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Small ball estimates are obtained for Brownian motion and the Brownian sheet 
when balls are given by certain H61der norms. As an application of these results 
we include a functional form of Chung's LIL in this setting. 
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1. I N T R O D U C T I O N  

Small ball estimates for Brownian motion and the Brownian sheet are 
obtained when the balls are given by certain H61der norms. As an appli- 
cation, we establish some lira inf results for Gaussian samples of these 
processes, as well as Chung's LIL in this setting, but now we introduce 
some notation. 

Let I =  [0, 1 ], with Co(I) the continuous real-valued function f ( .  ) on 
I such that f ( 0 ) =  0. Then the usual sup-norm is given by 

[[flt~-- sup If(t)l 
0~<t~<l 

and the ~-H61der norm, 0 < ~ ~ 1, is 

If(t)  -f(s)l 
Ilfll~ = sup (1.1) 

s,,~l [ s - t [  ~ 
s ~ t  
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Of course, Ilfl l= is not finite for a l l f E  Co(I), so we define the spaces 

H~<(I) = ( S t  Co(I) :  I l f l l~ < oo } 

and 

O < l s - t  ~<6 

Since f ( 0 ) =  0 for all f e  Co(I), [Ifl[= is actually a norm, and both H~ and 
H~.o are Banach spaces in I1 I1= with Ilfll co ~< Irfll ~. 

It is well known that sample continuous Brownian motion in R ~, which 
we denote by { W(t): t ~> 0 }, satisfies P( N Wll ~ < or) = 1 for 0 < e < 1/2, and 
here we study the behavior of 

P(IL WL]~< e) as e - - , 0  (1.2) 

The asymptotics of Eq. (1.2) when I]'1[~ is replaced by the sup-norm, or 
L2-norm, are well known classical results. However, the study of Eq. (1.2) 
with 0 < ~ < 1/2 appears to be new. 

We also examine an analogue of Eq. (1.2) for the Brownian sheet. The 
sample continuous Brownian sheet is the centered Gaussian process 
denoted by {W(s, t):s, t>~0} and satisfying E(W2(s, t))=st. If 12=1• 
and C0(I 2) denotes the continuous real-valued functions f ( . ,  .) on 12 such 
that f(O,t)=f(s,O)=O for O<~s,t<~l, then {W(s,t):O<~s,t<<.l} takes 
values in Co(I 2) with probability one. Furthermore, for 0<c~ < 1/2 the 
norm 

If(s, t)--f(s', t')[ 
Ilfll = = sup (1.3) 

~,.,I,~',,'~ ~,2 ( ( s -  s')2+ ( t -  t')2) ~/~ 
( s , t ) r  

again satisfies P([[ W( . , .  )[[ ~ < ~ ) = I. 
Also, if the single differences in Eq. (1.3) are replaced by suitable 

double differences we obtain a still larger a-H61der norm. This is the norm 
we study for the Brownian sheet. That is, if (s, t)e 12 and (s + h, t +  h ' )e  12 
with h, h' > 0 we set 

Af(s , t ,h ,h ' )=f(s+h,t+h')- f (s , t+h')- f (s+h, t)+ f(s,t) (1.4) 

and for 0 < e < 1/2 we define the norm q, by 

13f(s,  t, h, h ' ) l  
q~(f) = sup (1.5) 

( S , t )~ l  2 (hh'ff 
( s+h,  t W h ' ) ~ l  2 

h ,h '>O 
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Defining the analogues of H~(I) and H=.o(I) for the norm q~(.) we set 

Hq,(.) = { fE  Co(I2): q=(f) < ~ } 

and 

Hq,.O(I2)={f6Co(12): lim sup IAf(s,t,h,h')l } 
~ o  (s,~)~t2,(s+l,,,+h'~F (hh') ~ - 0  

h,h' > O, max(h,h') <~ 6 

Then Hq~(I 2) and Hq~,O(I 2) are both Banach spaces in the norm q~(.), and 
Orey and Pruitt ~3) [Theorem 2.1] implies 

P(q~(W) < oo) = 1 (1.6) 

for all ~ e (0, 1/2). Furthermore, since q~(f) increases as ~ increases, we 
also have paths of the Brownian sheet in Hq=,o with probability one for 
each c~ E (0, 1/2). 

The small ball estimates we obtain are given in the following theorems. 
The main tool for Theorem 1.1 is a result of Ciesielski ~6) which establishes 
Banach space isomorphisms between the spaces of ~-H61der paths and 
sequence spaces. This method has also been used recently in the study of 
some large deviation results for Brownian motion in Baldi and Roynette, ~2) 
and we are indebted to Baldi and Roynette ~2) for inspiring us to use this 
method in connection with these small ball problems and to Michel 
Ledoux for pointing this manuscript out. It is well known that small ball 
problems are very different than their large deviation counter parts, but 
nevertheless the Ciesielski isomorphisms are useful in both contexts. 

In Theorem 1.2 we provide small ball estimates for q=(W) when W is 
the Brownian sheet and 0 < ~ < 1/2. If the usual L2-norm on 12 is used, 
then small ball estimates are also known for the Brownian sheet, but for 
the sup-norm the problem remains open. Hence the results in Theorem 1.2 
extend what we know for the Brownian sheet, but much remains to be 
done. The recent paper of Li ~t2) contains additional information and 
further references. 

Theorem 1.1. Let {W(t): t~>0} be a sample continuous Brownian 
motion in R t and set 

If 0 < a < 1/2, then 

~,(e)=logP(fIWlt~<~e) e>O  (1.7) 

lira ~2/~J-2~)~, (e)_- -C~  (1.8) 
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exists with 

2 -2o  - , ) /0  - 2~)F~ ~< C~ ~< ( 2 -  ~/2(2~ - 1 )(2 ~ ~ 

where 

co //2/(1 -- 2c0 e --u2/2 oo 

F~=(2/n)l/2 fo 1 -- G(u) du and G(u)=(2/n) 1/2 f~ 
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- 1)) 2/(~-2~)F= (1.9) 

e X2/2 dX 

(1.10) 

Theorem 1.2. 
sheet and set 

ffq~(r = log P(q~(W) <.G e) e > 0 

If  0 < ~ < 1/2, then as e -+ 0 

~/q~(e)  ~ - - e  -2 / (1  -- 2CQ log( l /e)  

More  precisely, for all e > 0 sufficiently small 

(1.12) 

Let  { W(s, t): s, t~> 0} be a sample cont inuous Brownian 

(1.13) 

(1.14) 

I / /qa(e)  > - ( 2  -(~ -=)(2 = -  1 ) ( 2 1 - ~ -  1 )) - 4 / ( 1 - 2 a ) / ( 1 - 2 a ) .  F=e -2/(' -2=) log(l /e)  

and 

~//q,(e) ~ - -2  4(1 - a ) / (1 -  2=)/( 1 __ 2 g ) '  F=e  -2/(1-2c0 log(I /e)  

R e m a r k  1.2. After complet ing this manuscr ip t  we became aware  of 
Baldi and  Roynette,(3) which w a s  kindly supplied to us by Michel Ledoux. 
The  results in Baldi and Roynet te  (2) and Bald i  and Roynet te  (3) have 
now been merged,  and will appea r  as Baldi and  Roynette.  (4) The  over lap 
between Baldi and Roynet te  (4~ and this paper  consists of Theorem 1.1 and 
Eq. (4.5) in Theorem 4.1. 

i~cr ) ~ _ C c ~ e - 2 / ( 1 -  2~) 

Similar no ta t ion  is used for functions f (x)  as x - +  0% and also used for 
sequences. We will write f ( e ) ~  g(e) as e --* 0 if l im~of(e)/g(e) = 1. Hence 
Eq. (1.8) can be writ ten as 

R e m a r k  1.1. The  precise value of C~ is unknown to us. 
T o  state our  result for the Brownian sheet we need the nota t ion  

f(e)'~ g(e) as e ~ 0 ,  which means  that  there is a constant  C, 1 < C <  0% 
such that  

1/C <-G lirn f(e)/g(e) <~ lira f(e)/g(e) <~ C (1.11) 
e--~O ~ 0  
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2. P R O O F  OF T H E O R E M  1.1 

Our first proposition establishes that the limit in Eq. (1.8) exists, and 
that it is a certain infimum. Unfortunately, we are unable to evaluate this 
infimum, so we turn to the task of giving the bounds for C~ immediately 
following the proposition. 

Proposition 2.1. Let { W(t): t ~> 0 } be a sample continuous Brownian 
motion in R ~. Then 

lim e2/(1-2~)logP(lIW(t)ll~<~e) = inf x2/"-2~)logP(lIW(t)ll~<~x) (2.1) 
e ~ O  x > O  

Proof First we show that for all e > 0 and all positive integers n/> 1 

P( II W(t)II = ~ ~) ~ P(  11 W(t)II = ~ n(1 - 2~)/2e). (2.2) 

This follows because { W(t): t >/O} has stationary independent increments 
and the rescaling property that as stochastic processes W(t/n) ~= W(t)/x/~. 
Hence we have 

I w ( t ) -  W(s)l 
P(IIW(t)II~<~)<~P sup It_sl= 

\O<<s < t<~ l --n - t  

~< e, sup I W(t) - W(s)l ) 
1-,- '~s<,~1 I t - s l  = <~ ~ 

<~P( sup I W ( t ) -  W(s), <<~) 
\0~<~<~<1 n -1 It--s[ ~ 

x P (  sup [ W( t ) -W(s) ]  < ~) 
l-,-~<~,<t~ [t-sl ~ 

=P( sup [W(t)-W(s)[ <~e) 

xP( sup [W(t)-W(s), ) 
x o ~ s < , ~ n - '  I t - s l  ~ <~ 

~<P(  sup 'W(;)s~IW(s)' <~ e ) 
0 ~ < s < t ~ < l  n -1 

X P (  I1 W ( t ) ] [  ~ ~< rt  (1 - 2 . ) / 2 g )  

Iterating this procedure, we obtain Eq. (2.2). 
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The proof  now follows a fairly well known argument ,  see, for example,  
de Acosta. ~) Tha t  is, let 

I =  l i m e  2/(1-2~) log e(ll W(t)ll = ~ e) 
~ 0  

L = lim ~2/{1-2~)log e(ll W(t)ll = ~ 8) 
~ 0  

Also let {a.},  {bn} be two positive sequences such that  a n ~ 0 ,  bn-~0 ,  
anbn  1 ~ oo as n ~ oo, and 

lira a 2/(1-2~} log P(ll W(t)jl~ ~< a . )  = l, 
n ~ o o  

l im b]/{1 2 ~ ) l o g P ( I j W ( t ) l l ~ < ~ b . ) : L  
rt  ~ o o  

Then by Eq. (2.2), 

P( II w (  t )ll ~ <~ b,,) 

~< e(l[ W(t)ll= ~< [ ( a . b ~ a )  2/(x 2~)](1 z~)/2 b.)E(~.b2bim-2~q 

~< P (  II W(t)II ~ <. a.)E(~"bYb2/r 

where [ x ]  denotes the greatest  integer less than x. Hence 

b~/(1-2~) log P([I W(t)[I = ~< b~) 

<< a2/~1- 2~) log P(ll W(t)[I = ~ an)" ( b ~ a ~ )  2/<a - 2~) 

. [ (anbnl)2 / (1-2~)]  

impling L ~< l and consequently L = I. 
N o w  for e > 0 small and any fixed x > O, there exists an integer k ~> 1 

such that  

x ( k  + 1 ) - (~ - 2~)/2 ~< e < x k -  (1 - 2~/2 (2.3) 

Thus  we have by Eqs. (2.2) and (2.3) 

e2/(1 - 2~) log P([[ W(t)[I ~ ~< e) ~< 82/(1 - -  2~) log P(II W(t)]l ~ ~< x k  (1 - -  2 ~ ) / 2 )  

< e2/<1 - 2,,) log (e (  II W(t)II ~ ~< x)  k) 

= ke2/~l 2~)log e(ll W(t)ll~ ~< x) 

<~ x TM - 2~)(k + 1 ) - ~ k log P( II W(t)tl ~, ~ x) 
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Hence it follows that  

lim E2/(1- 2c~)10g P(11W(t) 11 ~ ~< e) ~< x 2/(1 --2cQ 10g P( ]1W(t)[l ~ ~< x) 
~ 0  

which clearly implies the statement of Proposi t ion  2.1. 
To prove Ca satisfies Eq. (1.9) we turn to the isomorphism results in 

Ciesielski. (6) To do this we need some further notation. For  0 ~< t ~< 1 we let 
hi(t)  = 1, and 

f 2 n/2 ( 2k - Z )/2~ +1<~ t < ( Zk - 1 ) / 2 "  + l 

hz,+k(t) = ~ - - 2  ~/2 ( 2 k -  1)/2 ~+ l~<t < 2 k / 2  "+~ (2.4) 

otherwise 

for n = 0 ,  1 ..... and k =  1,..., 2 ~. Thus {hi: i>~ 1} is the Haa r  functions, and 
f o r 0 ~ < t ~ < l  we set 

Og(t) = hi(s) ds, i~> 1 (2.5) 

For  0 < c~ < 1/2 and 0 ~< t ~< 1 we also define 

(~l(t) = 01(t), Ul(t) = hi(t)  and 

~b~, +k(t) = 2 "/2 + 1 - ( , +  1)~bv + k(t) (2.6) 

h~,+k(t ) = 2(n+ l)~-("/z +1)h2,+k(t) 

for n = 0, 1 ..... and k = 1 ..... 2 ". If  Co = Co(Z +) denotes the space of sequen- 
ces {~:  i~> 1} such that l i m i ~  ~ = 0  and 

T~({~i}) : 2 ~ i ~  (2.7) 
i>~1 

then Ciesielski ~6~ [Theorem 2],  establishes that T~ is i somorpphism from 
Co onto  H~, o. Furthermore,  if the sup-norm is used on c o so that 
I[{r =supi>~l I~il and the ~-H61der norm is used on H~,0 then T~ is a 
bounded  linear opera tor  of Co onto H~,o with operator  norm 

2/(3(2 ~ - 1)(21 ~ - 1)) ~< II T~]l ~ 2/((2 ~ - 1)(21 ~ - 1)) (2.8) 

The inverse of T~ from H~,o onto Co is given by 

1 

~i = fo h~(s) dx(s)  i >1 1 (2.9) 
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CiesielsK1 where h~/(s) is given in Eq. (2.6). Letting T~ -~ denote this inverse, -. (6) 
[Theorem 2] also establishes that the operator norm of T ~  is one. Hence 
if 

V~(6) = {xe  H~,o: IlT21(x)[I 4 6 }  

and k ~ = ( 2  ~ -  l i ( 2 1 - ~ -  1)/2, then Eq. (2.8) and that IlT~-lll = 1 together 
imply 

V~(k~)c_ {xe  H~,o: I[xl[~<e} c_ V~(e) (2.10) 

Thus the constant C~, 0<c~<  1/2, in Eq. (1.8) will satisfy Eq. (1.9) if for 
any 6 > 0 and e > 0 small 

log P([I T~-~(W)II ~ <e)  >~ - (1  + 3) 2 1/(1 z~,)F~,e-2/(l-2~,) 
(2.11) 

log P(II T~ 1( W ) l l  ~ < ~) ~ - ( 1  - 3) 2-2(1 -- cQ/(1 -- 2c~)/~c~ ~ 2/(1 2c*) 

To prove Eq. (2.11) we first observe that {h~': i~> 1} are orthogonal 
functions on [0, 1] with 

1 

fo lh~(s) 12 ds = 1 and 

Hence 

1 

fo lh~,+k(s)lZ ds=22((,+1)~ (,/2+1)) 

~i= fo h~(s) dW(s) i>~ 1 

are independent centered Gaussian random variables with variances 

E ( ~ )  = 1, E ( ~ )  = 2 (1 2cQ[+ 2(ce- 1) 

where 2~-< i < T  +1 for (=0 ,  1,.... Thus 

(2.12) 

Letting 

P(IIT2~(W)II~ <~)= I-I P(I~,I <~) 
i~>l 

ft ~176 
G(t) = (2/~) 1/2 e -u2/2 du 

we thus have 

P(]l T~-1( WIll co < ~) = (1 -- G(e)) l-I P(J~I ~ e) 
i~>2 

t>~0 

(2.13) 

(2.14) 

= ( 1 - G ( g ) )  I ]  ( l - G (  e2(' 0)+(, 2=)i/2)) (2.15) 
i>~2 
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Since 2;<i<~2 ;+1 f o r / = 0 ,  1,..., we have 

21/2i(1- 2~,)/2 <~ 2~ -~,)+~1- 2~,)i/2 <~ 21 ~,i(1-2~,)/2 

for i1> 2, and thus 

P(llT;l(W)ll=~e) ~ n ( l - G (  ~21-~i(1 2~)/2)) 
i~>1 

P(tl T~-1( W)ll ~ ~< e) >/(1 - G(e)) ~I (1 - G(z2~/2i (1 2~)/2)) 
i>~2 

Now let 

(2.16) 

Since 

Proposition 2.2. Let Aa()~) be given by Eq. (2.17) with 2 > 0 ,  /~>0 
and assume G(t), t > 0, is given by Eq. (2.14). Then as 2-+ 0 

oo u:/l~ e - U 2 / 2  ,~ - 1 / 3  

log A~(2) ~ -(2/lr) x/2 fo I ~ -G-~  du. 

Proof To prove Eq. (2.18) we first observe 

log A#(2) = ~ log(1 - G(2iB)) 
i~>l 

with - ~ < log(1 - G(x)) < 0 increasing in x for 0 < x < ~ .  Hence 

f~o log(1 -- G(2xa)) >~ ~ log(1 -- G(2iP)) dx 
1 i>~l 

and by the negativity of log(1 - G) we also have 

log(1 - G(2i~)) >~ log(1 - G(2x/3)) dx (2.20) 
i>~2 

( ) log(1 - G ( 2 ) ) = l o g  (2/n) ~/2 e-"2/2du ~ l o g 2  as 2--*0 

(2.18) 

(2.19) 

A#(2) = 1--/ (1 - G(2iB)) (2.17) 

for 2 > 0 ,  /~>0.  Hence Eq. (2.11) will follow from Eq. (2.16) with 
/ ~ = ( 1 - 2 ~ ) / 2  and 0 < ~ < 1 / 2 ,  provided we establish the following 
proposition. 
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we thus have from Eqs. (2.19) and (2.20) that Eq. (2.18) holds if 

;o~ f~o u~/ee-~/2 
log(l -- G(2xe)) dx ~ - (2/rc)'/2 _ 

1 1 - -  G ( b / )  

x du . 2 - ~/~ as 2--+0 

To prove Eq. (2.21) we integrate by parts 
dG(t)/dt= -(2/re) 1/2 exp(- t2/2)  to obtain 

f7 l~ -l~ f~ ~ f - ~ ( u ) .  - -  

(2.21) 

and recall 

e u2/2 

1 - G ( u )  du 

(2.22) 

where u = f ( x ) = 2 x  ~. Hence f l ( u ) = x =  (u/x) 1/~, and log(1 -G(2) )  ~ log2 
as 2 ~ 0 ,  so we have 

ul/f luo - u2/2 

foo log(1 - G(2x~)) d x ~  - (2/7t) 1/2 f ~  a ~. ~I-G(u~ du''~-x/~ a s  )~ ---, 0 

(2.23) 

Since 1 - G(u) = (2/re) 1/2 Sg e-'2/2 dt ~ (2/~) 1/2 u as u ~ 0 and 1 - G(u) ~ 1 
as u ~ o e ,  Eq. (2.23) and f l > 0  yields Eq. (2.21). Thus Proposition 2.2 is 
proved. 

Hence Eq.(2.18) with f l = ( 1 - 2 c Q / 2 , 0 < c ~ < l / 2 ,  and Eq.(2.17) 
together imply Eq. (2.11), so Theorem 1.1 is proved. 

3. P R O O F  O F  T H E O R E M  1.2 

The proof of Theorem 1.2 follows along the same lines as those for 
Theorem 1.1. Hence our first step is to establish analogues of the results in 
Ciesielski (6) for functions of two variables. For this we need the following 
notation. 

Let c o ( Z + x Z  +) denote the sequences {~0:i , j~>l} such that 
l i m i v ~  ~ 40.=0 where i v  j=max ( i , j ) .  We equip co(Z + x Z  +) with the 
sup-norm 

[[{~u}l[o,= sup 1~1 (3.1) 
i,j>~ l 

and the space Hq~.O with the q~-norm. Furthermore, we recall the modified 
Haar and Schauder functions {h~': i~> 1} and {~b~: i~> 1}, respectively, 
given in Eq. (2.6). Then we have the following proposition. 
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Proposition 3.1. The linear mapping Tq~ defined on co(Z + x Z +) by 

Tq,({~ij))= ~ ~ij(~7(s)(~.(t) (s, t ) 6 I  2 (3.2) 
i,j>~ i 

maps co(Z + x Z  +) in one-to-one fashion onto Hq~,O with the series in 
Eq. (3.2) converging uniformly on 12 in an ordering determined in Eq. (3.6). 
Furthermore, if co(Z + x Z § ) has the sup-norm and Hq~,O the q~-norm, then 
Tq~ is a bounded linear operator between the Banach spaces with operator 
norm 

4/(3(2 ~ -  1)(2 ~ - ~ -  1))2~ < Ilrq=l[ ~< 4/((2 ~ -  1)(21 ~--  1)) 2 

The inverse operator T-~ is given by q~ 

(3.3) 

i, j/> 1 (3.4) 

and II Tq=111 = 1. 
Our proof of Proposition 3.1 depends on the fact that {~i~j: i, j >  1 } 

is a Schauder basis for Co(I=). This has been proved in a number of papers, 
but a particularly useful reference is Semadeni, ~ and Ellis and Kuehner (s) 
provides some additional details. In particular, Semadeni (Is) [Theorem 1] 
implies that for x e Co(I=), the double series 

ao(~i(s ) (~j(t) (3.5) 
i , j ~  1 

converges uniformly to x(s, t) on 12 when the sequence 
~i(s) q~j(t)is arranged into a single sequence 

%(s , t )=~ ~p+l(s) q~j(t) for k = p 2 + i '  l<~i<~p (3.6) 
[~i(s) ~bp + l(t) k = p 2 + p + i ,  l ~ < i ~ . p + l  

with p = 0, 1 ..... and the coefficient functionals are given by 

of products 

a O. = aij(x) = Ill2 hi(s) hi(t) dx2(s, t) i,j>~l (3.7) 

Since the {hi: i~> 1 } are the Haar functions, and hence piecewise constant 
on [0, 1 ], the Stieljes integral in Eq. (3.7) can be interpreted in the obvious 
way, i.e. if 2 is a constant function, then 

b d 

f~ f~ 2 dx2(s, t) = 2(x(b, d) - x(b, c) - x(a, d) + x(a, b ) ) (3.8) 

860/6/3-10 
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Then aH(x)=x(1,  1) and for n,m=O, 1,...; l~<k~<2 ", and 1~<l~2 m it is 
easy to check that 

a2.+k,2~+,(x) = ffi2 x(s, t) d(#2.+k x t.l~2m4_k)(S, t) (3.9) 

where P2,+y is the measure on I putting mass 2(2 42) at (2./'-1)/2 "+~ 
and mass - 2  ~/~ at each of ( 2 j - 2 ) / T  +~ and (2j)/2 ~+~. Hence from 
Eqs. (3.7)-(3.9) it follows that the sequence {aij(x): i , j ) l }  is uniquely 
determined by x � 9  Co(I2). Also, the uniform convergence in the ordering 
given by Eq. (3.6) implies 

__U 
lim sup x(s, t)-- ~, ~ aij(x)(hi(s)(/)j(t) ~ 0 

N ~ o o  (s,t)~=l 2 i = 1  j = l  

as (N, N) is the N2th term in the ordering. 
For e a c h . ,  0 < ~ < 1/2, we now have the following lemma. 

(3.10) 

Lemma 3.1. Let {hT:i>~I } and {r be as in Eq,(2.6), and 
assume Tq~ is defined on co(Z + x Z +) by Eq. (3.2). Then Tq~({~o} ) �9 Hq=,O 
and the series converges uniformly on 12 in the ordering determined by 
Eq. (3,6). Also, the right-hand inequality in Eq. (3.3) holds. 

Proof We first show that if {30} is a bounded sequence and 
0 < ~ < 1/2, then 

S =  sup Y', I~l 1~7(s)l [~ff(t)[ < oo (3.11) 
( s , t ) e l  2 i,j>~l 

Recall that the sequence {~b~: i>~ 1 } consists of nonnegative functions with 
ce ~ - g~ IlO~ll~ = IIr = 1 and I1r = 2  ~+~)L Furthermore, since ~2-+~, 

k = 1 ..... 2 ", have disjoint support we have 

s ~  I1{~0}11~ 2 -<"+*~+  2 -(m+ 1)~' 
n 0 m = O  

+ ~ 2-(n+ l)~2-(m+ 1)~) < OO (3.12) 
n , m ~ 0  

Next we show that if {~ij} is a bounded sequence, then the series 

S({r t) = ~ ~,7~b~'(s) ~b~(t) (3.13) 
i,j>~ I 
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is in Hq~ for 0 < c~ < 1/2. In view of Eq. (3.11) the series converges uniformly 
with regard to the ordering determined by Eq. (3.6), and for notational 
simplicity we denote S({r t) by f(s,  t). Hence f e  Co(I 2) and 

Af(s, t, h, h') = f ( s  + h, t + h') - f(s,  t + h') - f ( s  +h,  t) + f(s,  t) 

= }2 ~ ( O 7 ( s  + h) - r  + h') - ~7( t ) )  
i,j>~l 

Thus 

( ) Af(s,t,h,h')<~H{~ij}l]~ Ihl+ ~, I(~,+k(s+h)--@~,+k(s)l 
n = 0  k = l  

�9 Ih'l + ~ I ( ~ + k ( t + h ' ) - - ( ~ + t ( t ) l  
m = O l = l  

and arguing as in Theorem 1 of Ciesielski (6) we thus have 

IAf(s, t, h, h')l ~< II{~u}ll~ (Ihh'l~4/(( 2 ~ -  1)( 21 ~ -  1)) 2) 

Hence 

q=(f) ~< 4 II {~}11 ~/((2 = -  1)( 2~ = - 1)) 2 

Thus f e  Hq,, and the map Tq~ of Eq. (3.2) actually takes I~ (Z  + • Z + ) into 
Hq. We also have verified that the right-hand inequality in Eq. (3.3) holds. 
Furthermore, since finite sums of the ~b~'~b~ are in Hq,,O , this implies that Tq, 
maps co(Z + • Z +) into Hq~,O. Hence Lemma 3.1 is proved. 

Our next lemma is the follow. 

Lemma 3.2. If r162 is given by Eq. (3.4) and X~Hq~,O , then 

lim r (3�9 
i v j ~  

Furthermore, the map A: Hq~,O ~ co(Z + x Z + ) given by 

A(x)= {~0(x)} (3.1s) 

is one-to-one. Hence Tq, is one-to-one and onto Hq,,O, and A is the inverse 
of Tq, as defined on co(Z + x Z + ) .  Also, the operator norm of A =  T~ ~ 
from Hq,,o onto c o ( Z +•  +) is  one, and the left-hand inequality in 
Eq. (3.3) holds�9 
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Proof If x e Hq~,O, then Eq. (3.14) follows from Eqs. (3.7), (3.9), and 
(2.6) since they imply 

~2n+k, 2m+ l(X) = 4-2 (~ + 1)~2(" + i)~(I 1 =I2 - 13 +/4)  

where 

I1 = A x ( ( 2 k  - 2 ) / 2 "  + 1 ( 2 l  - -  2 ) / 2  m + 1, 2 -- ('~ + 1 )  2 - ( m  + 1 ) )  

12 = Ax( (2k -  1)/2 "+1, ( 2 / - 2 ) / 2  m+~, 2 -(n+ 1), 2 (m+ 1)) 

13 =Ax( (2k-2) /2  "+1, (21-  1)/2 ~+l,  2 -("+ 1), 2 (re+l)) 

14 = Ax((2k-- 1)/2 "+x, ( 2 I -  1)/2 m+ 1 2--(n+1), 2--(m+1)) 

If x~Hq~,O, we thus have Eq. (3.14), since similar expressions hold for 
~l,2~+t(x) or ~2~ Given the form of A(x) it is now easy to see A is 
one-to-one and the inverse of Tq~ as defined on eo(Z + • Z + ). Hence Tq, is 
also one-to-one and onto Hq~,O. Furthermore, T ~ I =  A has operator norm 
less than or equal to one. To see ]lTq 1][ = 1, we apply T~ 1 to x(s, t)=st.  
Then ~,1 = 1, but ~ , i ( x ) =  0 when i:# 1 or j # 1, which yields the result. 

To finish the proof of Lemma 3.2 we need to verify the left-hand 
inequality in Eq. (3.3). This follows as in Ciesielski (6) [Theorem 1 ]. 

Combining Lemmas 3.1 3.2, we thus have Proposition 3.1 proved. 
To complete the proof of Theorem 1.2 we define 

V~((~) = {XEHq,,O: II T~l(x)ll ~o ~< a} 

and recall ks = (2 ~ -  1)(21 - ~ -  1)/2. Then Eq. (3.3) and the operator norm 
of T~ 1 being one together imply 

U~(k2~) ~_ {x E Hq~,O : q~(x) ~< e } _~ U~(e) (3.16) 

Hence Theorem 1.2 will be proved if 

log P( 11 T~I(  W)[ too ~ e) ,~ - e  -2/(1-2a) log(l/e) as --*0 (3.17) 

To verify Eq. (3.17) we observe that 

~0 = ffl2 h~(s) hg(t) dW2(s, t) i,j>~ l 

are independent centered Gaussian random variables with 

E(~21)=1, E ( ~ ) = 2 - 0  2~);+2(~-L) 2 ~l 2cQf+2(~ 1) (3.18) 



Small Ball Estimates 561 

where 2;<i~<2 ;+~ and 2 J< j~< 2  f+l for ~ j = 0 ,  1,.... Hence 

P(I IT~I (W)I I~ )=  H P ( I ~ [ ~ )  

Letting G(t) be given by Eq. (2.14) we thus have 

P([[ T~I(W)II co ~< ~) = (1 - G(e)) I 1 �9 I2.13 

where 

I i ( e )=  H P(Ir ~<e), 
i>~2 

I=(e)= H P(I~ljl ~<e), 
j>~2 

I3(e) = H P(lr 
i,j>/2 

Since 2r<i~<2 r+l and 2 J < j ~ < 2  f+l for {, ] =  0, 1 ..... we have 

21/2i(1 - 2cr ~ 2(1 0~)+ ~ 2~);/2 ~< 2 ~ ~i~1 - -  2cr 

and 

(3.19) 

(3.20) 

(3.21) 

21/2j(1-2:,)/2<~2(1 ~)+O-2.)j/2<~21-~j(1 2~)/2 

for i, j~>2 as 0 < c r  1/2. Thus .from Eqs. (2.15) and (2.16), and Proposi- 
tion 2.2 we have 

logP(HT~l(W)lloo<<.e)~-e -2/~ 2~+logI3(e)  as e ~ 0  (3.22) 

Hence Theorem 1.2 will be proved if 

logI3(~)~-e-z/~l-Z~)log(1/~) as e ~ 0  (3.23) 

and we verify the inequalities following Eq. (1.14). We only verify Eq. (3.23) 
and the inequalities are easily checked by examining the proof. Letting 

Al3(2) = I-] (1 -- G(2i~jP)) (3.24) 
i,j>~2 

for 2 > 0 ,  3 > 0 ,  we will have Eq.(3.23) be setting / ~ = ( 1 - 2 ~ ) / 2  and 
0 < ~ < 1/2, provided we prove the following proposition. 

Proposition 3.2. Let AB(2 ) be as in Eq. (3.24). Then as 5[ ~ 0 

1 oo ul/Ze u2/2 
log A,(2) ~ - - ( 2 / 7 z )  1/2 ~ oo[ 1 - G(u-""'~ du . 2 -I/3 log(1/J.) (3.25) 
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Proof Since - o o  <log(1 - G ( x ) < 0  is increasing in x for 0 < x <  0% 
it is easy to see from the argument in Proposition 2.2 and the conclusion 
of Proposition 2.2 that it suffies to prove as 2 --+ 0 

f~ f (  l~ dx dy~ -(2/rc)l/2 ~ fo  U~/fe-u2/21 - G(u) 

• du. 2-1/flog(i/2). (3.26) 

Now 

f~o G(2xfYf)) dx G(2yf)) - )v - l / f .  (2/~) 1/2 log(1 ~ 1 o g ~ l  
1 

oo 1 ul/fle -u2/2 { ,  
• J~ . du (3.27) y~ y 1 - G(u) 

and by Eq. (2.23) 

f ~176 1/f 2 -+0  (3.28) a s  
1 

where 7f is a constant independent of 2. 
Hence Eq. (3.28) implies 

~ ye,~_,/u_,~_,/f.(2/=)l/2f ~176 f )  1 ul/#e -u2/2 1 y~ y 17G(-~) du dy. (3.29) 

Now as 2 -+ 0 

~ 1 Ill~fie u2/2 av (u/'~)l/fl 1 1dl/fle 7u2/2 

fl f;~y' y l -G(u-----"~ du dy-- fz "1 f -'y 1 -  G(u) dy du 

oc ill~fie u2/2 
=l_f~ log(u/2) - du 

1 -G(u)  
oa ul/fle-U2/2 1 

log(I/)o) fo du (3.30) 

Combining Eqs. (3.29) and (3.30) we thus have 

f( logll- l xS,, x. 
1 ,/2 f~ u*/ee-"2/2 

- ? .  (2/7z1 J o  i - - -  G--7-~ d u . / ~ - l / f  log(l/2) 
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as 2 4 0 ,  and Eq. (3.26) holds. Thus Proposition3.2 is verified and 
Theorem 1.2 holds. 

4. A N  A P P L I C A T I O N  T O  B R O W N I A N  M O T I O N  

Let { W(t): t ~> 0} be a sample continuous Brownian motion on R 1, and 
assume Hu c_ Co(I) is the Hilbert space of absolutely continuous functions 
on I whose unit ball is the set 

K =  f ( t ) =  g(s)ds, 0 ~ t ~ < t :  lg(s)12ds<<.l (4.1) 

Here the inner product norm is given by 

(;~ )1/2 
I[fll ~ = If'(s)l 2 ds f e  H~ (4.2) 

If 

tln(t) = W(nt)/(2nLan) t/2 0 <~ t <~ 1 (4.3) 

then the functional form of Chung's law of the iterated logarithm given in 
Cs/tki, (7) and in more refined form in de Acosta, (1) implies for each f in 
Co(I) that with probability one 

~r~/4. (1 - ] l f l l2]  -1/2 if IIflL~ < 1 
= "" (4.4) lim L2r/}J~/n-fJl~ [ + oo otherwise n~oo 

Here and throughout Lx = max(l,  log e x), L 2 x  = L(Lx) and Z 3 x  = L(L2x ). 
In view of Theorem 1.1, we can now present the analogue of Eq. (4.4) 

when the sup-norm is replaced by the ~-HSlder norm I1" IL,. 

Theorem 4.1. I f 0 < e <  1/2 and C, is as in Eq. (1.8), then 

lim (L2n) ~-~ I I~. - f l f~  

= ~2-1/2C(~1-2")/2" (l -Ilfll2.) - ~  2,)/2 

[ + o o  
if Hfl],< 1 
otherwise (4.5) 

If IlflL~=l and f ( t ) = E ( W ( t ) h ( W ) )  where h is a continuous linear 
functional on (Ha, o, I[" II ~), then with probability one 

0 < lim (L2n) m ~}/(3-2,) II~;n-fll, < oo (4.6) n~oo 
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If 11f11~ = 1, b u t f i s  not of this form, then with probability one 

lim (L2n) 2(1-~)/(3 2~)ii~/ _f[ i  = 0  (4.7) 

To prove Theorem 4.1 we first establish the following proposition for 
i.i.d, samples of Brownian motion. The remainder of the proof is handled 
by fairly standard rescaling arguments. 

Proposition 4.1. Let W~, W2,... be i.i.d, copies of Wand let 0 < ~ < 1/2. 
Then with probability one 

lirn (Ln) t-~ II Wn/(2Ln) 1/2 - f l l  
n ~ 3  

= ~2-~/2C~-2~)/2.(1-Ilfll~) -~1-2=)/2 if I l f l l . <  1 (4.8) 
( + ov otherwise 

Furthermore, if Itf[]~ = 1 and f ( t )=  E(W(t)h(W)) where h is a continuous 
linear functional on (Ha.0, I1" I1~), then with probability one 

0 < lirn (Ln) 2(1-~)/(~-2~) 1[ W~/(2Ln)I/2_fH ~ < ~ (4.9) 
n - - + ~  

If plflru= 1, but f i s  not of this form, then with probability one 

lim (Ln) m - ~)/(3 - 2~) II W,/(2Ln) v2 - fl[ ~ = 0 (4. ~0) 
n ~ o o  

Proof of Proposition 4.1. If Ilfllu < 1, then the corresponding part of 
Eq. (4.8) holds by applying the Borel-Cantelli lemma and the following 
result. 

Lemma 4.1. I f f ~ H u ,  r > 0 ,  and 0 < 7 <  1/2, then 

lim 2 - -2  log P( II W -  2fll = ~< 2 " -  2~)r) = - �89 Ilfll ~ - C~ r-2/d - 2~) 

where C~ is given in Eq. (1.8). 

(4.11) 

P([I W -  ~fll~, ~'c) ( 2)s 
= exp - ~-Ilfll~ {~:tI~lJo~l exp( -X(x ,  f ) - )  d#(x) (4.12) 

Proof The proof of Lemma 4.1 follows that of Theorem 3.3 in 
de Acosta. (1) In particular, it requires the Cameron-Martin translation 
formula which asserts that for f ~  H ,  
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The measure p is Wiener measure and (x, f ) ~  denotes a "stochastic inner 
product" which is N(0, I 2 Ilfl~) and is such that ( x , f ) - = f ( x )  if f is 
continuous and linear. Hence Jensen's inequality and the symmetry of the 
set {x: Ilxll~ ~< ~} imply 

( ; )  e(l l  W -  2711~ <~ r)  > exp  - - - f  Ilfil 2 . P(ll wII ~ ~< ~) 

Setting r = -21-2~r and recalling Eq. (1.8) we have 

lirn 2-21ogP(llW-2fIl~<~2-(t-2~)r)>~-�89 -2/(~-2~) (4.13) 
2~oO 

Since f e  H~, we can write f ( .  ) = Y.j>~ 1 f I hj(s) df(s) ~j(" ) where the 
{~bj} and {hi} are the Schauder and Haar functions, respectively, and {~bj} 
are C.O.N.S in H , .  Hence given e > 0  there exists N = N ( e )  such that 
]I f -  Y~N=I ~ hj(s) df(s) ~bj I[ 2 < e. Letting g = •5Y=1 ~0 ~ hj(s) df(s) ~bj we have 

) P(llW-)fll~<<.~)<~exp - ~ - [ [ f [ t ~ + 2  sup I ( x , g ) ~ l  
x: [Ixlh ~< 

x f e x p ( - 2 ( x , f - g ) - ) d # ( x )  (4.14) 

Now (x, g ) -  N = Z j=, ~ hi(s) df(s) ~ hj(s) dx(s) (see, for example, Kuelbs 
et al. ~ for details), so 

sup [(x, g ) ~ ]  ~< hi(s) - sup hj(s) ~MN'C 
x: Ilxll~ ~< ~ j = 1 x:  Ilxtl~ ~< 

and we also have 

f {x:llxll~ <. ~} e x p ( - 2 ( x ,  f -  g )~ )  d#(x) 

:) = ,u(x: ]Ix + ( f - -  g)ll~ ~< z) exp ~- It f - -  gtl 

by the Cameron-Martin formula since /~(x + U)~</~(U) for every convex 
symmetric Borel measurable set U. Hence 

22 22 ) 
P(l[W--2f[l~<~ v)~exp - Tllfl[~ +-~-l]f -gl[2 + 2MN z P(IIWI[~<r) 

(4.15) 
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Setting z = 2  (1 2a) r and recalling I l f - g l l ~ < e  we have 

lim 2-2 log P( II W -  ;f l l  a ~< ,~-~-  2 = ) r )  ~< - -  Ilfll 2,/2 + e/2 - Car -2/0 -2a) 
2 ~ 0 0  

(4.16) 

Since e > 0  is arbitrary, Eqs, (4.16) and (4,13) combine to yield Eq. (4.11), 
so the lemma is proved. 

Hence we .have Eq.(4.8) when t l f l lu<l .  If tlfll~,>~l the same 
argument yields the latter half of (4.8), but we als0 can see this as follows. 
That is, if Ilfll~ 1, then Theorem I* of Kueibs et al. (m implies that with 
probability one 

lirn d2 ~ l[ W,/(2Ln) m - I l l  a > 0, 
r t ~ o o  

where d21 . p ,=  (Ln) 1-a and p,--, oo. Hence the latter half of (4.8) holds 
if I l f l l~= 1. If Ilf l l .  > 1, then the result follows immediately since we have 
for all e > 0 that 

P(W,/(2Ln) ~/2 ~ K + ~ U eventually) = 1 (4.17) 

when U =  {x: I[xlla ~< 1}, See Theorem 2.1 and remark (C) following 
Theorem 2.1 in Goodman and Kuelbs (1~ for details regarding Eq, (4,17). 
Furthermore, note that (Ha, o, [1'11~) is a separable Banach space which 
supports the Wiener measure # and hence it is well known that the 
pair H ,  and (Ha, o, tl" II~) form an abstract Wiener space. Hence with # 
probability one we have lima_~ ~ I I x -  H~(x)lla = 0, or, equivalently, that 
lima_. ~ I lOa(x)l l~=0,  Here 

d 

Ha(x)= ~ (x,~s)~c~ s and Qa(x)=x-Ha(x)d>>-I  
j = l  

where (~j} is an arbitrary C.O.N.S. in //,(see, for example, Fernique~9~). 
Thus Theorem 2.1 in Goodman and Kuelbs ~a~ readily applies. 

Hence it remains to verify Eqs. (4,9) and (4.10). In view of the iso- 
morphisms Ta and T~ ~ defined in Eqs. (2.7) and (2.9), respectively, and 
Proposition 1.2.4 of Fernique, (9) it suffices to prove that with probability 
one 

0 <  lim (Ln) 2(1-a)/(3-2a) [IX,/(2Ln) 1/2- T~-l(f)llo~ < ov (4.18) 
n ~ o 9  

when f =  E(Wh(W))  and h is a continuous functional on (H~,o, II" I]~), and 

lim (Ln) 2(1-~')/(s- 2~) llX,,/(2Ln) l / z -  T~-l(f)l]~ = 0  (4.19) 
e t ~ c ~  
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when f is not  of the this form. In Eqs. (4.18) and (4.19) Xn = T~-I(Wn), 
n ~  1, are i.i.d, independent  coordinate  centered Gaussian vectors with 
values in c0 and g =  T ~ l ( f )  satisfies Ilgll~= 1 where v is the Gaussian 
measure on Co induced by X = T s  Here Ilgll~=l follows as in 
Fernique, ~ but  also it is easy to check this directly. That  is, if 
f -~  E(Wh(W))  where h is cont inuous on (H~, o, I1' II& then g =  T s  
E(Ts  1(W) h(W))  = E(Xho T~(X)) and h o T~ is cont inuous on c o. Thus  

II gH 2~ = E((ho T ~ ( X ) )  2) -- g(h2(W)) = [Ifll ~ = 1 

as claimed. Now we can apply the results in Kuelbs etaL ~m to this 
problem. That  is, Theorem 1 of Kuelbs etaL ~ imply Eqs. (4.18) and 
(4.19) since Eq. (2.11) and Proposi t ion 3.2 imply 

l ogP( l lX I l< .~ )~ -e  2/~1-2~) as ~ 0  

and solving for d =  d(n) in Eq. (3.3) of Kuelbs e t a l / m  we have 
d(n) ~ (Ln) -2~ Thus Proposi t ion 4.1 is proved. 

To  complete the proof  of Theorem 4.1 we now apply some rescaling 
arguments.  Hence we present the following Iemmas. The first follows 
calculations similar to those in Lemma 3.4 in Baldi et aL ~5~ 

Lemm a  4.2. I f f e H ~  and g ( . ) = f ( 2 ( . ) )  on L and 0 < 2 <  1, then for 
0 < ~ < 1 / 2  

I I / -  gll ~ ~< 2 I1 - 211/2 --~x Ilfll~ (4.20) 

Proof Since g ( . ) = f ( 2 ( . ) ) ,  

t ( f ( t )  -- f ( 2 t ) )  -- ( f (s)  -- f (2s)) l  
I l f -  gll= = sup (4.21) 

o<.~<.~<.~ I t - s l  ~ 

If 0~<s< t~<  1, then 

I ( f ( t ) -  f ( 2 t ) ) -  ( f ( s ) -  f(Rs))l = f ' (u )  d u -  
v s s 

~< ~,(s, t, 2)Ilfl[~ 
where 

7(s, t, 2 ) =  ( I t -  (s v 2t)11/2 + t(s/x 2 t ) - 2 s l  1/2) 

If 2t<~s, 0 ~ < s <  t~< 1, then s v 2 t = s ,  s/x 2t=2t ,  so 

7(8, t, 2 ) =  I t - s l  1/2 (1 + 21/2) (4.23) 

and 

It - sl i/~-~ = t~/2 ~ I1 - s/tl i/2-~ ~< I1 - 21 z/2 ~ (4.24) 

f ' (u )  du 

(4.22) 
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Similarly, if s ~< 2t, 0 ~< s < t ~< 1, then s v 2t, s /x  2t = s, 

y(s, t, 2) = it - )~t[ 1/2 + is - 2s] ~/2 ~< 2t~/2 11 - 2[ 1/2 

and 

Combin ing  

Kuelbs and- Li 

(4.25) 

I t i s l  = =  t -= I1 -sltl-~<~ t "I1 - 2 1 - =  (4.26) 

Eq. (4.21) to Eq. (4.26) and that  0 < 7 < 1/2, we obtain  
Eq. (4.20). Hence the l emma is proved. 

L e m m a  4.3. Let m, n, r be nonnegat ive  integers with m ~< n ~< r and 
a,, = (2nL2n) m for n >~ 1. Then  for all f e  H ,  and 1/2 < p < 1 

(Lzn) p ]l W(n(.))/a, - f l [ ~  

>~ - -  - -  (L2m) p l / W ( m ( . ) ) / a m -  fl[ 
\ m j  \ r /  

- I I 7 1 1 .  

Proof This is a slight modification of L e m m a  5.3 in de Acosta ~) 
applicable to the e-H61der no rm rather  than  the sup-norm.  Since 
W(n(~(. ))= W(m(.)) we have 

( n ~  ~(L2n)" .)) ~ (L~n)'tlW(n(.))la.--ill~\~ I ~ W(m(.))--a.i(~( 

~-m ar 

where g ( - )  = f ( m ( . ) ) .  NOW 

II W(m(-)) - a~ g(. )11 ~/> II W(m(. )) - amf}l~ - ar I l l - -  gll ~ - (at - am) llfll 
(4.29) 

and since f ~  H~ L e m m a  4.2 implies 

I I f -  gN ~ ~< 2 I1 - m/rt 1 / 2 - ~  Ilfll~ (4.30) 

Combin ing  Eqs. (4.28)-(4.30) we get Eq. (4.27). Hence the l emma is 
proved. 
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L e m m a  4.4. Let no=0,  n ~ = e x p ( r / ( L r )  ~) and I ( r )=  [nr_l ,  n~) for 
r>~ 1. Let m r denote the smallest integer greater than or equal to n~_ 
and pr denote the largest integer less than or equal to n~. Then for 
1 / 2 < p <  1, 0<c~< 1/2, and z > 2 / ( 1 - 2 ~ ) ,  we have 

lim inf (L2n) p IIn,-fll~>~ lira (L2m~) p [Ir/m-fl[~ (4.31) 
r - - ->~  n ~ l ( r )  r ~  

Proo f  In view of Lemma 4.3, this follows since lim~ ~ ~ n~_ 1 /n~  : -  1, 

lim (L2p~) p I i - m , / p ~ L  m ~=0,  and lira (L2p,.) p (1-a , , Jap~)=O 
r ~ c ~  r ~ c o  

when z > 2/(1 - 2~). 

P r o o f  o f  Theorem 4.1. If Wr= W(m,( . ) ) /m: /2 ,  then W1, W2 ..... are 
identically distributed copies of Brownian motion. If Ilfll~< 1, then the 
proof of Proposition 4.1 shows that with probability one 

lim (Lr) 1-~ JI Wr/ (2Lr )  t / 2 - f l l =  

>1 2 - m f ~ x  - 2=7/2. (1 - Ilfll ~)-(1 - -  2~)/2 (4.32) 

Independence is not required here since this depends on the convergence 
part of the Borel-Cantelli lemma. Now Lr ~ L2mr and since 0 < ~ < 1/2 we 
have from Eq. (4.17) that with probability one 

1), 
lim (Lr )  1-~ W r �9 I/2 (2L2mr)l/J = 0  (4.33) 

r ~ o o  

Hence Eqs. (4.31)-(4.33) imply with probability one 

- -  ~ I / 2  (1 --  2 ~ ) / 2  lim ( t 2 n )  1 Idr/,-fl4=~>2- C= .(1-11fll~) " 2=)/2 
n ~ o o  

(4.34) 

The reverse inequality in Eq. (4.34) when Ilfll~ < 1 is similar to the argu- 
ment starting with Eq. (4.38) to establish the right-hand side of Eq. (4.6). 
In Eq. (4.6), Ilfll~= 1 and this is more delicate, so we only include the 
details of that argument. 

Similarly, if I I f l l ,> l ,  then Eq.  (4.17) and the previous argument 
implies that with probability one 

lim (L2n) 1-~ IIq~ - f l [ ~  = ~ (4.35) 
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It is also the case that if Ilfll u = 1, then the proof  of Proposi t ion 4.1 implies 
with probabil i ty one that 

lira (Lr)  2(1 - ~)/(3- 2~ ii Wr/(2Lr)m _ f l l  ~ > 0 (4.36) 
r ~ o o  

when f ( t ) = E ( W ( t ) h ( W ) )  and h ls a continuous linear functional on 
(H~.o, ]J'JJ~). Hence Eqs. (4.33), (4.31), and (4.36) imply the lira inf in 
Eq. (4.6) is positive. To  verify (4.7) we need to prove that  if Hf[[u = 1, but 

f is not of the above form, then we also have with probabil i ty one that 

lira (Lr) 2(~-~)/~3-2~) I[ W(nr('))/(2nrL2n~)~/2-f[t~ = 0  (4.37) 
r ~ o o  

for the sequence nr = exp(rLr). This requires some independence and so 
also does the argument  to establish the right hand side of (4.6). We turn 
to the proof  that the lira inf in (4.6) is finite as the proof  of (4.37) will 
follow by a similar argument.  

Let  n o = 1, n~ = exp(rLr) for r/> 1. Let 

W~(t) = (W( (n , . - n~_~) t+nr_~)  

- W(n~_~))/(nr-n~_~) m 0~< t~< 1 (4,38) 

for r >~ 1. Then W1, W2 ..... are i.i.d, copies of Brownian mot ion  for 0 ~< t ~< 1 
and Proposi t ion 4.1 implies with probabil i ty one 

lim (Lr) m ~)/(3-2~) II Wr/(2Lr) 1/2-fl l~ < ~ (4.39) 
r ~ o o  

when f ( t ) = E ( W ( t ) h ( W ) )  for h a cont inuous linear functional on 
(H~.0, I] H~). Hence it is suffices to show 

lira (Lr) 2~ ~)/(3-2~)Jl WJ(2Lr)  ~/z- W(n~('))/(2n~L2nr)mll~ = 0  (4.40) 
r - -~  o o  

with probabil i ty one. Since nr = exp(rLr) we have 

(Lr) (LI 1 
rlimoo~ L2r (L2nr)l/2 < (x~ 

and hence Eq. (4.17) implies that Eq. (4.40) will hold if 

lim (Lr)  2(1 - ~)/(3 -2~) 11Wr/(2Lr) m - W(nr(" ))/(2nrLr)l/211 ~ = 0 

with probabil i ty one. Since 

rlim~ rn~/2 (n _nr_l) l /2  <oo 

(4.41) 
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it follows from Eq. (4.17) that 

lim (Zr) 2(1-~)/(3-2~) Wr( ' ) ' (nr- -r lr - l ) l /2  ( 1 
~ ~ (2Lr) 1/2 \ (n~ -- n~_ 1) 1/2 +) =o 

(4.42) 
and hence it is suffices to show that with probability one 

lim (Lr) 2(1 - ~)/(3 - 2~) 
r ~  

X W((nr--nr-1)(')+nr(2n, Lr) x/2t)- W(n, 1)-- W(nr( '))  ~ = 0 

Thus for b > 0, scaling Brownian motion implies 

p (  W ( ( n r - - n  r 1)(-)+nr_l)--W(nfi.)) >~b) 
Fl~/2 c~ 

= P ( W ( . ) e A ( b ,  r)) 
where 

(4.43) 

Now A(b, r) is closed in (Ha,0, [[-II~), so by the large deviation results in 
Baldi et aL, (s) we have 

f2 l o g P ( A ( b , r ) ) < . - � 8 9  inf If'(s)12ds (4.44) 
f~A(b,r) 

If f ~ H .  and f e A ( b ,  r), then a calculation similar to that used for the 
proof of Lemma 4.2 implies 

flftl~/> 2-~/2bv~, 1/2 (4.45) 

where r,. = nr_ l/nr <<, r ~. Hence for e >0 ,  Eqs. (4.44) and (4.45) imply 

e ( l l W ( ( n , - n r _ l ) ( . ) + n r _ l ) -  W(nr 1 ) -  W(n,(-))[[~ 

n )/2e(Lr) 1/2 --2(1 -- c~)/(3 -- 2~)) 

( 4-/~2 -- 2c~)/(3 -- 2~,)r I - 2c~) ~< exp \ -  (Lr) (1 (4.46) 

Now the terms in Eq. (4.46)are summable, and since e > 0  is arbitrary 
Eq. (4.43) holds. Thus Eq. (4.6) is finite. By the same sort of argument we 
now can also es~blish (4.37), and hence Theorem 4.1 is proved. 
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5. AN APPLICATION TO THE BROWNIAN SHEET 

If {W(s, t):s, t>~0} is a sample continuous Brownian sheet, then the 
analogue of K is the set 

{ f:;: ff, } K2= f (s , t )= g(u,v)dudv, O<~s,t<~t: 2g2(u,v) dudv<~l 

t 
and the relevant inner product norm on the Hilbert space H,, 2 with unit 
ball K2 is given by 

Ilfll~,2-- g(u ,v )dudv  (5.2) 

when f(s, t) = ~o ~to g(u, v) du dr, (s, t) E 12. See, for example Park (14) 
[Theorem 6]. The analogue of Theorem 4.1 is the following Theorem. 

Theorem 5.1. Let {W(s,t):s, t>~0} be a sample continuous 
Brownian sheet and set 

r/,,2(s, t )=  W(ns, nt)/(n(2L2n) 1/2) (s, t)~ 12 (5.3) 

Let q~ denote the ~-HSlder norm in Theorem 1.2 and assume 0 < ~ < 1/2. 
Then with probability one 

0 <  lira (L2n) 1 ~ (L3n)-(1-2")/2q~(rl.,2-f) < ~ (5.4) 
n ~ o o  

if [Ifll~,2<l and it is infinity otherwise. If Ilfll~,2=l and f(s, t )=  
E(W(s, t)h(W)) where h is a continuous linear functional on (Hq,,o, q,), 
then with probability one 

0 < lim (L2n) 2(1-~)/(3-2~)(z3n)-(1-2~)/(3 2 ~ ) q ~ ( r / . , 2 _ f )  < oo (5.5) 
n ~ o ~ 3  

If Ilfll~.2= 1, but f is not of the form previously indicated, then with 
probability one 

lira (L2n) 2(1 c~ 2~)(L3n ) (1 2~)/(3-2~)q~(rl,,2_f)= 0 (5.6) 

The proof of Eq. (5.4) can be obtained by establishing a companion result 
to Proposition 4.1. 
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Proposition 5.1. Let W1, W2,..., be i.i.d, copies of a sample continuous 
Brownian sheet and let 0 < ~ < 1/2. Then with probability one 

lim (Ln) 1-~ (L2n) -ll-2~)/2 q~(Wn/(2Ln)l/2- f ) <  ~ (5.7) 

if ]lfl]u,2<l and it is infinity otherwise. If IIfllu,2=l and f ( s , t ) =  
E(W(s, t) h(W)) where h is a continuous linear functional on (Hqo,o, q,), 
then with probability one 

0 < lim (Ln) 2~1-~/~ 2~)(L~n)-(l-2~/(3-2~)q~(Wn/(2Ln) 1 /2 - f )  < o~ 
~ co ( 5 . 8 )  

If IIfll~,2 = 1, but f is not of the form indicated, then with probability one 

lim (Ln)2(1-~)/(3-2~)(L2n) -(1-2~)/C3 2~) q~(Wff (2Ln) l /2- f )= 0 (5.9) 
n ---~ oo 

Proof of Proposition 5.1. If I l f l l ~ < l ,  then Eq. (5.7) follows by 
applying Theorem 1" of Kuelbs et al. ~11~ If Ilfll~,2 < 1, then we could also 
obtain this by proving an analogue to Lemma 4.1, but since we do not 
known the constant analogous to C~ we chose to use Theorem 1". If 
I[f[/,,z > 1, then by applying Theorem 2.1 in Goodman and Kuelbs (t~ as 
indicated following Eq. (4.17), we have with probability one 

li__m_m q~(W,/(2Ln) 1/2 - f )  > 0 (5.10) 
n ~ o o  

Hence if Ilfll,.2 > 1, the lira inf in Eq. (5.7) is infinity as claimed. 
To prove Eqs. (5.8) and (5.9) we use the isomorphism between 

(co(Z + • Z+),  ][" II o~) and (Hq~,O, q~) discussed in the proof of Theorem 1.2, 
and Theorem 1 in Kuelbs etal. (n) for centered independent Coordinate 
Gaussian measures on co(Z+xZ+).  Combining these results with 
Eqs. (3.16), (3.19), and Eq. (3.25) we get Eqs. (5.8) and (5.9). Hence 
Proposition 5.1 is verified. 

To finish the proof of Theorem 5.1 we apply the rescaling arguments 
of Section 4 to the setting of the Brownian sheet. 

Lemma 5.1. If f e H ~ ,  2 with f(s,t)=~SoS'og(u,v)dudv 
f * ( , ) = f ( 2 ( - ) )  on I 2, and 1 / 2 < 2 <  1, then for 0 < ~ <  1/2 

q ~ ( f - f * )  ~< 4 I1 - 211/2-  = IIfN~,2 

Proof Since f * ( . )  = f (2 ( . ) ) ,  

q~( f - - f* )  = sup 
( s ,  t )  ~ 12 

( s + h , t + k ' ) ~ t  2 
h , h ' > O  

I~f(s, t, h, h ' ) -  3 f*(s ,  t, h, h ' ) l  

(hh') ~ 

and 

(5.11) 

(5.12) 

860/6 /3-11  
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where 3f(s ,  t, h, h') is given 
h, h' > 0, then 

where 

in Eq. (1.4). If (s, t ) E I  2, 

Kueibs and Li 

( s + h ,  t + h ' ) ~ I  2, 

I~Jf(s, t, h, h ' ) -  Af*(s ,  t, h, h')l 

= g(u, v) du dv - o~ ~a, g(u, v) 

~< ~'(s, t, h, h', 2) Ilfllu,2 

72(s, t, h, h', 2) = area(E(s, t, h, h') AE(2s, 2t, 2h, 2h')), 

E(s, t ,h,  h ' )=  [s ,s  + h] • It, t +h ' ]  

and AzlB denote the symmetric difference of A and B. 
There are two cases to consider. They are: 

(i) 2( s+h)<~s  or 2( t+h ' )<~t ,  

(ii) 2 ( s + h ) > s a n d 2 ( t + h ' ) > t .  

If (i) holds then 

72(s, t, h, h', 2) = hh' + 22hh ' 

and if (ii) holds then 

(5.13) 

(5.14) 

y2(s, t, h, h', 2) = hh' + 2 2 h h ' - 2 ( 2 ( s + h ) - s ) ( 2 ( t + h ' ) - t )  (5.15) 

Also, if (i) holds then either ( 1 - 2 ) s ~ > 2 h  or ( 1 - 2 )  t>~)~h', so Eq. (5.14) 
implies 

7(s, t, h, h', 2 )/(hh') ~ <~ (1 + 22) ~/2 (hh') ~/2-~ <~ (1 + 22) 1/2 

• ((1 - 2 ) / 2 )  m ~<4(1 _).)~/z-~ (5.16) 

since 1 / 2 < 2 <  1, 0 < h ,  h ' < l .  On the other hand, if (ii) holds, then 
drawing the appropriate picture we see 

72(s, t, h, h', 2) ~<h(1 - )~)(t + h') + h'(1 - )~)(s + h) 

+ h ' s ( 1 - 2 ) + h t ( 1 - 2 )  

~< 2h(1 - 2)(t + h') + 2h'(1 - 2)(s + h) 
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N o w  when (ii) holds, 

~(s, t, h, h', 2 ) / (hh ' )  ~ 

~< 2(h(1 - 2)(t + h'))'/Z/(hh') ~ + 2(h'(1 - 2)(s + h))m/(hh') ~ 

= 2h 1/2 ~((1 - 2)(t + h')/h')" ((1 - 2)(t + h i ) )  1/2 ~ 

+ 2(h')  1/2-~ ((1 -- 2)(s + h)/h) ~ ((1 - 2)(s + h)) '/2 ~ 

~< 2 ( ( 1 - 2 ) ( t + h ' ) ) l / 2 - ~ + 2 ( ( 1 - 2 ) ( s + h ) )  1/z ~ 

~< 4 ( 1 - 2 )  1/2 ~ 

since ( 1 - 2 ) ( t + h ' ) = ( t + h ' ) - 2 ( t + h ' ) ~ < h ' ,  ( 1 - 2 ) ( / + h ) < ~ h  and 
0 < t + h' ~< 1, 0 < s + h ~< 1. Thus the lemma is proved. 

The analogue of Lemma 4.3 in the two parameter  setting is the 
following lemma. 

L e m m a  5.2. Let m, n, r be nonnegative integers with m ~< n ~< r and 
b, = n(Lzn) 1/z for n >~ 1. Then for all fe Hu, 2 and 1/2 < p < 1, 0 < p '  < 1/2 

(Lzn) p (L3n) P' q~( W(n( .,. ))/b, - f )  

r \ L z m  / \ L 3 m /  

x (L2m) p (L3m) -p '  q~(W(m( .,. ) )~bin- f )  

- < r ) ~ ( L 2 r ) P  ( L 3 r ) - P ' < l - ~ r ) q ~ ( f )  (5.17) 

Proof Since W(n(m( . , . ) )= W(m(. , . ) )  we have 

(L2n) p (L3n) p' q=(W(n(., . ) / b , -  f )  

>~ br q , ( W ( m ( . , . ) ) - b , h )  (5.18) 



576 Kuelbs and Li 

where h( .,. ) = f ( m (  "," )). NOW 

q~( W(m(  . , .  )) -- b ,h (  . , .  )) >~ q~( W(m(  . , .  )) - b m f  ) - -  brq~( f -  h) 

- ( b r -  bm) q~(f) (5.19) 

and since f ~  H~,2 Lemma 5.1 implies 

q ~ ( f  - h ) < ~  4 I 1 - m / r l  1/2 ~ IIf[[,,2 (5.20) 

Combining Eqs. (5.18)-(5.20) we get Eq. (5.17), so the lemma is proved. 

P r o o f  o f  Theorem 5.1. The proof  of  Theorem 5.1 now follows as that 
for Theorem 4.1. The two things that perhaps needs some mention are the 
analogue of the large deviation result used for Eq. (4.44) and also 
Eq. (4.17) in the setting of  the Brownian sheet. However,  neither present a 
problem since ( n q , , O  , q~(-)) is a separable Banach space and the Brownian 
sheet induces a centered Gaussian measure #2 on the Borel subsets of this 
space. Furthermore,  the Hilbert space generating #2 is H~,2, and hence the 
large deviation result required is a special application of the large deviation 
theorem for Gaussian measure on a separable Banach space. The analogue 
of Eq. (4.17) again follows from G o o d m a n  and Kuelbs (1~ [-Theorem 2.1], 
applied as indicated following Eq. (4.17). 

N O T E  A D D E D  I N  P R O O F  

In view of an improvement  of the original results in Kuelbs et al., <H) 
the isomorphisms used in the proofs of Proposi t ions 5 and 6 are no longer 
needed. In  particular, Theorem 1 and Proposi t ions 1 and 2 in Kuelbs et 
al. ~11t give (4.9), (4.10), (5.8), and (5.9) immediately. 
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