)) + (ng—1) In 3)}

=1
= Cexp {—2"° % 2=t D(In(8/(1 —27P2)) + (ny— 1) In 3)}
=1

= Cexp{—2"c,(§)} (219)

where ¢,(f)>0 is an absolute constant depending only an f>0. Now
(2.18), a(-) nondecreasing, and x2™ > 1, together imply

C> ﬁ (P(1Z] < a((2/3)' =70 x)(1 — 272)/(4a((1/2)' =™ x))))*

l=n+1

= [I PZ|<i(1—27F2)4)3)p~m)2

I=ny+1
where the second inequality results from o{ax) < a’o(x) when 0 <a <1 and
x > 0. Hence by (2.16-ii)

C>exp {— T 20(1/4(1 —27h)) -2 <4/3>2""-"v’/32}

I=npg+1
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Letting c,(8) = 6(1/4(1 ~2~#7?)) we thus have

C>exp {—2"“62(/1’) i 2% exp{ —(1—-27/2)? (4/3)2‘"‘/32}}

k=1

> exp{ —c5(8) 2™}

where c¢;(f)>0 is an absolute constant depending only on S > 0. Hence,
with ¢y(8) =c,(8)+ c3(B), we have

A > exp{ —c,(B) 2™} (2.20)

Now we turn to estimating B by again using (2.16-ii). This yields

X eXp

B>ﬁ ﬁ xp{——e«l—z o))

—2 —/’/—’-)2 zﬁ(l—j)+2/31}}

=exp{—0((l—2‘/’/2)/3)/x§ ozo: 2k+J

j=0 k=1

X eXp {_% (1 _2~ﬂ/2)2 2ﬁk+2ﬁj}}

=exp{ —cs(B)/x}

Combining (2.15), (2.20) and (2.21), and taking ¢(B) =2c4(B)+ c5(f) we
have (2.4), and the theorem is proved.

3. FRACTIONAL BROWNIAN MOTION AND HOLDER NORMS

Throughout this section {X{(#): >0} denotes a-fractional Brownian
motion with X(0)=0 and O<a<1. Then {X(z):2>0} has covariance
function

E(X(s) X(1)) = L(s* + 2% — |s — 1| %) (3.1)

for s, t >0, and representation

X(1) = le 7(1— {|x —#| == D2 _ |x| @2 =112} 4pB(x) (32)
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where
(i) K2=] (bx—1]@ D2 x| =122 g
Rl
(i) (B(t): —oo <t< 00)is Brownian motion, and (3.3)

N | 5 . .
(ii) — (Jx—1| @~ 12— |x]C== 12y is interpreted to be I, ,, when a = 1/2.
k (0, 1]

In particular, { X(¢): 7> 0} has stationary increments with
EX(1))=a*(t)=1, 120 (34)

and is standard Brownian motion when a«=1/2. The limit set associated
with functional laws of the iterated logarithm for {(X(z): t>0)} is X,, the
subset of functions in C,[0, 1] of the form

=] T (=D xR gy dx, 0<i<1 (39)

o

In (3.5) the function g(-) ranges over the unit ball of L*(R'), and hence
f g(x)dx<1 (3.6)
R

Take 0 <g<a and set

Hq,o={f€Co[0,1]1}im sup  |f(t) = f()|/lt—s|?=0} (3.7)

~0 5 re[o0,1]
0<)s—1|<d

If fe K,, then the Cauchy-Schwartz inequality and a change of variables
easily implies |f(z)— f(s)| <|t—s|* for all s5,2e[0,1], and hence for
0<g<a we see K, < H,,. Furthermore, the set K= X, is the unit ball of
the Hilbert space H, which generates the Gaussian measure u = £(X) on
the separable Banach space C,[0, 1] under the norm A, or the sup-norm.
The next lemma yields even more, and shows H, actually generates u on
the real separable Banach space (H,,, 4,) provided 0 <g <a. It also gives
the small ball probability for 4 (X).

Lemma 3.1. If {X(¢):0<t<1} is a-fractional Brownian motion and
0<g<a, then

P(XeH,,) =1 (3.8)
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and there exist constants 0 < ¢ < C < o such that as ¢| 0
—Ce~Ve-9 g log P((A(X)<e)< — g~ e (3.9)

Remark. We abbreviate (3.9) by writing log P(1(X) <e&) xr—g~"/(*~9,

Proof. Take q'e(q,a). Since a-fractional Brownian motion has
stationary increments with o%(z)=t** both Theorems 2.1 and 2.2 apply
to a-fractional Brownian motion. In particular, Theorem 2.2 implies
P(A,(X)<0)>0, and hence by the zero-one law for Gaussian norms
[ Fernique®] we have

P, (X)<o0)=1

Now ¢'>¢g and an easy calculation yields (3.8). Furthermore, when
f(x)=x7 with 0 < g <a, then o(x)/f(x)=x*"9 and Theorems 2.1 and 2.2
combine to imply (3.9). Hence the lemma is proved.

If fe H,, the Hilbert space generating u = ¥(X) on H,,, then | f|,
denotes the H,-norm of f, and we point out the well known fact that H,
is a subspace of H, o with 1,y <c || f|, for some ¢ < co and all fe H,. The
next lemma describes the behavior of translates of small balls by elements
in H,.

Lemma 32. If feH,, 0<g<a, and X is a-fractional Brownian
motion, then

=3 1f11%+1og P(2,(X) <e&) <log P(A,(X—f)<e)

<log P(A(X)<e) -3 IIf. 117 (3.10)
where f, is the unique element of H, such that
Il =inf{llgll,: 1,(f —g) <&} (3.11)

Furthermore, we have
tim 1/, =1/,
and if ¢, C are the constants in (3.9), then for fe H,, r>0
lim t72log P(A(X—tf)<t™2*~9r) > — || f|2— Cr~ V=0 (3]2)

and

im r~2log P(A(X—tf) <172~ D)< — 3 (| f2—er === (3.13)

t— o0
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Proof. The inequality in (3.10) appears in [Kuelbs ef al,"'” Th. 2]
and (3.11) follows easily by adapting the ideas in Lemma 1 of Grill®® to
arbitrary centered Gaussian measures. The inequalities in (3.12) and (3.13)
follow from Lemma 3.1, and an argument adapted from Theorem 3.3 of
de Acosta.”® Lemma 3 of Kuelbs and Li‘® adapted these arguments to the
case of Holder norms for 4 Wiener measure, but with some slight changes
they work equally well for (3.12) and (3.13). Hence the lemma holds.

The following contains functional LIL results related to Chung’s LIL,
and except for constants is quite precise even when | f|,=1. We write Lx
to denote max(1, log, x) and L,x to denote L(Lx).

Theorem 3.1. Let {X{(z): t >0} be a-fractional Brownian motion with
X(0)=0 and 0 <a < 1. Let K=K, denote the unit ball of H,, the Hilbert

I3

space which generates u = .%#(X) on (H,,, 4,) where 0 <g<a. Let
n.(1) = X(nt)/(2n**L,n)"?  (0<t<1,n>) (3.14)

Then the following hold:
A: Iffek, [ fl,.<1, then wp.l

0 <lim (L,n)**= 2+ D2 3 (n,— f) < o0 (3.15)

and if fe H,, || fll,>1, then w.p.1.
lim (Lyn)®*=9+ D22 (5, —f) =0 (3.16)

n N

B: Iffek, ||fl.=1, f=Sh where h is a continuous linear functional
on the real separable Banach space (H,,,4,) with Sh denoting the
Bochner integral E(Xh(X}), then w.p.1.

0<lim (L)~ 0 D=0+ (g, —f) <o (317)

C:. Iffek, |fll,=1, but f+ Sh for some h in the dual of (H,,, 4,),
then w.p.1.

lim (Ln) 2=+ =001 1 (. — £) =0 (3.18)

n

Remarks. (1) If |||, denotes the sup-norm on C,[0, 1], then || f| , <
Ao( ) €2 || fll o for all fe Cy[0, 1]. Hence when g =0, Theorem 3.1 implies
Theorem 4.3 (except for the estimate on the constant) and Theorem 4.4 of
Monrad and Rootzén.'? Of course, these theorems also yield Theorem 3.1,
when ¢=0.
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(2) The results in (3.15) and (3.16) are analogues of classical results
for standard Brownian motion obtained by Csaki® and de Acosta®® for
the sup-norm on Cy[0,1]. The inequalities in (3.17) and (3.18) are
motivated, as are those in (4.10) and (4.11) of Monrad and Rootzén,'® by
the results obtainable from Kuelbs et al.® for ii.d. samples of a-fractional
Brownian motion. In fact, the relevant power of L,n in (3.17) and (3.18),
and also in (4.10) and (4.11) of Monrad and Rootzén,'? is derived via
Theorem 1 in Kuelbs et al'® In Kuelbs and Li,'® we showed how sample
results obtained from Kuelbs et al,® combined with scaling arguments,
apply to the analogues of 4, B, C in Theorem 3.1 for Brownian motion and
the Brownian sheet. Much of that approach would also apply directly here,
but those parts of the argument where independence is required need some
modification. Hence we proceed directly to the problems at hand. In the
parts of the proof where independence is involved we now use the method
employed in Monrad and Rootzén!'® suitably modified.

The proof of Theorem 3.1 will proceed via a sequence of Lemmas, the
first of which are Lemmas 3.1 and 3.2. The next is a analogue of standard
results when applied to A, of the sup-norm, see, for example, Fernique.
However, for the Holder norms we are unaware of a result which applies
directly, so we include a complete proof.

Lemma 3.3. Let { Y(#): 0<t<1} be aseparable, centered, real-valued
Gaussian process with incremental variance satisfying

(E((Y(t+h) = V(1)) <y(h) < c (B> 0) (3.19)

Then, for (¢,)"'x>1and 0<g<p

1
P(A(Y)2x) <5exp{ —0((cy) ™" x)?}

where 6 is a positive constant independent of ¢, and x.

Proof. Understanding that s+ ¢ is always taken to be less than or
equal to one, we first observe

A Y)< sup  sup |Y(s+1)— Y(s)|/t?

0gs<l O0<rgl

< sup sup sup | Y(s+t) — Y(s)|/2—U+ V9

0<s<1 j20 2-/-lgrg2-i
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<3sup sup sup |Y(t+i27)—Y(i2~/)|2-U+De
j=0 0<i<2) 02/

<3sup sup ) max |Y((m+1)27'+i27)

j=20 0<ig2/ I=j+1 0Osm=<2~J

— Y(m2™'+i274)| 2=+ e (3.20)

Hence

PA(N=2x)< Y ZP( i max |Y((m+1)27'+i27)

=7
j30 i=0  N\i=j41 OSms2

- Y(m2"+iZ‘f)I/Z“‘H”QZ%C)

¥ w2
<X X Z Y P Y((m+1) 2" +4i27)
Jjz0 i=0 Jj+1 m=0
- Y(m2 fyi2- ’)I/Z—""”"?yj_,x) (3.21)
where
, 26— _1
yj',=2—(/3—r)(1—ﬂkp_)., 0<y<p, kﬁ.y_—:—‘;_
and
> yi=1/3

I=j+1
Since (3.19) hold, and letting Z be a N(0, 1) random variable, we have
P(I¥((m+1) 27" +i27/) = ¥m2 ™'+ 12~)| 2=+ Daz . 1)
<P('Z, ?yj’,Z‘(f‘H)qx/w(z—l)) -

< j e gy

(Ij[

where

a, =y X2V > c;‘kﬁ' ,,2‘/"”"‘f)x2“‘f+ Vg o8

=k/3 rz—qclexzr(l—j)-r(ﬁ—q)j
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Hence

PO N 2x)< Y OZO: zlJ e dy

J=0 i=j+1 a4

gz Z 2’/(kp_y2_"cl;‘x2""_j)+(”_‘”f)

j=0 I=j+1

cexp{ —1/2(ky, , 272 (cj 'x)? 22~ D+ 2B =)}y

Slkp,272070 3 Y 2"

j=0 I=1

2
X <exp {—% (kg 2792 (¢, ' x)* 2273+2<ﬂ—q),s}>

1
< (kg 279 texp {—Z (kg ,279)? (c.;'x)z}

. Z Z 2’+jexp {_% (kﬂ,yz—q)Z 227'l+2(ﬁ—q)j}

j=0 Iz1

1
<3 exp{ —0(c, ' x)*}

where 6 is a positive constant independent of ¢, and x. Hence the lemma
is proved.

The next lemma modifies a result we learned from an early version of
Monrad and Rootzén.!'? ,

Lemma 34. Let O<a<1 and fix 0<g<gq' <a Let d,=r"+*01-7),
n,=r"forrz1and 0<y<]l1. Let

1
Y,(t):J — (|x =)@ _|x|2==D2) 4B(x),  0<t<]  (3.22)
1xl¢ 1, Ko

where {B(1} —co<t<w} is standard Brownian motion, and I,=
(d,_/n,,d,/n). Let 0<f<y. Then, for d=min(2f(a—q'), y—4,
(1 —9)(2—2a), (20 —2q')y} there is a constant Ce (0, o) depending only
on « such that uniformly in ¢, 4, r.

oX(t, h)=E(Y.(t+h)— Y,(1)?) < Ch*'r—? (3.23)
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Proof. If a=1/2, recall the kernel is interpreted to be I 3(x). Then,
for h=0

0 t=(r—=1)Y"%r"
aXt, =< (r=1)"/r"—t 0<t<(r—1)""F<t+h
h Ot +hgs(r=1)Y""rr<har™
Ry =200 it h<r™
= {,~-2q’r’.—r(l =200 L pRO =24y if h>r—? (3.24)

Hence (3.23) holds for C=1 when a=1 and d=(1 —2¢')y.
IfO<a<l, a#1/2, let

LAy =Yk y—12|% =2 —jy +1/2|%= D7) —w<y<o©
Then [ f*(y) dy=1 by definition of k, and for:

(a) O<a<1/2, differentiation shows f*(y) is increasing for
0< y<1/2 and decreasing for y>1/2 with f(y)=jf(—y), and
hence f%(y) < 1/k2 on [0, o0).

(b) 122<a<1, the function x**~"?2 is concave on [0, ), so
SAy)<1/k2 on [0, ).

Hence, changing variables implies

o3t hy=h* | fUy)dy

\y+1/h+ 1721 ¢ 1 /h

and for 0 < g < g’ <a, this implies

oxt, by == | 2y dy (3.25)

|+ itk + 12 ¢ 1,/
If0<h<r~’, then (3.25) and { f%(y)dy <1 implies
o1, h) B2 p=2He=a) (3.26)
Hence assume 4 >r~# Then
|y +t/h+1/2|¢1,/h
implies

Jd—y

[+ t/h+ 1121 > —
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or

—y

o<|y+z/11+1/2|<r7

For |y+t/h+1/2] =r'~%/h we have (since 0<1<1)
y+12="' "7 =1)/h
or

1—y

,
12< ——
y+1/ 7

Thus for r>27"!

o

o<z | Sy dy

'[ly+:/h+ 12| =t =ik (PL =Y = 1)/h

<2[ Py

r'=v2h)

S CJ y2a~3 dy
Y=y 2an)

< Ch?~ 2= =n2=22) (3.27)
where Ce (0, co) depends only on « but differs from line to line.
Now
r7

0 |y+t/h+1/2] $7

implies
—(r7+h<y+12<(r—1)/h

Since f2(y) < 1/k2,

=124+ (r=?—1)/h 5 5
| Py dy <20 7Rk, ) (3.28)

— 12— (r T+ 1)
Combining (3.27) and (3.28) we have for r» 21 -9

0,::_(1., h) shZa{ Ch2— 2. —(1 = )2 —20) + 2r—r/(hka)2}
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Since we are assuming 4 >r~# and y> f, then for 0 <A <1 we have for
some new C, depending only on «, that

0-2([’ h) < Chz“{r—“ =yN2—2a) + r_(}’—p)}
< Ch*r=? (3.29)

for 6 >0 as in the hypothesis. Putting (3.26) and (3.29) together now yields
(3.23), so the lemma is proved.

Lemma 35. IffeK=K,and g(-)=f(A(-))on [0,1]with 0<i<]1,
then for 0<g<a

if—g)<211=2* (3.30)
Proof. Since g(-)=f(A())

Af(f—g)= sup |(f(8)—f(4)) = (f(s)—fUAs) |t —s|77

0gs<r<l1

If 0<s<t<1, then we have two cases:

(a) O0<As<Ar<it<]1 and
(b) O0<As<lr<s<t<l.

If (a) holds, then (3.5) implies there exists 4 such that ]'R R (x)dx<1
and

[(f(6) = f(41)) — f(s) — f(As))|

=“ kl(|x—t|<2“-”/2—|x—zt|<2“-'>/2)h(x) dx
R Ao

1
= [ = (s 2 — | — 5|32~ D) h(x) dix
rk,
Slt—AP 4 |s—As]*=("+ ) (1 = A)"
where the last inequality follows by the Cauchy-Schwartz inequality
applied to each of the integrals and then a change of variables. However,

for (a) holding we have s/t <A and hence

[t—s| 9=t |1 —s/t]7I<t™ 9|1 —A| 7
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Thus if (a) holds
I(A(0) = f(AD) — (f(s) — fAs)] [ —s| ¥ <t 79 (s* + 1) |1 = A|* 77
L2491 —A|*1
<2|1—-A*7

since 0 << 1.
If (b) holds, then by a similar argument

() = £G0) = (f15) = FD] = 1(A10) = £(5)) — (f(24) = f(ds))
< lt—s]*+ 2% |t —s]*
=(1+1%)[t—s|*

However, when (b) holds

[t—s|*"9=*"9 1 —s/t|* I |1 - A|*77
so putting these inequalities together we get
1(f—g)<2|1— A=

and (3.30) holds.
Lemma 3.6 is adapted from A. de Acosta’s Lemma 5.3./®

Lemma 3.6. Let m,n,r be positive integers with m<n<r and
a,=(2n**L,n)"”* for n>1, and 0<g <a < 1. Then for fe H,, u the law of
a-fractional Brownian motion on H, 4, and 1/2<p<(2(a—gq)+1)/2

(Lan)? A X(n(-))/a,— 1)
= (nfm)? (mfr)* (Lym)? A(X(m(-))/a,, — f)
—2r/m)? (Lyr)? |1 —mfr|*~9 | £,
— (r/m)? (Lyr)? |1 —a,/a,| A(f) (3.31)
Proof. Since X(n{(m/n)(-)))=X(m(-)), by rescaling we have
(Lan)? A (X(n(-))a,— f)

_ (ﬁ;") A(X(n(-) ~a,f)

n

SE ) —a, ()

a, 0 (n/m)s<(nfm)t<1

~ (X(ns) —a, f(s))l/1t — s
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_(Lam)? sup |(X(mv) —a, f((m/n)r)) — (X(mu) —a, f((m/n)u))|

a, Osu<rvsl |m/n|q |u_v|q

=(L2n)” (ﬁ)q }.q <X(m(-))_anf (ﬂ()))
a, m n

>(2) B ) -a,e) (3:32)
m a,

where g(-)=f((m/n)(-)) (since ((L,r)’/a,)<((Lym)"/a,) when Lx=
max(1, log, x) and 1/2 <p < (2(a—q)+ 1)/2. Since a,, » oo, we thus have

Aq(X(m()) —a, g()) >A‘q(A’("n()_am.f) _arlq(f_g)

- (ar—am) 2'q(f‘) (333)
and since f'€ H,, Lemma 3.5 implies
A=) <S2N1—m/r|*~7| ], (3.34)

Combining (3.32)-(3.34) we have (3.31) and the lemma holds.

Lemma 3.7. Under the assumptions of Theorem 3.1, (3.15) and
(3.16) hold.

Proof. Let n,=exp{r/(Lr)*} where ¢(a—gq)>(2(x—g)+1)/2. Then
by (3.13) for any § >0 and r sufficiently large

pr= P((2L2n“)(2(a—q)~l)/2 Aq(”u, _f) < b)
<exp{ —(Lon, (I fI12 + /2 cb~==2 —_ /2 5)} (3.35)

Hence by taking b, = b > 0 sufficiently small we have Y, p, < cc. Hence by
the Borel-Cantelli lemma

lim (Lyn, )@=+ 2 1 (7, — f) 2 be>0 (3.36)

Furthermore, applying Lemma 3.6 for n,_; <n<n, it follows that
H_m (LG)(l(a—q)+ 2 Aq(nn _f)

-3

1_”;—_1

r

T

“m (LGr)(Z(m-q)+l)/2 |l _an,_.l/an,[ lq(f)

>bo—2 Tim (Lyn,) 20+
r

—b,>0 (337)
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since n,=exp{r/(Lr)?} with ¢(x—gq)>(2(a—gq)+1)/2. Hence the left-
hand side of (3.15) holds.

If | fl,>1 and p, is as in (3.35), then no matter how large b is, we
have 3, p,<oo provided \/5 6<|fIZ—1. Hence the Borel-Cantelli
lemma and Lemma 3.6 yield (3.16) when [ f],> 1.

If |fIl,=1 we fix b as large as we like, and then choose 6>0
sufficiently small so that

ch=1e = _ 550

Again ), p, < 00, so Lemma 3.6 implies that (3.16) holds as & is arbitrarily
large.

Thus it remains to show the right-hand side of (3.15) if || fl|, < 1. For
this we define

zm=| L (e — 202~ x| 12) dB(x)  (3.38)
{dr—1<Ix| <dp} Ko
X =X(1)—-2Z(1) (3.39)

for t>0, d,=r"+*""=" 0 <y<]1. Then the Z,’s are independent, and the
right-hand side of (3.15) will follow if we show with probability one that

lim (Llnr)(Z(a_q)+ iz Aq(zr(nr( ) ))/an, _f) < (3'40)

and

lim (Lyn,) ¥« =2+ V2 ) (X (n(-))/a,) =0 (341)

ny

for some subsequence n, /' 0.
Fori=1,2,e>0, b>¢g, let

A,(0)={QL,n )7 A (Z(n())]a, —f) <b}
B())={(2L,n, )™} (X(n,(-)))/a, > ¢} (3.42)
C(i) = {(2L,n, Y40 ) (g, — f)<b—¢}

where

Bla, ¢, 1)=(2(x—q) +1)/2
Bla, 4. 2)=(2(x— @)+ 1)/(2(x — g +1))

(3.43)

860/8/2-11
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Then for i=1,2
C (i) c 4,(i) u B(i) (3.44)
Now (3.12) implies that for all >0 and r sufficiently large
P(CA1) 2 exp{ —Lon,(If 12+ /2 Clb— &)~ /==9 + /2 6)} (3.45)

Hence, if n,=r" and 6 >0 is such that ﬂé-}- [Ifllﬁ <1, then by taking b
sufficiently large we have

Y. P(C[(1))=00 (3.46)

Thus (3.45) and (3.46) combine to imply

Y P(4,(1))=0o0 (347)

if for all e>0

Y P(B/(1))< (3.48)

Now (3.48) for all ¢>0 implies (3.41), and (3.47) is exactly that

Z P((2L2nr)(2(u—q)+ b2 j'q(Zr(nr( ) ))/an,—f) < b) =0 (349)

Hence, since the Z,’s are independent, the Borel-Cantelli lemma yields
(3.40) once (3.49) holds for some b < oo. Thus it remains to show (3.48) for
all e>0.

To verify (3.48) recall {Y(1):0<t¢<1} of Lemma 34. Since
d,=r*0=7 pn =1, we see

(X,(1):0<t<n) Z (n®Y,(¢/n,): 0<t<n,) (3.50)
Hence by (3.50), and Lemmas 3.3 and 3.4, for all r sufficiently large
P(B(1)) = P(A(X,(n(-))) >ea, (2L,n, )~ He—D+ 12
=P(A(Y((-)))>&(2L,n,) "~ 7)

<$exp{—6(cr“s)“' eX(2L,n,) 29} (3.51)

Thus (3.48) holds, and the lemma is proved.
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Lemma 3.8. Under the assumptions of Theorem 3.1, (3.17) holds.

Proof. If | f,l=1 and f=Sh where h is a continuous linear func-
tional on (H,,, 4,), then by Proposition 1 of Kuelbs et al.?”

lim (1= 1f51,0/6=2 Al (3.52)

where |4, is the norm in the dual of (H, 4, 4,), and f is as in (3.11) of
Lemma 3.2. An easy computation also yields that for a>0, |(af);ll,=
a ll(f)sall.- Hence by Lemma 3.1 and the right-hand side of (3.10) there is
a constant ¢ such that for n, =exp{r/(Lr)?} we have that

pr=P((2Lyn,) -0 ¥ VIR0 )y ja, — f)<b)
= P(A(X—(2Lyn,) " ) <b(2Lyn,) ~(em W=+ 2)
<exp{ —(Lyn,) (6/2Lyn,) ') f12

— b= D(2L,p,) " VA== D)+ D) (3.53)

with § =b(2L,n,)~(*~9/2«=91+2 Hence by (3.52) for each y>0 and r
sufficiently large

pr<exp{—Lyn (1 =2 |hll, (1+y)b(2L,n,)~(*~ V=D +2=1/2)2
_ Cb—l/(“_q)(ZLon,) 1/(2(x—q) +2)}

<exp{—Lyn, +(2 Ihll, (1+7)b—cb= == D) 2L ,n,) UH==D+D} (354)

Hence for b>0 sufficiently small, 3, p,<oo and the left-hand side of
(3.17) holds by applying Lemma 3.6 as in Lemma 3.7 with ¢(a—q)>
(2(a—q)+ 1)/2.

To prove the right-hand side of (3.17) we need some independence,
and recall the events in (3.42) with n,=r", i=2, and (e, q, 2) as in (3.43).
If f,=f — f(Lon,)~(He=9+ 2=+ then for r sufficiently large

(b—e)
2

P(C(2)) 2 Py, = £;) S (2Lyn,) ~(He= 0+ /=01 D)

provided (b—¢)/2> 4,(f). Hence Lemma 3.1 and Lemma 3.2 and | f],=1
imply there is a constant C> 0 such that for r sufficiently large
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P(C(2)) 52" exp {—LG,llf“ 12

_C <(b ;8) (ZLZII,')_((Z("—"H 1/(2(a—g)+ 2N+ 1/2) —1/(a—q)}

=21 exp {—LGr+ (L2,1'.)1/(2(a—q)+2)

_ —1/{a—q)
><<2—C<b2 8) 21/(2(a—q)+2)>} (3_55)

Thus for b > 0 sufficiently large

Y P(C(2)) = (3.56)
and in view of (3.44) with i=2 we have

Y P(4,(2))= o0 (3.57)
provided

Y P(B,(2)) < o (3.58)

for all > 0. Now the events {4,(2), r =1} are independent, so (3.57) and
the Borel-Cantelli lemma imply that P(A4,{(2) i.0c.)=1. Given (3.58), this
then implies P(C(2) i.0.)=1 for sufficiently large b, and hence the right-
hand side of (3.17) follows. Hence it remains to verify (3.58).

Recalling {Y,(¢): 0<t<1} of Lemma 34, since n,=r", d,=r"+1-7,
0<y<l, then (3.50) holds. Thus we see as in (3.51), by applying
Lemmas 3.3 and 3.4, that

P(B(2) < P(Aq( Y.()) > 8(2L2n,.)1/2_((2‘°‘_‘7’+ 1)/(2(a—q)+2)))
1 )
<5exp{ —0(cr=%)7' ¥(2L,n,) "m0 +DY (3 59)
Then (3.58) holds, and the lemma is proved.

Lemma 3.9. Under the assumptions of Theorem 3.1, (3.18) holds.
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Proof. The proof of (3.18) follows as in the second part of
Lemma 3.8. Here, since f # Sh for some # in the dual of (H, ,, 4,), we have
by Proposition 2 of Kuelbs et al” that

fim (1~ 1/51)/6 = c0 (3.60)

Hence by defining
C, = {(2L,n,) 2~ N+ D=0+ 3 (1 _ £} <9p))
we have
P(C,) = P(A(X—(2Lyn,)"? £) < 2b(2L,n,) === D/2a—0)+2))
2 P(A(X —((2L,n)) f)5) < B(2Lyn,) =~ 9/R=0+2) - (36])

with & =0b(2L,n,) "~ 9/2=0+2 Again, since (af)s=a(fs,), we have
from (3.61) and Lemmas 3.1 and 3.2 a Ce (0, c0) such that

P(C)= exP{ —Lsn, ”(f)o‘/(len,)l/Z ”,:f — Cp~M=m q)(2L2nr)]/(2In - q)+2)}
{3.62)

Since (3.60) holds, for every M >0 we can take r sufficiently large
(depending on M), such that

I fsx2zampnll, <1 —M-3/(2Lyn,)'? (3.63)

Since & = b(2L,n, )~ 2>=9D+2 we have from (3.62) and (3.63) that for
all r sufficiently large

P(C,) = Lexp{ —L,n, + (Mb— Cb~"/*=D)(2L,n,)/*=—0+2}  (364)

Thus for any & > 0, no matter how small, we can take M sufficiently large
so that

Mb—Ch="'==9 >0

For such M we have (3.64) holding provided r is sufficiently large, and
hence the probabilities in (3.64) diverge.
Hence define the analogous of B,(2) and 4,(2) by

Br = {(2L2nr)(2(a—q)+ DA2(a—g)+2) Aq(Xr(nr( . ))/a"') > b}
and

A, = {(2Lyn, )2 VE=D D (7 (1 () a, — f) <3b)
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Then the divergence of the probabilities in (3.64) for arbitrarily small >0
implies

Y P(4,)= (3.65)
provided

Y. P(B,)< (3.66)
for such b >0, since

C,cA,UB,

Since the events {A4,: r>1} are independent, (3.65) and the Borel-
Cantelli lemma implies P(A4, i.0.)=1, and (3.66) implies P(B, i.0.)=0.
Thus P(C, i.0.)=1, and the lemma is proved, provided (3.66) holds for
b>0 arbitrarily small. Now (3.66) holds using d,=r"""=", n_=r", and
(3.50) as in (3.59) with ¢ =b. Thus the lemma is proved.

Combining Lemmas 3.7-3.9 we have the theorem proved.
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