Journal of Theoretical Probability, Vol. 6, No. 3, 1993

Small Ball Estimates for Brownian Motion
and the Brownian Sheet
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Small ball estimates are obtained for Brownian motion and the Brownian sheet
when balls are given by certain Holder norms. As an application of these results
we include a functional form of Chung’s LIL in this setting.
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1. INTRODUCTION

Small ball estimates for Brownian motion and the Brownian sheet are
obtained when the balls are given by certain Holder norms. As an appli-
cation, we establish some lim inf results for Gaussian samples of these
processes, as well as Chung’s LIL in this setting, but now we introduce
some notation.

Let I=[0, 1], with Cy(I) the continuous real-valued function f(-) on
I such that f(0)=0. Then the usual sup-norm is given by

1A= sup [f(2)l

0<r<1

and the «-Holder norm, 0 <a <1, is

If(t — S5l

s,tel ' tla
sFE?L
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Of course, | f|, is not finite for all fe Cy(I), so we define the spaces

H, ()= {feCoI): | flls <0}

and

HoolD) = { fecditm s LOZIOL_ 0}

s,tel ‘S - t'a
o<|s—1<o
Since f(0)=0 for all fe Cy(I), |||, is actually a norm, and both H, and
H, o are Banach spaces in [|-||, with || fll, < | f]..
It is well known that sample continuous Brownian motion in R', which
we denote by { W(z): t >0}, satisfies P(| W|,<o)=1 for 0<a<1/2, and
here we study the behavior of

P(| W, <¢) as e—0 (1.2)

The asymptotics of Eq. (1.2) when ||-|, is replaced by the sup-norm, or
L,-norm, are well known classical results. However, the study of Eq. (1.2)
with 0 <a < 1/2 appears to be new.

We also examine an analogue of Eq. (1.2) for the Brownian sheet. The
sample continuous Brownian sheet is the centered Gaussian process
denoted by {W(s,t):s,t>0} and satisfying E(W?(s, t))=st. If I*=1x1
and Cy(7*) denotes the continuous real-valued functions f(-, -) on I? such
that (0, 1)=f(s5,0)=0 for 0<s,¢<1, then {W(s,1):0<s,t<1} takes
values in Cy(/?) with probability one. Furthermore, for 0 <a<1/2 the
norm

e sup G 0=S6 1)

s, yer (58— SV + (t—1))"?
(s,2) 5 (s',1)

(1.3)

again satisfies P(|W(-, )|, <) =1.

Also, if the single differences in Eg. (1.3) are replaced by suitable
double differences we obtain a still larger a-Holder norm. This is the norm
we study for the Brownian sheet. That is, if (s, 1) I? and (s+ h, t + h') e I*
with A, A’ >0 we set

Af(s t, b W)= f(s+h t+H)— f(s, t+ )~ fls+h )+ f(s, 1) (14)
and for 0 <a < 1/2 we define the norm ¢, by

|Af (s, t, b, B')|

1.5
(s,0)el? (hk')m ( )
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Defining the analogues of H,(I) and H, (/) for the norm ¢,(-) we set

H,,(-)={feCo(I"): q.(f) <o}

and

: |4f (s, £, h, h')|
H 12):{feC(12): lim sup — =0
a0l ° 50 (sl (s+mit+k)el? (ht')
h b >0,max(hR)<S
Then H, (I%) and H, ,(I?) are both Banach spaces in the norm g,(-), and
Orey and Pruitt"® [Theorem 2.1] implies

P(q,(W)<0)=1 (1.6)

for all «e(0, 1/2). Furthermore, since q,(f) increases as « increases, we
also have paths of the Brownian sheet in H, , with probability one for
each a e (0, 1/2).

The small ball estimates we obtain are given in the following theorems.
The main tool for Theorem 1.1 is a result of Ciesielski® which establishes
Banach space isomorphisms between the spaces of «-Holder paths and
sequence spaces. This method has also been used recently in the study of
some large deviation results for Brownian motion in Baldi and Roynette,®
and we are indebted to Baldi and Roynette® for inspiring us to use this
method in connection with these small ball problems and to Michel
Ledoux for pointing this manuscript out. It is well known that small ball
problems are very different than their large deviation counter parts, but
nevertheless the Ciesielski isomorphisms are useful in both contexts.

In Theorem 1.2 we provide small ball estimates for ¢,(W) when W is
the Brownian sheet and 0 <a < 1/2, If the usual L,-norm on I? is used,
then small ball estimates are also known for the Brownian sheet, but for
the sup-norm the problem remains open. Hence the results in Theorem 1.2
extend what we know for the Brownian sheet, but much remains to be
done. The recent paper of Li‘‘? contains additional information and
further references.

Theorem 1.1. Let {W(t):¢t>0} be a sample continuous Brownian
motion in R' and set

Yo (e)=log P(|W],<e) >0 (1.7)
If 0 << 1/2, then

lim 620 -2y ()= —C, (1.8)
e—~0
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exists with
27O < C <2725 —1)(2 2= 1)) ¥U-2r  (1.9)

where
0o 1,2/(1 = 2a) , —u¥/2 ©
I = (2/m)12 wo€e — 1/2 —x22
= (2/n) jo o % md Gw=m) j e dx

(1.10)

Remark 1.1. The precise value of C, is unknown to us.

To state our result for the Brownian sheet we need the notation
f(e)=~ g(¢) as ¢ > 0, which means that there is a constant C, 1 <C< o0,
such that

1/C<li_mf(8)/g(8)<ﬁaof(8)/g(8)<c (1.11)

e—0

Similar notation is used for functions f(x) as x — co, and also used for
sequences. We will write f(e) ~ g(¢) as e » 0 if lim, _, o f(¢)/g(¢) = 1. Hence
Eq. (1.8) can be written as '

Y, (e)~ —C, g1 (1.12)

Theorem 1.2. Let {W(s,1):5,1>0} be a sample continuous Brownian
sheet and set

Yo(e)=log P(q.(W)<e) ¢>0 (1.13)
If0<a<1/2 thenase—0
Yale)x —e 0" log(1/e) (1.14)
More precisely, for all ¢ > 0 sufficiently small
Pale)= ~(27 17020 =1)(2' 5= 1)) ~¥03/(1-20) - T~ ¥ 7> log(1/e)
and
W, () < =240 VU =29)(1 —20) . I,e= %" =) log(1/e)

Remark 1.2. After completing this manuscript we became aware of
Baldi and Roynette,® which -was kindly supplied to us by Michel Ledoux.
The results in Baldi and Roynette™® and ‘Baldi and Roynette!® have
now been merged, and will appear as Baldi and Roynette.”” The overlap
between Baldi and Roynette'®’ and this paper consists of Theorem 1.1 and
Eq. (4.5) in Theorem 4.1.
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2. PROOF OF THEOREM 1.1

Our first proposition establishes that the limit in Eq. (1.8) exists, and
that it is a certain infimum. Unfortunately, we are unable to evaluate this
infimum, so we turn to the task of giving the bounds for C, immediately
following the proposition.

Proposition 2.1. Let {W(z): >0} be a sample continuous Brownian
motion in R'. Then

lim 20 —2) Jog P(| W(t)|l, < &)= inf x¥1 =2 log P(|W(1)ll,<x) (2.1)
x>0

e—0
Proof. First we show that for all ¢ >0 and all positive integers n > 1

POIW (Nl <e) < PUIW(0)]|, <0~ 202y (2.2)

This follows because {W(¢): ¢ >0} has stationary independcnty increments

and the rescaling property that as stochastic processes W{z/n) = W(t)/\/;.
Hence we have

Wi(t)— Wi(s
P(uW(r)uass)sP( swp W
O0<s<t<1—n}! |t—S|
Wi(t)y— W
<g, sup |__(_)_a(S_)_|<8>
1-ntgs<r<l |t —s]

<p< sup w<8>

0gs<isl—n~t ll-—Sla

xP( sup w<£>

—n-lgs<igt ‘t—er
Wi(t)— W
=p< sup Mse)
Ogs<r<sl—n! ll—SI
Wi(t)— W
xP( sup M<8>
O<s<t<n ! It —s|
t)— Wi
<P( sup w<s>
Oss<rgl—n—! |t —s]

x P(IW ()], <nt =24%)

Iterating this procedure, we obtain Eq. (2.2).
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The proof now follows a fairly well known argument, see, for example,
de Acosta.t!? That is, let

I=lim ¥~ * log P(|| W(1)]. < &)

g0

L=Tim &' 2 log P(| W(1)|l. <¢)

e—0

Also let {a,}, {b,} be two positive sequences such that a,—0, b,—0,
a,b;'— 0 as n— oo, and

lim a7/ =2 log P(|W(1)l,<a,)=1,

n—

lim 57"~ Jog P(|W (1), <b,)=L

- 0

Then by Eq. (2.2),
P(IW (1)l <b,)
< PIW(D1L < [(a,by )0 720707297 p, Lot 21120

< P(IW()ll. < an)[(anb;l)Z/(l—Za)]

where [x] denotes the greatest integer less than x. Hence
by =2 Tog P(|W(1)ll, < b,)
< a/U' " log P(I|W(t)]. < a,) - (bya, )12
[(ayby 'y =2]
impling L </ and consequently L =1.

Now for ¢>0 small and any fixed x > 0, there exists an integer k > 1
such that

x(k+1) 7022 < g < = =272 (2.3)

Thus we have by Eqgs. (2.2) and (2.3)

e/ =2 log P(|W(1)ll, < &) <&/ = log P(||W(1)] < xk— 1 =>72)
<& log (P(| W(2), < x)*)
= ke?! 72 log P(| W(1)]|. < x)
<Xk 1)~ ke log P(|W(1) ] < x)
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Hence it follows that

lim & =2 log P(|| W(1)l|, < &) <x*"' =¥ log P(|| W(1)], < x)

£—0

which clearly implies the statement of Proposition 2.1.

To prove C, satisfies Eq. (1.9) we turn to the isomorphism results in
Ciesielski.’® To do this we need some further notation. For 0 <z <1 we let
hi(t)=1, and

2" (2k—-2)2" i< (2k—1)/2" !
B (Y=< =277 (2k—1)/2" ' <t < 2k/2m+1 (2.4)
0 otherwise

for n=0,1,..,and k=1,..,2" Thus {h,:i>1} is the Haar functions, and
for 0<r<1 we set

¢,.(z)=j0'h,.(s) ds, izl (2.5)

For 0<a<1/2 and 0 <1< 1 we also define

#1(t)=¢:(2),  hj(1)=h,(1) and
P i(1) =221 DG (1) (2.6)
h;n+k(t) — 2(n+1)a4(n/2+1)h2n+k(t)

fOf n= 0, 1;..-, and k = 1;..., 27 If Co= CO(Z+) denotes the space of sequen-
ces {£;:i>=1} such that lim,_, ., ¢,=0 and

T({&H =} &g (27)

izl

o

¢o onto H,,. Furthermore, if the sup-norm is used on ¢, so that
1{&} o =sup,s, I£,] and the a-Holder norm is used on H, q then T, is a
bounded linear operator of ¢, onto H,, with operator norm

then Ciesielski'® [Theorem 2], establishes that T, is isomorpphism from

2/B2* - DR = 1)K IT ) <2/((2*—1)(2' = —1)) (2.8)
The inverse of T, from H, , onto ¢, is given by

&= hes)dx(s)  im1 (2.9)



554 Kuelbs and Li

where h{(s) is given in Eq. (2.6). Letting 77 ! denote this inverse, Ciesielski®
[Theorem 2] also establishes that the operator norm of T ' is one. Hence
if

Vi0)={xeH,o: T, '(x)| <3}

and k,=(2°— 1}(21‘“— 1)/2, then Eq. (2.8) and that |T ' =1 together
imply
Vikee)s {xeH, o lIxll,<e} = V,(e) (2.10)

Thus the constant C,, 0 <a<1/2, in Eq. (1.8) will satisfy Eq. (1.9) if for
any 6 >0 and &> 0 small

log P(IT (W)l o <€) > —(146) 210 -2 ¢ =201 -2

2.11
log PIT, (W)l <0) < —(1—8) 22020207, g0 11

To prove Eq.(2.11) we first observe that {h?:i>1} are orthogonal
functions on [0, 1] with

1 1
j |hziz(s)|2 ds=1 and J |h;n+k(S)|2 ds = 22n+Da— 72+ 1))
0 0

Hence

&= [ hes) dW(s) iz 1
0 .

are independent centered Gaussian random variables with variances
E(D=1,  E(§)=2 0y (2.12)

where 2'<i<2'"! for i=0, 1,.... Thus

PAT (W)l <e)=]] PIE]<e) (2.13)
izl
Letting
G(t)=(2/n)“zro e Pdu 120 (2.14)

we thus have
POIT'(W)ll o <8)=(1—-G(e)) [] P(i&]<e)
iz2

=(1-G(e) [] =G0 =+0=22y)  (215)

iz2
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Since 2° < i< 27! for i=0, 1,..., we have

21251 20)/2 < (1 ~a)+(L—22)if2 < gl —ap(l—2a)2
for i>2, and thus

S Wl <o)< ] (1-G(e2! it~
PUT 0Nl w o< [T (1= 62!t 2%) (2.16)

PAT (W) <) > (1= Gle)) [T (1—G(e2"%" 27

iz2
Now let
Ag(A)= H (1 - G(A*)) (2.17)
iz1

for 1 >0, f>0. Hence Eq. (2.11) will follow from Eq. (2.16) with
f=(1-2a)/2 and O<a<1/2, provided we establish the following
proposition.

Propesition 2.2. Let A44(4) be given by Eq. (2.17) with 1>0, >0
and assume G(t), >0, is given by Eq. (2.14). Then as 4 — 0
1 A 12 % ' ~ B
og A(A)~ —(2/) fo o (2.18)
Proof. To prove Eq. (2.18) we first observe
log Ag(A)= Y, log(1 — G(4if))
izl
with — oo <log(1l — G(x)) <0 increasing in x for 0 < x < cc. Hence
[ 1og(1—Gax#) dx> ¥ log(1 - G(4if)) (2.19)
1 i»1
and by the negativity of log(1 — G) we also have
T log(l — G(Ai%)) > fw log(1 — G(Ax")) dx (2.20)
i»2 1

Since

A
log(1 — G(4)) =log ((2/7:)1/2 f e " du) ~log i as A—0
0
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we thus have from Egs. (2.19) and (2.20) that Eq. (2.18) holds if
a0 w g /By =2
log(l — G(AxP)) dx ~ — (2/m)\/? _u___
J, togtl =G v — () [~ s
X du-A~YF as A—-0 (2.21)
To prove Eq.(2.21) we integrate by parts and recall
dG(1)/dt = —(2/m)** exp(—1t%/2) to obtain
.y
1-G(u)
(2.22)

du

jf log(1 — G(ix*)) dx = —log(1 — G(1)) — (2/m) f’ )

where u=f(x)=Ax?. Hence f~(u)=x=(u/x)"?, and log(1 —G(1)) ~log A
as 4 —0, so we have

—u%2

du- AP as A—0

o0 1/2 ooul/[’,g
fl log(1 — G(ix")) dx ~ — (2/m)" L 1-Gu)

(2.23)

Since 1—G(u)=(2/n)"” [4e="P dt~ (2/n)"*u as u—0 and 1—G(u)~ 1
as u— o0, Eq.(2.23) and f>0 yiclds Eq. (2.21). Thus Proposition 2.2 is
proved.

Hence Eq.(2.18) with f=(1—-2«)/2,0<a<1/2, and Eq.(2.17)
together imply Eq. (2.11), so Theorem 1.1 is proved.

3. PROOF OF THEOREM 1.2

The proof of Theorem 1.2 follows along the same lines as those for
Theorem 1.1. Hence our first step is to establish analogues of the results in
Ciesielski® for functions of two variables. For this we need the following
notation.

Let ¢o(Z* xZ™) denote the sequences {;:i,j>1} such that

lim,, ;, , &;=0 where i v j=max(i, j). We equip co(Z " xZ™) with the
sup-norm
1{&s} o= sup [&;l (3.1)
Ljz1

and the space H,_, with the g,-norm. Furthermore, we recall the modified
Haar and Schauder functions {h%:i>1} and {¢%:i>1}, respectively,
given in Eq. (2.6). Then we have the following proposition.



Small Ball Estimates 557

Proposition 3.1. The linear mapping T, defined on ¢o(Z* xZ*) by

T, ({&) =Y &9:s) e () (s,0)el’ (3.2)

Ljz1

maps ¢o(Z* xZ") in one-to-one fashion onto H, , with the series in
Eq. (3.2) converging uniformly on /2 in an ordering determined in Eq. (3.6).
Furthermore, if co(Z* x Z* ) has the sup-norm and H,_, the g,-norm, then
T,, is a bounded linear operator between the Banach spaces with operator
norm

462 -2 =D))<,

al

<A@ -DERITE-1) 0 (33)

The inverse operator T, ! is given by
g,.}.:ﬂﬂhgf(s) hi(s)dxXs, 1) i jz1 (3.4)

and | T ' =1.

Our proof of Proposition 3.1 depends on the fact that {¢,4,:4, j>1}
is a Schauder basis for Cy(I?). This has been proved in a number of papers,
but a particularly useful reference is Semadeni,**) and Ellis and Kuehner®
provides some additional details. In particular, Semadeni*® [Theorem 1]
implies that for x e Cy(1?), the double series

Y a;9i(s) 4;(t) (3.3)

Ljz1

converges uniformly to x(s,7) on I> when the sequence of products
#;(s) ¢,(¢) is arranged into a single sequence

$p11(5) 8;(1) k=p*+i, I<i<p
T,.(s, )= for . e 3.6
{5 {¢,-(s)¢,,+1<t) k=pr+p+i tsi<pr1 OO
with p=0, 1,.., and the coefficient functionals are given by
a,.]:a,j(x):jjﬂ hils) () dx(s, 1) i j>1 (3.7)

Since the {h;:i>1} are the Haar functions, and hence piecewise constant
on [0, 1], the Stieljes integral in Eq. (3.7) can be interpreted in the obvious
way, ie. if 1 is a constant function, then

fb jd L dx¥(s, 1) = Ax(b, d)— x(b, ¢)— x(a, )+ x(a, b)) (38)

860/6/3-10
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Then a;;(x)=x(1,1) and for #,m=0,1,..; 1<k<2", and 1 <I<2™ it is
easy to check that

Ay oy (X)) = ﬂﬂ x(s, 8) d(pon s o X pom 1 4 )8, 1) (3.9)

where u,-, ; is the measure on I putting mass 2(27%) at (2j—1)/2"*!
and mass —27% at each of (2j—2)/2"*! and (2j)/2"*'. Hence from
Eqgs. (3.7)-(3.9) it follows that the sequence {a;(x):i, j=1} is uniquely
determined by xe Co(I?). Also, the uniform convergence in the ordering
given by Eq. (3.6) implies

lim sup |x(s, z)—‘f f a,(x) 4.(s) ,(r)| =0 (3.10)

N=® (5,0)er? i=1 j=1

as (N, N) is the N2th term in the ordering.
For each o, 0 <a < 1/2, we now have the following lemma.

Lemma 3.1. Let {A¥:i>1} and {¢%:i>1} be as in Eq.{2.6), and
assume T, is defined on ¢o(Z* x Z*) by Eq. (3.2). Then T, ({¢,})eH,, ,
and the series converges uniformly on I° in the ordering determined by
Eq. (3.6). Also, the right-hand inequality in Eq. (3.3) holds.

Proof. We first show that if {£,} is a bounded sequence and
0<a<1/2, then

S= sup Y 1&1]195(s)] g7 () < oo (3.11)

(s0)el? jjx1

Recall that the sequence {¢*:i> 1} consists of nonnegative functions with
¢l = l1g1llo =1 2nd [$5. ,lo=27"""D% Furthermore, since ¢3.,,,
k=1,.., 2", have disjoint support we have

S<UEL($ 2mmeny § gmemes

n=0 m=0

+ Z 2—(n+1)0!2—(m+1)“><w (312)

nm=0
Next we show that if {£;} is a bounded sequence, then the series

SHEs =3 &;8%(s) 43(1) (3.13)

Ljizl
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isin H, for 0 <a<1/2. In view of Eq. (3.11) the series converges uniformly
with regard to the ordering determined by Eg. (3.6), and for notational
simplicity we denote S({&,})(s, t) by f(s, ). Hence f'e Cy(I*) and

Af(sy t, h9 h,)

Sls+h t+h)—f(s, t+h)—f(s+h 1)+ f(s1)

Y Cy@i(s +h) — ()51 + 1) — 45(1))

Lj=1
Thus

A1, z,h,h'><n{5,-,-}1|m(|h|+§ 5 x¢zn+k<s+h)—¢;n+k(s>|)

n=0 k=1

-(|h’|+ ) |¢;m+k(r+h')—¢;m+,(r>|)

m=017=1
and arguing as in Theorem 1 of Ciesielski‘® we thus have

1Af (s, 1, ) <U{E o (10117 4/((27 = 1)(2' 7% = 1))%)

Hence

2. () <4 A2 =12 * = D)

Thus fe H,,, and the map T, of Eq. (3.2) actually takes /*(Z* x Z*) into
H, . We also have verified that the right-hand inequality in Eq. (3.3) holds.
Furthermore, since finite sums of the ¢7¢7 are in H,_ ,, this implies that T,
maps co(Z* xZ*) into H, ,. Hence Lemma 3.1 is proved.

Our next lemma is the follow.

Lemma 3.2. If {;=¢{;(x) is given by Eq. (3.4) and xe H,_,, then
lim £.(x)=0 (3.14)

ivjo o
Furthermore, the map 4: H, ,— co(Z" x Z*) given by
A(x) = {£,(x)} (3.15)

is one-to-one. Hence T, is one-to-one and onto H, ,, and 4 is the inverse
of T, as defined on ¢y(Z* xZ™). Also, the operator norm of A=17"'
from H, , onto c¢o(Z* xZ") is one, and the left-hand inequality in
Eq. (3.3) holds.



560 Kuelbs and Li

Proof. I xe H, ,, then Eq. (3.14) follows from Egs. (3.7), (3.9), and
(2.6) since they imply

52"+k,2'"+1(x)=4"2(n+1)a2(m+l)a(11 =L—I;+1,)

where
I, =Ax((2k —2)/2" 1, (21 —2)/2m +1 2=+ 1) = (m+1))
12=AX((2k— 1)/2n+]’ (21_2)/2m+1, 2—(n+l), 27(m+1))
I =4x((2k—2)/2" 1, (21— 1)/2m+1, 2-n+ D) = (m+ 1))
L=4x((2k—1)2"+1, (21 —1)/2m+1 2 -+ 1) —(m+1))
If xe H, o, we thus have Eq.(3.14), since similar expressions hold for
Epomy(x) or Eany o 1(x). Given the form of A(x) it is now easy to see A is
one-to-one and the inverse of T, as defined on c¢o(Z* x Z™). Hence T, is
also one-to-one and onto H, ,. Furthermore, T q:l = A has operator norm
less than or equal to one. To see |7, '|| =1, we apply T, ' to x(s, t) = st.
Then &, =1, but &; ,(x) =0 when i# 1 or j# 1, which yields the result.
To finish the proof of Lemma 3.2 we need to verify the left-hand
inequality in Eq. (3.3). This follows as in Ciesielski‘® [Theorem 1].

Combining Lemmas 3.1 3.2, we thus have Proposition 3.1 proved.
To complete the proof of Theorem 1.2 we define

U (8)={xeH,, o IT, (¥)],<0}

and recall k, = (2*—1)(2' ~*—1)/2. Then Eq. (3.3) and the operator norm
of T, ! being one together imply

U kleys {xeH, o:q9.(x)<e} = U,(¢e) (3.16)

Hence Theorem 1.2 will be proved if

log PUIT, ' (W)lo <&)x —e 712 ]og(1/e) as —=0 (3.17)
To verify Eq. (3.17) we observe that
l.j.:“ﬂhj‘(s)h;‘(t) AW(s, 1) i, j=1

are independent centered Gaussian random variables with

E(§f1)=1, E(é;)z2—(172a)f+2(1—1)27(172a)f+2(a71) (3.18)
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where 2/<i<27* ' and 2/< j< 27+ for f, j=0, 1,.... Hence

POIT, Ws<e)= [ PE;l<e) (3.19)

Lj=1
Letting G(z) be given by Eq. (2.14) we thus have
PIT, (W)w<e)=(1-GE) I, -I,- 1 (3.20)
where

Iie)=[] P(¢al<e),

iz2

L) =1 (&, <2) (321)
=2

1) = T PUgI<e)

Since 27 <i<2" ' and 27 < j<2/* ! for i, j=0, 1,..., we have
21/21'(1 —2a)/2 < 2(1 —a)+ (1 —2a)i/2 < 21 7rxl'(1 — 2a)/2

and
21/2j(1 —2u2)/2 < 2(1 —a)+ (1 —2a)j/2 < 21 —otj(l — 2x)/2

for i, j=2 as 0 <a < 1/2. Thus from Egs. (2.15) and (2.16), and Proposi-
tion 2.2 we have

log P(IT, (W)l <e)x —e 7! P tlogIse) as -0 (3.22)
Hence Theorem 1.2 will be proved if
log I,(e)x —e Y1~ ]og(l/e) as &—-0 (3.23)

and we verify the inequalities following Eq. (1.14). We only verify Eq. (3.23)
and the inequalities are easily checked by examining the proof. Letting

A= T1 (1—G(Ai%*)) (3.24)

for >0, >0, we will have Eq. (3.23) be setting f=(1—2«)/2 and
0<a<1/2, provided we prove the following proposition.

Proposition 3.2. Let A4(4) be as in Eq. (3.24). Then as A >0

172, —u?/2

1 5]
logAﬁ(i)~—(2/n)1/ZBfo L;_emdu-i"l/ﬁlog(l/i) (3.25)



562 Kuelbs and Li

Proof. Since — oo <log(l — G(x) <0 is increasing in x for 0 <x < o0,
it is easy to see from the argument in Proposition 2.2 and the conclusion
of Proposition 2.2 that it suffies to prove as A —0

ul//)’e—uz/2
1—-Gu)
x du - A~ log(1/2). (3.26)

1

[ [ 101~ G(2xy?)) dx dy ~ _(2/n)uzlf‘”
1 l} 0

Now

[ log(1 — Gix"y#)) d = —log(1 - Giy") — 4~7 - (2/x)
1

joo 1 yYBe—v2

x| ———du 3.27
wty 1—G(u) ( )
and by Eq. (2.23)
jwlog(1—G(1yﬁ))dy~ —yph VP as A0 (3.28)
1
where y; is a constant independent of A.
Hence Eq. (3.28) implies
jw jw log(1 — G(Ax"y%)) dx dy
1 1
© poo | ul/ﬁe-uﬂ
~ yp AV QB ()2 — 2 _dudy. (329
7 e[| T e 62
Now as 4 -0
w poo | yl/Be 2 o puAB | VBe =2
—————dudy= ————dy di
L Lyﬂyl—G(u) v L L y 1—G(u) )
1 re yl/Bp—12
—_= — -—d
; L log(u/2) -7 — g d
1 w0 LB =112 '
~—= 1/2 —d 3.30
gloa/a) | Tgosdn  (330)

Combining Eqgs. (3.29) and (3.30) we thus have

jw jw log(1 — G(AxPyP)) dx dy
1 1

o 3y /Bp—u/2
T %-wnrﬂf TG A loa1/2)
o 1—
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as A—0, and Eq.(3.26) holds. Thus Proposition 3.2 is verified and
Theorem 1.2 holds.

4. AN APPLICATION TO BROWNIAN MOTION

Let {W(1): >0} be a sample continuous Brownian motion on R', and
assume H, < Cy(I) is the Hilbert space of absolutely continuous functions
on I whose unit ball is the set

K:{f(z):jl g(s)ds, 0<1<1: jlqg(s)wdsgl} @.1)
0 0

Here the inner product norm is given by

=[] 1rora)” sen, (42)

If
n,(t) = W(nt)/(2nL,n)">  0<t<1 (4.3)

then the functional form of Chung’s law of the iterated logarithm given in
Csaki,'”’ and in more refined form in de Acosta,” implies for each f in
Cy(I) that with probability one

{n/4-(1—|\flli)‘“2 if | f1,<1

+ 00 otherwise

h...i_n L2n ”ﬂn '_f“oo = (44)

Here and throughout Lx =max(1, log, x), Lyx= L{Lx) and L;x= L(L,x).
In view of Theorem 1.1, we can now present the analogue of Eq. (4.4)
when the sup-norm is replaced by the a-Holder norm || -|,.

Theorem 4.1. If 0<a<1/2 and C, is as in Eq. (1.8), then

hm (LG)l-a Hnn_fna

n - 00

—~1/2 (1R2a)/2_ _ 2y —(1—2a)/2 :
{2 C. (I—=1112) if 1/, <1 (45)

+ otherwise

If |fl,=1 and f(:)=E(W(t) h(W)) where h is a continuous linear
functional on (H,,, ||-|,), then with probability one

0< lim (Lpn)*'~*C=2) |Ip, — f|, < o0 (4.6)

n— o0
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If | fll,=1, but fis not of this form, then with probability one

lim (L,n)*'=2/C=2 Iy, — f],=0 (4.7)

> 0

To prove Theorem 4.1 we first establish the following proposition for
iid. samples of Brownian motion. The remainder of the proof is handled
by fairly standard rescaling arguments.

Proposition 4.1. Let W, W,,.. beiid. copies of Wand let 0 <o < 1/2.
Then with probability one

im (Ln)'=* |W,/(2Ln)"? - f|,

n— O

_ [T (- 27 £, <1
"V tw otherwise

(4.8)

Furthermore, if || fI|,=1 and f(¢) = E(W(¢) h(W)) where h is a continuous
linear functional on (H,, ||-l|,.), then with probability one

0< lim (Ln)*C==/C=2 | W, [(2Ln)" ~ f]|, < 0 (4.9)

n— 0

If | f,=1, but fis not of this form, then with probability one

lim (Ln)*=/C=2 1w, /(2Ln)"? — £, =0 (4.10)

n— oo

Proof of Proposition 4.1. If | f]| ,< 1, then the corresponding part of
Eq. (4.8) holds by applying the Borel-Cantelli lemma and the following
result.

Lemma 4.1. If feH,,r>0, and 0 <a<1/2, then

lim 22 log P(IW = 4 1,< 4472 = —41f|2 = Cr~ 7 (411)

A= O

where C, is given in Eq. (1.8).

Proof. The proof of Lemma 4.1 follows that of Theorem 3.3 in
de Acosta.!) In particular, it requires the Cameron-Martin translation
formula which asserts that for fe H,

PIW—=4].<7)

—ep(=FIE)[ ep(—ACaf>)du) (412)

{(x:lixllas}
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The measure u is Wiener measure and <{x, ' >~ denotes a “stochastic inner
product” which is N(0, ]|f||i) and is such that <{x, f>~ =f(x) if f is
continuous and linear. Hence Jensen’s inequality and the symmetry of the
set {x: [[x||,<t} imply

A
PUW-= il <0z e ( - S IA12) - PUWIL <o)

Setting t= —A'~*r and recalling Eq. (1.8) we have
lim A72log P(|W —Afll, <A~ 072> =3 fI2— Cor #0720 (4.13)

A— o0

Since feH,, we can write f(-)=3,. foh,(s)df(s)$,(-) where the
{¢;} and {k;} are the Schauder and Haar functions, respectively, and {¢,}
are CO.N.S in H,. Hence given ¢>0 there exists N=N(e) such that
Lf =23, Joy(s) df(s ;1% <e. Letting g=3"%_ [§ 4;(s) df(s) ¢; we have

P(IIW—ifllu<r)<eXp<——llfll T4 sup |<x,g>~1)

xxlast

* j{ Dl }eXp(—-/1<x’f_g>~)dﬂ(x) (4.14)
Now (x, g>~=3X%_, [5h,(s) df (s) f h;(s) dx(s) (see, for example, Kuelbs
et al."V for details), so

J s @t

sup

xxlla<z

h,(s) dx(s)

]

<Myt

N
sup [<x, £)7I< Y

xilxllast

and we also have

Joop o, xR A T = D7) dut)
At )
= s e+ (7= )< yexp (5 17— )

12
<uto <) exp (5 1/ 1)

by the Cameron-Martin formula since u(x+ U)< u(U) for every convex
symmetric Borel measurable set U. Hence

A A?
P = if L <e)<exp( = 5 U2+ 5 U~ 612+ bt ) P <)
(4.15)
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Setting =4"""?"r and recalling || f — g|2 <& we have

im 272 log P(IW — A, <A™ 72I) < — I f112/2 +8/2 = Cr =202
A— o
(4.16)

Since € >0 is arbitrary, Eqs. (4.16) and (4.13) combine to yield Eq. (4.11),
so the lemma is proved.

Hence we . have Eq.(4.8) when |f]l,<1. If |[fl{,>1 the same
argument yields the latter half of (4.8), but we also can see this as follows.
That is, if || /], =1, then Theorem 1* of Kuelbs et al.'" implies that with
probability one

lim d," | W,/(2Ln)" —f1|,>0,

n—

where 4! p,=(Ln)' ~* and p, — . Hence the latter half of (4.8) holds
if |fIl,=11f | f],>1, then the result follows immediately since we have
for all ¢ > 0 that

P(W,/(2Ln)"* € K + ¢U eventually) = 1 (4.17)

when U= {x:|x|,<1}. See Theorem 2.1 and remark (C) following
Theorem 2.1 in Goodman and Kuelbs"? for details regarding Eq. (4.17).
Furthermore, note that (H,,, |-|,) is a separable Banach space which
supports the Wiener measure u and hence it is well known that the
pair H, and (H,,, ||-||,) form an abstract Wiener space. Hence with u
probability one we have lim, , , |lx— IT,(x})||,=0, or, equivalently, that
lim,_, , 1Q4(x)ll,=0. Here

d
I,(x)=Y <(xo> e, and Qux)=x—Hy(x)d>1
j=1

where {«;} is an arbitrary CONS. in H (see, for example, Fernique®’).
Thus Theorem 2.1 in Goodman and Kuelbs"® readily applies.

Hence it remains to verify Eqgs. (4.9) and (4.10). In view of the iso-
morphisms T, and T, ' defined in Egs. (2.7) and (2.9), respectively, and
Proposition 1.2.4 of Fernique,® it suffices to prove that with probability
one

0< lim (Ln)?=*/C=20 X, /2Ln)"? =T (f) o <00 (418)

n— o0

when f'= E(Wh(W)) and h is a continuous functional on (H,,, ||-|,), and

m (Ln)* =072 X, /L0 = T (). =0 (419)

a— w0



Small Ball Estimates 567

when f is not of the this form. In Egs. (4.18) and (4.19) X,=T_%W,),
n>1, are iid. independent coordinate centered Gaussian vectors with
values in ¢, and g= T, '(f) satisfies | g|,=1 where v is the Gaussian
measure on ¢, induced by X=T_YW). Here |g|,=1 follows as in
Fernique,® but also it is easy to check this directly. That is, if
/= E(Wh(W)) where h is continuous on (H,, ||-|,), then g=T7(f)=
E(T;YW)Yh(W))=E(XhoT,X)) and 4o T, is continuous on ¢,. Thus

gl =E((he T (X))*) = E(R*(W)) =l f]; =1

as claimed. Now we can apply the results in Kuelbs efal*') to this
problem. That is, Theorem 1 of Kuelbs et al" imply Egs. (4.18) and
(4.19) since Eq. (2.11) and Proposition 3.2 imply

log P(| X|| &)~ —e¥0~2 a5 &0

and solving for d=d(n) in Eq. (3.3) of Kuelbs eral™ we have
d(n)x (Ln)~*'~*V(3=22) Thys Proposition 4.1 is proved.

To complete the proof of Theorem 4.1 we now apply some rescaling
arguments. Hence we present the following lemmas. The first follows
calculations similar to those in Lemma 3.4 in Baldi et al.©®

Lemma 4.2. If fe H, and g(-)=f(/(-)) on I, and 0 < . < 1, then for
O<a<1/2

If—gh, <2[1=41""*|f], (4.20)
Proof.  Since g(-)=f(A(-)),

If—egl.= sup [(f(1) = f(41)) = (f(s) — f(4s5)) (421

Osrgig [t —s|®

HO0<s<i<], then

=16 =& =N =| [ rwdu— """ ) du

sV At As

<yis, 4, A) £, (4.22)
where

(s, 6, A)= ([t = (s v AD)| P+ |(s A At)— 2s5]"?)
If At<s, 0<s<t<], thensv At=5, s A At=4t, s0

y(s, 2, A= |t —s]"* (14 A3 (4.23)
and ’
ft—s| Pme= P L s/ 1= A2 {4.24)
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Similarly, f s<At, 0<s<t<1,then sv A, s A At =5,
s, t, A)=|t—At| 2+ |5 — As| 2212 (1 — 412 (4.25)
and
[t—s| =71 —s/t] "<t *[1 =A]7" (4.26)

Combining Eq. (4.21) to Eq. (4.26) and that 0 <« < 1/2, we obtain
Eq. (4.20). Hence the lemma is proved.

Lemma 4.3. Let m, n, r be nonnegative integers with m<n <r and
a,=(2nL,n)'? for n>1. Then for all fe H, and 1/2< p<1

(Lon)? (W(n(-))a,—fl.
n m\ 2

> (—) (7) " (Lam)? | WOn(-an— 11,

m

(i

() @ (1-2) 1, (@27)

Proof. This is a slight modification of Lemma 5.3 in de Acosta"
applicable to the o-Holder norm rather than the sup-norm. Since
W(n(%2(-))= W(m(-)) we have

1/2—~a

(FA P

1——
¥

m

(Lan)? WO a1 () 2L W) —a, 1 (2 )

o

>(-”—)“E2—’)—puW(m(-))—ang(-)na (4.28)
m a

r

where g(-) = f(5(-)). Now

IWim(-))—a, g( .= 1 Wim(-))—a, fll.—a, | f—gl.—(a,—a,) I fl.
{(4.29)

and since f € H, Lemma 4.2 implies
If = glla<2|L—mfr|" =% | f1, (4.30)

Combining Egs. (4.28)-(4.30) we get Eq.(4.27). Hence the lemma is
proved.
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Lemma 4.4. Let ny=0, n,=exp(r/(Lr)’) and I(r)=[n,_,,n,) for
r>1. Let m, denote the smallest integer greater than or equal to n,_,
and p, denote the largest integer less than or equal to n,. Then for
12<p<1,0<a<1/2, and 7> 2/(1 —2a), we have

lim inf)(LG)p 11, = flle= lim (Lym,)” [0, —fll,  (4.31)

r— oo nEr r— 0

Proof. 1n view of Lemma 4.3, this follows since lim, , , n,_,/n, =1,

m (L2pr)p (1 _mr/prll/27«=0’ and m (L2pr)p (1 —am,/ap,)zo

r— o

when 1> 2/(1 —2a).

Proof of Theorem 4.1. 1f W,= W(m,(-))/m!?, then W, W,,.., are
identically distributed copies of Brownian motion. If | f], <1, then the
proof of Proposition 4.1 shows that with probability one

lim (Lr)'~*||W,/(2Lr)"* ~ 11,

r— <0

> 27IRCUI (L | f2) 02 (432)

Independence is not required here since this depends on the convergence
part of the Borel-Cantelli lemma. Now Lr ~ L,m, and since 0 <o < 1/2 we
have from Eq. (4.17) that with probability one

lim (Lr)t—*

r—

w_ .

1 1 |
S lerered| RS

Hence Egs. (4.31)-(4.33) imply with probability one
lim (Lyn)' =% i, = fll 2 272CE 22 (L= | 7)1 22 (434)

n— o0

The reverse inequality in Eq. (4.34) when | /|, <1 is similar to the argu-
ment starting with Eq. (4.38) to establish the right-hand side of Eq. (4.6).
In Eq. (4.6), | fll,=1 and this is more delicate, so we only include the
details of that argument.

Similarly, if ||f]l,>1, then Eq.(4.17) and the previous argument
implies that with probability one

lim (L,n)'~* |1, — fll.= o0 (4.35)

h-— O
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It is also the case that if || /]|, = 1, then the proof of Proposition 4.1 implies
with probability one that

lim (Lr)*' ==/ =2) |, /2Lr)!? ~ f],> 0 (436)
when f(¢)=E(W(t) W(W)) and h is a continuous linear functional on
{Hyo0,1-1,). Hence Egs. (4.33), (4.31), and (4.36) imply the lim inf in
Eq. (4.6} is positive. To verify (4.7) we need to prove that if || /]|, =1, but
fis not of the above form, then we also have with probability one that

lim (Lr)*'=®/C=20 | W(n,(-))/(2n,Lon) 2 —fl,=0  (437)

r— o0

for the sequence n,=exp(rLr). This requires some independence and so
also does the argument to establish the right hand side of (4.6). We turn
to the proof that the liminf in (4.6) is finite as the proof of (4.37) will
follow by a similar argument.

Let no=1, n,=exp(rLr) for r = 1. Let

Wr(l) = (W((nr—nr— 1) { +nr— 1)
_W(nr—1))/(nr_nr—1)1/2 0<t<1 (438)
for r=1. Then W,, W,,.., are ii.d. copies of Brownian motion for 0< <1
and Proposition 4.1 implies with probability one

lim (Lr)**=V@=22 W /(2Lr)" ~ f]|, < 0 (4.39)

r— o0

when f(t)=E(W(t) h(W)) for h a continuous linear functional on
(H,0, I-1,). Hence it is suffices to show

lim (Lr)?0=/C=20 W, [(2Lr)' — W(n,(-))/(2n,Lyn,)"?] =0  (4.40)

with probability one. Since n, =exp(rLr) we have

- (Lr)3/2
lim

r—o Lzr

11
(Lr)'?  (Lyn,)"?

< 0

and hence Eq. (4.17) implies that Eq. (4.40) will hold if
lm (Lr)? =C=2 | W, /(2Lr)"? — W(n,(-))/(2n,Lr)"?],=0  (441)

with probability one. Since
1 1

vy -
(nrh n,_ 1)1/2 n:/z

r

lim rn < 00

r—» 00
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it follows from Eq. (4.17) that

— aV( W.(-)-(n,—n,_ )" 1 1
2(1 —a)/(3 —20) r r r —
() Pl (e |
(4.42)
and hence it is suffices to show that with probability one
Eﬂ- (Lr)Z(l —a)/(3—2a)
W((nr_nr~ )(')+nr7 )_ W(H,7 )_W(nr())
X H L n }1)‘ 7 ! =0 (443)

Thus for 5 >0, scaling Brownian motion implies

<' n,—n, 1)) +n,_) = Win()) fb)

n’?
({1205

>)
— POV()e A(b, 1))

(-0 o]

Now A(b, r) is closed in (H,,, I|-]|,), so by the large deviation results in
Baldi et al.,® we have

where

A(b, r)= {erw:

1
log P(A(b, r))< —3% inf J |1 (s)|? ds (4.44)
feAlb,r) Yo

If feH, and fe A(b, r), then a calculation similar to that used for the
proof of Lemma 4.2 implies

Al =271 2bry 12 (4.45)
where t,=n,_/n,<r . Hence for ¢ >0, Eqgs. (4.44) and (4.45) imply
P(“ W((nr_nr—l)(')-f_nr—l)é W(nrfl)_ W(nr('))”rx
> n:/ze(Lr)l/z_z(l ;a)/(z—za))
82 .
<exp <— Z(Lr)‘“z"‘)/“‘z“’rl‘z‘") (4.46)

Now the terms in Eq. (4.46) are summable, and since ¢>0 is arbitrary
Eq. (4.43) holds. Thus Eq. (4.6) is finite. By the same sort of argument we
now can also establish (4.37), and hence Theorem 4.1 is proved.
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5. AN APPLICATION TO THE BROWNIAN SHEET

If {W(s,1):s5,t20} is a sample continuous Brownian sheet, then the
analogue of K is the set

K2={f(s, t)=£j jot glu,v)dudp, 0<s, 1< 1: Hﬂ g3 (u, v) du dv < 1}
(5.1}

and the relevant inner product norm on the Hilbert space H, , with unit
ball X, is given by

10,0 = ( | J |8t v) dv)l/z (52)

when f(s, 1)= 3 (¢ g(u, v)dudv, (s, t)el’. See, for example Park!¥
[Theorem 6]. The analogue of Theorem 4.1 is the following Theorem.

Theorem 5.1. Let {W(s,t):5,:>0} be a sample -continuous
Brownian sheet and set

Naas, 1) = Wins, n)/(n(2L,n)"?) (s, t)el? (53)
Let g, denote the a-Holder norm in Theorem 1.2 and assume 0 <o < 1/2.

Then with probability one

0< lim (Lyn)'~* (Lyn) ==, (n, , — f) < o (5.4)

n- o0

if |fll,2<1 and it is infinity otherwise. If |fl[,,=1 and f(s,1)=
E(W{s, t) (W)) where h is a continuous linear functional on (H,_,, ¢,),
then with probability one

0< lim (Lyn)*!=*VC=3(Lyn) = =22 (n, , ~ f) <0 (5.5)

n— o

If |fll..=1, but fis not of the form previously indicated, then with
probability one '

i (L,n)*! = *V/B=2(Lyp) = 1= 20 =20 (5, , — f)=0  (56)

n-» 0

The proof of Eq. (5.4) can be obtained by establishing a companion result
to Proposition 4.1.
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Proposition 5.1. Let W, W,...., be i.id. copies of a sample continuous
Brownian sheet and let 0 <« < 1/2. Then with probability one
lim (Ln)'~* (Lyn) =022 ¢ (W,/(2Ln)"? — f) < 0 (5.7)
if |fl,.<1 and it is infinity otherwise. If ||f|,,=1 and f(s, #)=
E(W(s, 1) h(W)) where h is a continuous linear functional on (H_ ,, q.),
then with probability one

0< lim (Ln)>¢t=*V/C=3(L,yp) = =2VC=20 (W, /(2Ln)'" ~ f) < o0
e (5.8)
If || £l ..=1, but fis not of the form indicated, then with probability one

Hm (Ln)? = VC=20(Lyn) == 2020 g (W, /(2Ln)"? — f)=0  (5.9)
Proof of Proposition 5.1. If | f],,<1, then Eq.(5.7) follows by
applying Theorem 1* of Kuelbs ez al. " If | f|,, <1, then we could also
obtain this by proving an analogue to Lemma 4.1, but since we do not
known the constant analogous to C, we chose to use Theorem 1*. If
[f1l,..> 1, then by applying Theorem 2.1 in Goodman and Kuelbs"'? as
indicated following Eq. (4.17), we have with probability one

im ¢, (W,/(2Ln)"?—f)>0 (5.10)

Hence if | f],,»>1, the lim inf in Eq. (5.7) is infinity as claimed.

To prove Egs. (5.8) and (5.9) we use the isomorphism between
(co(Z" xZ*), |-l ) and (H,, ,, q,) discussed in the proof of Theorem 1.2,
and Theorem 1 in Kuelbs et al."V for centered independent coordinate
Gaussian measures on c¢,(Z* xZ?*). Combining these results with
Eqgs. (3.16), (3.19), and Eq.(3.25) we get Egs.(5.8) and (5.9). Hence
Proposition 5.1 is verified.

To finish the proof of Theorem 5.1 we apply the rescaling arguments
of Section 4 to the setting of the Brownian sheet.

Lemma 51. If feH,, with f(s,1)={}[;g(uv)dudy and
S*()=f(A(-)) on I% and 1/2< A< 1, then for 0<a<1/2
g =f*) <AL= A2 | [l (5.11)
Proof.  Since f*(-)}=f(A(-)),

a.(f—f*)=  sup W(s’t’h’h,)_,"{*(“’h’h'” (5.12)
(s.l)sl2 (hh)

(s+ht+h)yei?
A >0

860/6/3-11
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where Af(s, 1, b, b') is given in Eq.(1.4). If (s,t)el? (s+h,t+h)el?
h, i’ >0, then

|Af(5, t hs h,) _Af*(s’ ta h7 h,)l

s+h pt+ 7 s+ hy pACt+47)
=\ sy dudo— [ [T g v) dude
5 t As At
S )’(S, t: ha h” /l) Hf”u,2 (513)

where
y2(s, t, b, I, A)=area(E(s, t, h, ') AE(4s, At, Ah, AR')),
E(s,t, h, ") =[s,s+h]x[t,t+h]
and A4B denote the symmetric difference of 4 and B.

There are two cases to consider. They are:

(i) As+h)<sor At+h)<t,
(il) A(s+h)>sand A(t+h)>¢

If (1) holds then
y2(s, t, b, W', A)=hh + A*hi' (5.14)

and if (ii) holds then

Y25, t, b, By A)=hh' + AW —2(A(s + h) —s)(A(t+ h')—1)  (5.15)
Also, if (i) holds then either (1 —A)s>=2h or (1 —A) =4k, so Eq. (5.14)
implies

s, & By W (AR Y (14222 ()12 < (14 27)12
X (L= A) A=< a(l — )2 (5.16)
since 1/2<Ai<1, 0<h, ' <1. On the other hand, if (ii) holds, then
drawing the appropriate picture we see
YIS, LA R, ASAI—=A)+h)+ R (L =1)(s+h)
+Hs(1=)+ht(1—4)
S2h(1—=A)(t+ A+ 20 (1= 2A)(s+ h)
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Now when (ii) holds,
v(s, t, h, ', )/ (k')
< 2(h(1—A) (& + A )2/ (BR Y + 2(H' (1 — A)(s + b)) 2/ (hR')*
=202 (1= At +R)R) (1= A)(t+ k"))
+2(M) P (L= MY+ R (1= A) s+ h) 27"

< 2(1— A2+ 1)) 2774 2((1— A)(s + b)) > *
<4(1—a)12-e

since (1 —-AD+h)=0+H)—A¢+H)<h, =D+ h)<h and
O0<t+h <1, 0<s+h< 1 Thus the lemma is proved.

The analogue of Lemma 4.3 in the two parameter setting is the
following lemma.

Lemma 5.2. Let m, n, r be nonnegative integers with m<#»n <r and
b,=n(L,n)"? for n21. Then for all fe H,, and 12<p<1,0<p' <1/2

(Lon)? (Lsn) ™" qu(W(n(-,))/b,— )

e
x (Lym)? (Lym) =" q,(W(m(-,-))/b, — f)

~4(£) (L (o

12—«

112

AN P ' b
() @ = (1-22) 0.0 (5.17)

Proof. Since W(n(%(-,-))= W(m(-,-)) we have

Lm
r

(Lon)” (Lsn) ™" q(W(n(-, -)/b,—f)

> (2B Ly Wt = (2 020))

> (1) (Lyr)” (Lyr) "
b

m

Qa(W(m('>'))_bnh) (5.18)

r
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where A(-, )= f(Z(-,-)). Now

qu(W(m(-,)) = b,h(-,-)) 2 q.(W(m(-, -)) = b, /) — b,q,(f —h)
- (br—bm) qa(f) (519)

and since fe H, , Lemma 5.1 implies

(=<4 [L=m/r]"*"* | f],.» (5.20)
Combining Egs. (5.18)-(5.20) we get Eq. (5.17), so the lemma is proved.

Proof of Theorem 5.1. The proof of Theorem 5.1 now follows as that
for Theorem 4.1. The two things that perhaps needs some mention are the
analogue of the large deviation result used for Eq.(4.44) and also
Eq. (4.17) in the setting of the Brownian sheet. However, neither present a
problem since (H, o, q,(-)) is a separable Banach space and the Brownian
sheet induces a centered Gaussian measure u, on the Borel subsets of this
space. Furthermore, the Hilbert space generating p, is H, ,, and hence the
large deviation result required is a special application of the large deviation
theorem for Gaussian measure on a separable Banach space. The analogue
of Eq. (4.17) again follows from Goodman and Kuelbs"® [Theorem 2.1],

applied as indicated following Eq. (4.17).

NOTE ADDED IN PROO¥

In view of an improvement of the original results in Kuelbs et al.,"'")

the isomorphisms used in the proofs of Propositions 5 and 6 are no longer
needed. In particular, Theorem 1 and Propositions 1 and 2 in Kuelbs et
al.!"» give (4.9), (4.10), (5.8), and (5.9) immediately.
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