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Let K be the unit ball of the Hilbert space which generates a Gaussian measure
u on the real separable Banach space B. Some recent results establish that suitable
normalized p-Gaussian samples approach the smoothest points on the “boundary
of K” slowest. As a partial explanation of this phenomenon we show that these
points contain that portion of the boundary closest to points outside K. We also
examine what happens if K is replaced by an arbitrary compact convex C in B, and
attempt to characterize the set on the “boundary of C” which is closest to points
outside C. Another result shows how this phenomenon characterizes B as a reflexive
Banach space, and we also include some examples of interest. © 1994 Academic
Press, Inc.

1. INTRODUCTION

Let u be a centered Gaussian measure on a real separable Banach space
B with norm || - |j, and dual space B*. If K is the unit ball of the Hilbert
space H, which generates y, and X, X,, X,, ... are iid. Gaussian random
vectors with law u, then it is well known that with probability one the
sequence {X,/(2Ln)"?} converges to and clusters throughout K in the
B-norm. Furthermore, in [KLT] we have shown, aside from some minor
technical assumptions on r(¢) = —log P(]| X}/ <¢), that the points in the
set

E={feB:|\fl,=1,f=Sh heB*} (1.1)
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are approached slowest by the sequence {X,/(2Ln)"?}. Here f=Sh is
given by the Bochner integral

Sh:f xh(x)du(x)  (he B*) (12)
B

and || - ||, is the Hilbert norm on H, with || f|2 = <{f, />, =[5 #*(x) du(x)
when f=Sh, he B*. Hence E is a subset of the H, boundary of the unit
ball X, and if dim H, < oo, then it is the entire boundary so the result is
to be expected. However, if dim H, = oo, then E is only H, dense in the
H,-boundary of K, but so is the set F={f |fl,=1,f¢SB*}. Further-
more, if dim H, = co, then the points of £ are in some sense the smoothest
points on the boundary of K since f=Sh implies the u-inner product
{x,f>,=h(x), and hence {x, f >, extends to all of B via the continuity of
h; see, for example, Lemma 2.1 in [K] for this and further details on the
construction of K and the relationship between H, and B. Thus one would
perhaps expect these points to be approximated the fastest among the
points on the boundary of K. When dim H,= cc this is not the case, and
one possible explanation is that the typical sample element simply does not
match the “smooth” elements in £ very well. For example, think of the
irregular sample paths of Brownian motion, and recall from [KLT] that
for u, Wiener measure, we have shown that E consists precisely of those
functions f on the surface of K such that f’(s) has a version of bounded
variation on [0, 1]. Beyond the analytic considerations in Propositions 1
and 2 of [KLT], we have not found a way to demonstrate this possibility,
but there is another more geometric explanation, and this is what we turn
to now.

Our other explanation is that when dim H, = co, the H -boundary of X
has layers, and the points of E are those which are furthest from zero. That
K has layers of some sort can be seen from the comparison results in
[KLT], and the next theorem explains why we say E is the furthest from
zero. In particular, Theorem 1 says that, looking from the outside of KX, the
points in E are closest (in the B-norm), and since 0 € K we interpret this as
E being in the layer furthest from zero.

THEOREM 1. Ifye H,, y¢ K, then there exists a unique point p in K such
that

ly—pl= inf {ly—x (1.3)

and pe E; ie, |pl,=1 and p=Sh for some he B*.

Remark. It is easy to construct examples when Theorem 1 fails if
y ¢ H,. However, the support of y is H, and hence with probability one the
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sequence {X,/(2Ln)"?} is in H,. Thus from the point of view of this
problem H, is the set of importance.

Remark. Whether the interpretation of Theorem 1 given above is the
entire reason for E being approached slowest is unclear to us, but the
geometric content of this result is interesting in its own right. For example,
if dim H,= o0, ye H,, and y ¢ (SB* n K), then Theorem 1 says the point
in K closest to y is not the point y/|y|,, but some point on the boundary
of K in SB*. Furthermore, the dense set of points on the boundary of K
which are not in SB* are never the closest point for any point outside K.
If B is reflexive, then the results in Section 4 show that E, as defined in
(1.1), is precisely the set of points in K which are closest to points in
H .M K° In fact, there also is a converse result, which states that whenever
E is exactly the set of points in K closest to points in H, N K*, then H,, is
reflexive. Hence if H,= B, then B is reflexive.

2. PrROOF OF THEOREM 1

If dim H, < oo, then H,= H,=SB* and E is the entire boundary of X,
so there is nothing to prove. Hence assume dim A, = o for the remainder
of the proof.

Take ye H,, y¢ K. Then it is well known that X is compact in B, and
since the function f(x)=|x—y| is positive and continuous on K there
exists a point p € K such that (1.3) holds. The next lemma identifies p in a
useful way and shows p is unique. To state this lemma we define

C(Ix2 it xed,
I(x)—{mo if x¢H, (2.1)

LemMa 1. IfyeH,, y¢KkK,
r=inof |ly—x|,
xe K

and V= {x: ||x —y|l <r}, then there exists a unique point p on the boundary
of V such that

I(p)= in{/ I(x)= ian I(x)=1. (2.2)

Furthermore, p is the unique point in K closest to y, ie., ||y —pl =r.

Proof. First we show that there is a unique point on the boundary
of V such that (2.2) holds. Since VnH,#@ and V is open, we

580/124,2-9
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have VA H, #@&. Thus inf, ., I(x)<oo, so we choose {x;} <V such
that

I(x,) < inf 1(x) + 1/ (2.3)

Then, by convexity of V, (x,+ x;)/2€ ¥V, and hence
I((x; 4 x;)/2) = inf I(x). (2.4)
xeV

Since
I(x;—x;)=21(x; )+ 2I(x;) — I(x, + x;), (2.5)

we have from (2.3), (2.4), and (2.5) that {x;} is Cauchy in H,. Thus {x,}
converges, say to p, with peH,nV since H,convergence implies
B-convergence. Hence, /(p)=inf, ., I/(x) and p must be unique or {x;}
would need to converge to two points. Since V is open it is trivial p
cannot be in V, and hence pe dV. Hence it remains to show that I(p)=
inf,..» /(x). To see this let ae(0V)nH,, deVnH, and let L(a, d)=
{ta+(1—1t)d:0<t<1}. Then L(a,d)= Vn H, and since I(x) is convex
on H, we have inf, ;4 I(x)<min(l(a), {(d)). Thus inf, , {(a)=
inf, ., I(x), which implies inf, . I(x}>2inf,_, I(x). Hence (2.2) is proved
since inf, .y I(x)<1 and

inf I(x)> 1. (2.6)

xeV

To see inf, . I{x) <1 follows easily since by the compactness of K there
exists a point b K ¥ such that

ly—=bl=r.

Thus inf, . p I(x) < 1(b)=1. That (2.6) holds follows since V' n K= .

Finally, to check that p is the unique point in K closest to y, suppose
there exists p, # p in K such that |y —p,||=r. Then p, is on the boundary
of Vand I(p,)<1 (it is in K}, and hence this contradicts the uniqueness of
p, satisfying (2.2). Thus the lemma is proved.

To complete the proof of Theorem | we now apply Lemma 1 and the
Hahn-Banach separation theorem in the form presented on page 64 of [S].
Hence take ye H,, y¢ K, and let r be as in Lemma 1. If 4=V, then
Int A=V and Kn(Int 4)= ¢, so by [S] there exists he B*, h#0on H,

such that
inf A(x) = sup A(x). (2.7)

xe A xekK
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Since h #0 on H, we have sup, . x h(x)>0. Hence there exists a > 0 such
that if ho=oh we have [,hd(x)du(x)=1. Thus |Shel,=1 and by
Cauchy-Schwarz,

ho(p) = {Sho, p7, < |Sholl, Pl = 1. (2.8)

On the other hand, ||Sho|l, =1 implies sup, . x ho(x)=1 and hence (2.7)
applied to h, =ah with o« > 0 implies

inf Ao(x)> 1. (2.9)

xed
In particular, since pe dV < 4 from the proof of Lemma 1, we thus have
ho(p) = 1. (2.10)

Thus (2.8) and (2.10) imply Ay(p)=1.

Now let g= 8h,. Then fig{,=1 and Ay(g) =1 as well. Thus ge K and we
claim g =p to complete the proof of the theorem.

If g#p, then we have two points in K with |g|,=lpl.=1 and
ho(g) = ho(p) = 1. Take x,=a(g + p) such that |x,| 2 = 1. That is,

o2 =o2(lgl2 + 248, )+ P12 )
= 26%(1+ {g.p),). 211)

Now ho(g)=ho(p)=1and p # g implies (g, p>,<llgl, [pll, =1, so (2.11)
implies

lxoll2 < 4a2.
Thus | xo|% =1 implies 20> 1. Thus x,€ X and
ho(xg) =aho(g +p)=20>1,
which contracts the fact that

sup hg(x)=1.

xe K

Thus g =p and the theorem is proved.

3. A RELATIONSHIP WITH I(y, 8)

If ye H, and 4 >0, then we define
I(y,8)= inf I(x)

lx—yl<é
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From [G], or as in the proof of Lemma 1 above, it is easy to check that
for each ye A, 6 >0, there is a unique point y,€ H, such that

1y, 8)=lysl . (3.1)

Hence the mapping y — y; is well defined, and using the ideas in the proof
of Theorem 1 it follows that y; is actually in SB*, which is a proper subset
of H, when dim H, = .

4. CLOSEST POINTS FOR GENERAL COMPACT, CONVEX, SYMMETRIC SETS

Let B= H be an infinite-dimensional Hilbert space, and assume X is an
infinite-dimensional, centered, Gaussian vector with values in H. Then
X=Y,.4.8.e, where {e,:n>1} is orthonormal in H, {g,:n>1}is a
sequence of independent N(0, 1) random variables, and 4,>0 satisfies
3.1 AL <oo. Then

K={x= Y xpe,: Y, x2/AL SI}, 4.1)

nzl nzl

and an easy computation shows that E, as given in (1.1), is the proper
subset of the H ,-boundary of K given by

E- {f= Y fuew: T S22 =1, Y 1200 <oo}. (4.2)

nz1 nzi nzl

In particular, Theorem 1 applies, and all points of K, closest to points
outside K, are contained in F.

In what follows we see that when B= H, every point of F is the closest
point of K to some point outside K. Hence the subset E of K is precisely
the set of points which are closest to points outside K.

When these Hilbert space examples were shown to Professor Walter
Rudin, he pointed out in [R] that if K is replaced by the Hilbert cube

C= {xz Y x,e,0x, S%} (4.3)

nx1
and
2 ={xeC:|x,| =1/n for at least one n}, (4.4)

then every point in X is the nearest point in C for somepoint outside C (see
Rudin’s observation below). Since 2 can be viewed as the “entire boundary
of C,” it seemed to be of interest to try to understand the differences in
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these examples and to characterize the set on the “boundary of C” which
is closest to points outside C.

Hence let C be a compact, convex, symmetric set in a real separable
Banach space B, and let F={J,,, nC. Then Fis a Banach space in the norm

A(x)=inf{t>0: xetC}, (4.5)

and B infinite-dimensional implies F is a proper subset of B. Also, for some
ae (0, o) we have ||x] <al(x) for all xe B, and we write F to denote the
B-closure of F in B. Hence if C is as in (4.3), then the F-boundary of C is
Z, and for C=K the F-boundary is {x=3,  x,e,: %, x2/A2 =1}
Our next theorem is an easy result which shows how to identify that por-
tion of the F-boundary of C which contains the points of C closest to
points outside C.

For its statement, as well as subsequent results, we need some defini-
tions. We say a Banach space B is strictly convex if every point on the
boundary of the unit ball U of B is an extreme point; ie., if [p|=1,
p=tx+(1—t)yfor 0<t <1, and x #y, then either x¢ Uor y¢ U. If C is
a compact, symmetric, convex subset of B we say C is strictly convex when-
ever C, as the unit ball in (F, 1), is strictly convex in the sense indicated
previously. A point p is a strongly exposed point of C if there is an fe B*
such that f(p)=1 and f(x)<! for xeC, x#p, and sup{j|x—y|:
xyeCn{x:flx)>1-6}}-0asd]o0.

THEOREM 2. Let C be a compact, convex, symmetric subset of B, a real
separable Banach space. Let y€ F, y ¢ C. Then there exists a point p € C such
that

inf Iy = x) =1y —pl. (46)

If 8,C denotes the F-boundary of C, ye F, and
E={q€d,C:3fe B* such that f(g)=1, sup f(x)<1}, (4.7)

xeC
then for any p satisfying (4.6) we have pe E. If C is strictly convex, then E
consists of the strongly exposed points of C and p satisfying (4.6) is unique.

Remark. It is easy to see from the proof of Theorem 1 that the sets E
defined via (1.1) and (4.7) are the same in the setting of Theorem 1. Of
course, the definition in (4.7) is general, and has nothing to do with
Gaussian measures.

Proof of Theorem 2. Since C is compact and d(x)=|y—x| is
continuous on C, there exists a pe C such that d(p)=inf, |y — x||. Since
ye F, it follows that p must be in the F boundary of C. Of course, if y ¢ F,
it may be that p=0.

580,124/2-10
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To see pe @,C, the F-boundary of C, let

r=d(p)=inf ||y —x|,
xeC

and set V= {geB:|lg—y|<r}. Then V is open, VnC=, so by the
Hahn-Banach theorem in the form on page 64 of {S] we have fe B* such
that

sup f(x)=1< inf f(x).

xeC xeV
Now peCn 'V, and hence f(p)=1. Thus pe E provided p is in the
F-boundary of C. If p¢ 9, C, then A(p) <1, and set

L={x:x=1y+(1—1)p,0<1<1}.

Let to=sup {t=0: A(zy+ (1 —1)p)<1}. Then A(p)<1 implies 7,>0, so
set Lo={x=1ty+(1—1)p, 0<1<1y}. Then L, < C and hence

d(p)=p—yl =Xireli; d(x)sxi£1£ d(x). (4.8)
But
in{ d(x)=0inf lty+(—2)p—yl
=(1=t)llp—yl<lp—yl, (4.9)

which is a contradiction to (4.8). Thus pe @, C as claimed, and the first part
of the theorem is proved.

To prove the last assertion of the theorem it is easy to see that if p
satisfies (4.6), and C is strictly convex as a subset of (F, i), then p is
unique. That is, if p is not unique, then there exists p,, p, satisfying (4.6)
for a given y e Fn C°. Hence p,, p, are both in Cn ¥ where ¥ is as above.
By convexity, I'={x=tp,+ (1 —1t)p,: 0<1<1) is also in Cn ¥, and
I'cd,C by the argument used previously. Hence p, #p, implies every
point in the boundary &,C is not an extreme point. This contradicts the
strict convexity of C, so p, =p, and we have uniqueness. To see pe E is a
strongly exposed point of C, suppose fe B*, f(p)=1, and sup,.f(x)=1.
If ge C, g#p, and f(g)=1, then the line F'={x=1tg+ (1 —1)p: 0<t <1}
=C and f(y)=1 for all ye I',. Then I'< 3, C since sup,.f(x)=1 and f
is continuous on (F, ) with C=unit ball of (F, ). Hence we again have
a contradiction of the strict convexity of C, so f(p)=1, and f(x) <1 for all
xeC, x#p. Thus p is an exposed point of C and it remains to show

!;if% sup{llx—yl:x,yeCn{x: f(x)>1-8}}=0. (4.10)
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To verify (4.10) assume there exist points {x,} such that x,e Cn
{x:f(x)>1—(1/n)} and |x,,— p|| =, for some §,>0 (recall f(p)=1 and
pe C). Now C compact implies there is a subsequence {x,,} such that

11’1(’1'1 X, =q

in B, and geC. Thus f(g)=1lim, f(x,)=1 and |g—p| =0d,. This
contradicts f(x)<1 for all xeC, x#p. Hence 6,=0 and p is strongly
exposed by f Thus Theorem 2 is proved since E clearly contains the
strongly exposed points of C.

Our next result establishes that E is precisely the set of points of F
closest to points outside C whenever B is reflexive. We also include some
converse results.

THEOREM 3. Let B denote a real separable Banach space and assume C
is a compact convex symmetric subset of B with (F, A) the Banach space
described above. Let 0, C denote the F-boundary of C, assume E is given by
(4.7), and define

E={ped,C: e Fn C° such that |lv—p| =d(v, C)}, (4.11)

where
d(v, C)= int; {ilv—x]|}. (4.12)

Then the following hold:

(1) If B is reflexive, then E = E. Furthermore, if B is strictly convex,
ve FnCe, and ||v—p| = d(v, C) for some ped,C, then p will be the unique
point in C closest to v.

(2) If E=E for all compact, convex, symmetric C in B, then B is
reflexive.

(3) If E=E for all C=K, K the unit ball of H,, and u an arbitrary
centered Gaussian measure on B, then B is reflexive.

(4) If E=E for C=K, K the unit ball of H,, and p a centered
Gaussian measure on B such that H,= B, then B is reflexive.

Remarks. (a) Since the unit ball K of H, is strictly convex, Theorem
2 and the results of [KLT] imply that normalized i.i.d. samples from a
Gaussian measure on & of the form {X,/(2 Ln)"*: n> 1} converge slowest
to strongly exposed points of the boundary of K. If B is reflexive, Theorem
3, part 1, then shows that the strongly exposed points of K are precisely
those points on the H,-boundary of K closest to points in H,n K".
Furthermore, Theorem 3, part 4, says that if E=E and H,= B, then B is
reflexive.
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(b) The proof of (4) in Theorem 3 shows F# is reflexive when TI: is
a proper subspace of B.

Proof of Theorem 3. To simplify notation we assume throughout that
F=B.If Fis a proper closed subspace of B, simply replace B by F, and the
proof goes as we indicate since closed subspaces of reflexive spaces are
reflexive. Hence we lose no generality in this assumption.

If fe B*, define M, (f)= {x:f(x)=1t}. I fis understood, we simply write
M,. Then the following lemma holds.

LEMMA 2. Let B be reflexive, f€ B*, and for pe M, = M ,(f), define

d(p, My)= inf |p—m|.
meM,

Then there exists mye M, such that

d(p, My)=|p—myl, (4.13)
and

lp~moll=1/1fl,, (4.14)
where || fl| = sup < [S(X)]-

Proof of Lemma 2 Since B is reflexive, [C, p. 136] implies there is a
point mye M, such that (4.13) holds. Since pe M,, mye M, we have

L=f(p—mo)<|fll4 lp—mgll,
and hence
hp—rmoll = 1/0 11 (4.15)

On the other hand, if [p—m,|=r, then the open ball W= {xeB:
llxll <r} does not intersect M,; i.e.,

d(0, M) =inf {|x|: xe M,}
= inf {|p—ml: me Mo}
= || p—mygl.

However, if r> 1/} fll,,, then sup,.» f(x)=r]fll,> 1, so convexity gives
us a contradiction to WnM,=¢. Thus |p—my|=r<1/|fl,, and
combining this with (4.15) we get (4.14). Hence Lemma 2 is proved.

To complete the proof of Theorem 3, part 1, we now take pe E and fe B*
such that f(p)=1 and sup, . f(x)<1. Let

v=p+(p—my) (4.16)
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where m, is from Lemma 2 above. Then v ¢ C since f(v)=2, and we also
have

mf ffo—x||= inf fjv—(p+m}i

xeM, meM,

inf || p—my—m|
meM,

= d(p’ M,)

= lp—mol.
Thus if V={x:|ix—v)<|p—myl}, it follows that V~M,=¢F, and
hence since sup,..f(x)<1 we have VnC=. Now peVnC since
lp—2vll =}p—mgy| by (4.16), and pe C by assumption. Hence v is a point
outside C and p is a point of C closest to v; ie, inf, . lv—x|| = v—pl.
Thus E=E.

To finish the proof we must show that if B is strictly convex, and v is an
arbitrary point in F~ C° with pe C such that

llo—pl = inf fo—x,
xeC

then p is unigiue. From Theorem 2, pe E, and as in the proof of Theorem
2, there exists fe B* such that

flp)=1, sup fx)<1, flv)>1

xeC
To see p is unique assume x&€ C and |[[x—vl|| = | p—rv|=r. Then
fx)=fv)+f(x—v)
=f()—Ifl. Ix—vl
=f@) =1 fNr

Now » —p = (f(v)— 1)(p — m,) from the argument used in Lemnma 2 where
p—my=inf {|p—m|: me M,}. Thus from Lemma 2

lv—pll = (f(v) =D llp—moll = (f(0) = 1)/,
and from the above we obtain
f(x)=1.

Thus xe Cn M, so both x and p are in Cn M, and in ¥ as well. Thus
L(x,p)={y=tx+(1—1t)p: 0<t<1} is such that L(x,p)n(CnM,)=
L(x, p) and L(x, p) < V. However,

Lx, p)n V=
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since L(x, p)< C. If x+#p, then every interior point of the line segment
L(x, p) is a boundary point of ¥ which is not an extreme point.

Since V is isometric to U/||f|, , where U is the unit ball of B, the strict
convexity of B implies x = p. Hence p is the unique point of C closest to v,
and Theorem 3, part 1, is proved.

To finish the proof of Theorem 3, it suffices to prove part (4), since parts
{2) and (3) then follow immediately.

Let X=Y,., 8%, where {g,: k>1} are iid. N(Q, 1) random variables,
xe=yi/k* k=1, and {y,: k>1} is a dense subset of the unit ball of B.
Then = £(X) is a centered Gaussian measure, and defining H, as above,
it is easy to check that H, = B.

Let C=K, the unit ball of H,. Then C is compact, convex, and sym-
metric in B, F=J,, nC=H,,and i=|-|,.

Since C is strictly convex in F, it is by definition strictly convex in B, and
hence by Theorem 2

E={ped,C: 3fec B* such that f(p)=1
and f(x)<1 V¥xeC, x#p}.

If £ is not reflexive, then there exists g € B* such that g does not attain its
supremum on the unit ball of B, see [J, p. 167]. Hence g#0 on C (as F
is dense in B), so take pe C such that g(p)>g(x) for all xeC, x#p.
A unique point p exists as indicated since C= K is strictly convex. Then
g{p)>0 as C is symmetric and we let f=g(-)/g(p). Then ped,C, f(p)=1,
and f(x)<1 for all xeC, x#p, so peE. Since E= E, there exists v¢ C
such that

o — vl =d(v, C).
Hence let
V= {x:x—ovl<|p—vl}.
Then
VaC=¢g and CnV={p}

by Theorem 2 and the strict convexity of C. Hence by the Hahn—Banach
separation theorem in the form presented on page 64 of [5], there exists
h e B* such that

hip)=1 and sup h(x) < inf h(x).
xeV

xeC

Thus both f and & are support functionals for C at p. Since both,
when restricted to H,, are also continuous on H, in the norm | -|,,
they are also support functionals for C=K at p in the Hilbert space
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(H,, I -11,). Hence f=h on H,, as the unit ball of a Hilbert space is
smooth [B, pp. 177-179], and since H,=8 we thus have f=h on B.
Hence d(v, M,(f)) = |lv—pll, and if f(v) =r we have as in the argument of
Lemma 2 that

dv, M\(f))= inf Jv—m]|
me M,(f)

= inof fo—p—m|

me M(f)
=d(0, M, _,(f))
=(r=1/Ifl.-

Thus Jv—p| = (r = 1)/ fll, and setting w = (v — p)/|lv— p|| we have
lwll =1 and

JW)=1fll..

This is a contradiction to our choice of f, hence B must be reflexive, and
Theorem 3 is proved.

Rudin’s Observation for the Hilbert Cube. If

p= z pmemezy

mz1

as in (4.3) and (4.4), then |p, | = 1/m, for some m,. Define
v =p + (emo/mﬂ) Sgn(pmo)'

Then v¢ C and |jv —p|, = |1/my| =inf, - |x —v], where | - ||, denotes the
inner product norm of H, so we easily see that the entire F boundary of C
denotes the points closest to points outside C.

5. A FINAL EXAMPLE

Let B=¢2 x=Y,,, x,e,, where {e,: n>1} is the canonical basis for
2. Let

C={xe(2:z Ix,,/l,,l’él}, (5.1)
nz1

where 1 <r< oo and 4,>0 is such that lim, 4,=0. Then C is something

we call an /’-ellipsoid. When r=2, C is of the form which describes the

sets K related to Gaussian measures, but otherwise C is not such a set. If

1 <r<2, then C is compact, convex, and symmetric in #> under the condi-

tion lim, 4,=0. If r > 2, we further require ", , A2 < o0, and then again
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we have C compact, convex, and symmetric in £2. Hence by applying
Theorem 2 and Theorem 3, we have that E, as given by (4.7), is precisely
the set of points on the boundary of C which is the closest to points outside
C. What we want to show is that

E={peC:Z |PnfAn)"=1and Y lp,,lz’/"l,,"z’<oo}, (5.2)

n>1 nzl

where ¢q is the conjugate exponent of r; ie,, 1/g+ 1/r=1.
To verify (5.2), take ped,C, pecE. Then there exists fe/? f=

Y st Snlns 2ns1 S5 < o0, such that

@) flp)= X fup.=1
nz1 (5.3)
(b) supflx)<L

xeC

Here A(x)=inf {t>0: xetC} is a norm on F=|),,,nC, and A(x)=
(51 1Pa/2a1")"" on F. Hence fis also continuous on F.

Since p=3,,,p.e,€C, we see that the definition of C implies
Y .51 tPae,€C for all choises of + 1's. Let €, = (sgn f,)(sgn p,) where we
interpret ¢,=1if p, or f,=0. Let =3, ,¢,p,e,. Then e C and by
(5.3.b)

12f(p)= ) |fupul- (5.4)

nzl

Now (5.3.a) implies
S(p)= Y fupa=1. (5.5)

nxz1

Hence 3, ., fuPn 22,5, |fuPnl, 50 f,p, 20 for all n> 1. Also, (5.3.b) and
the above argument implies

sup ). |f,x,I<L

xeCnz1

Thus

sup ). |4, fux,/A,] < 1. (5.6)

xeCnxt

Then by combining (5.3), (5.6), and pe C we see

1/q
=sup ¥ Mnf"xn/an4=<z Mnfm) , (5.7)

xeCnx1 nzl
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where the second equality in (5.7) follows from the duality of /7 and /"
since xe C iff {x,/4,: n>=1} is in the unit ball of /. (Hence f continuous
on Fimplies 3., ; |4,/ |7 < c0.) Therefore

YA Sl =1, (5.8)

nz1

and pe C, (5.5), (5.7), and (5.8) thus imply

1= % fpa=( Z 1nful?) (2 Gastal ) (59)

nzl nz1 nzl

Now equality holding in Holder’s inequality implies

| ful? =B |pafAnl”  (n21), (5-10)
where aff #0. Since both sums are one, a = f§, and thus
(o I =141 (n2 1), (5.11)
or, equivalently,
|l =1pa70 A7 9 D= p, |47 (n21) (5.12)

Now f continuous on ¢2 implies ¥, , f2 < o0, so (5.12) implies
Y pr1A; < 0. (5.13)
nzl

Thus p € E implies p is in the right-hand side of (5.2).
Conversely, if p is in the right-hand side of (5.2), then ped;C since
Yusi |PafA,| = 1. Furthermore, setting

fa=1pal" A sgn(p,)  (n21), (5.14)

we have f=Y. | f,e, satisfying ¥, , /2 < co. Hence f is continuous on ¢*
and

f(pY="3 fupa= 2. (PP A7 =3 Apafdnl"=1  (5.15)

nzl nz1 nzl

since r and g are conjugate. Now using (5.14) we see

/g 1r
sup f(x)=sup Y fnx,.<sup(z M,,f,,l") (2 |x,,/z,,r)

xeC xeC px1 xeC \px=1 nx1l
l/q
<( T Culpl7 i) = T ipafhal =1 (5.16)
nzi nxl

since g (r — 1)=r. Thus the right-hand side of (5.2} is contained in E, and
(5.2) holds.
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