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How long does it take to see a flat Brownian
path on the average?
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Abstract: Let W, be a standard Brownian motion and define R(r, ) =max,_; ., . W, —min, ;, W, for r <1. Given & >0, let
7(¢)=min{r > 1: R(#, 1)<e}. We prove that lim, &% log E(r(¢))=1w? We also give the liminf behavior of R(z,1) and
inf; _; . R(s, 1),
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1. Introduction

In this paper we investigate certain patterns for Brownian motion and specifically patterns related to the
flatness of Brownian motion.
Let W,, t 20, denote a standard Brownian motion. For 0 <4 <1, let

R(t,h)= max W,— min W, R(t) =R(¢, t).

t-h<s<t t—h<s<t

R(t, h) denotes the range of the Brownian motion over the time interval [ — &, ¢] and is the width of the
smallest rectangle of length & with sides parallel to the coordinate axis that covers the graph (s, W,) for
selt—h, ¢l

Given £ > 0, let

(&) =min{s > 1: R(¢, 1) <e&}.
Concerning the expected value of 7(e), we have:
Theorem 1.1.

lir% e* log E(7(¢)) = 3w2.

Questions concerning the expected time to see patterns are not new. Chapter XIII of the classical
book of Feller (1967) is devoted to the study of patterns connected with repeated trials. In Sections 7 and
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8, the theory is applied to certain patterns arising from the outcomes of the Bernoulli process. For
example, the expected number of trials needed to see a success run of length r; the expected number of
trials needed to see either a success run of length r or a failure run of length p; the probability of seeing
a run of r successes prior to a run of p failures are calculated. The methods employed are quite general
and by no means limited to runs: any finite pattern composed of the symbols S (success) and F (failure)
may be substituted in place of success or failure runs (e.g. SFS). Much of this theory is developed
through an analysis of a fundamental convolution equation relating the probabilities of the occurrence of
the pattern at time »n and the first occurrence of the pattern at time xn. Gardner (1974) gives a nice
discussion of a related mathematical game.

An elegant alternative approach to some of this theory is given by S. Li (1980). Let Z, Z,, i > 1, be a
sequence of i.i.d. discrete-valued random variables and let 3 denote the set of possible outcomes of Z.
Let 4;, 1 <i < n, be finite sequences over ¥. The number of trials needed to see the pattern 4, in a run
will be denoted by N,. N=min, _;_,N, is the number of trials needed to see any of the patterns
sequentially. Using martmgale techniques, a system of n + 1 linear equations is generated from which
E(N) and P(N =N, ) can be computed. Guibas and Odlyzko (1981) give a combinatorial treatment of
this and related problems. Some of this theory has found application in the study of genetics {e.g. Shukla
and Srivastava, 1985). More recently, Chrysaphinou and Papastavridis (1990) consider pattern problems
associated with the outcomes of a stationary Markov chain. M6ri (1991) considers the expected waiting
time until each of some given patterns has occurred.

This discrete-time theory can be utilized in the study of E(r(¢)), but only with moderate success.
Consider the analogue of 7(e) for simple random walk. Let X;, i > 1, be an i.i.d. sequence of random
variables with P(X, = +1)=1. Let S, =X, + --- +X, (§,=0). For ¢ > 0 and a positive integer m, let

N(s,m)=min{n>m: max §;- min Sjseﬁz‘}, evm > 1

n—ms<j<n n—ms<j<n

If m is even and eVm = 1, then N(e, m) = min(N. /» Ng), where A and B are the following patterns of
length m:

A: SFSF...SF and B: FSFS...FS.
Using the method of S. Li (for example), we obtain

E(N(e, m)) =2™—1=-exp((log 2) /e*) — L.

Up to a multiplicative constant, the exponent agrees with that given in Theorem 1.1. The comparison
with Theorem 1.1 is made more precise as sVm — . However, in this case, the calculation of
E(N(e, m)) (by any means) becomes formidable. While retaining some of the flavor of the discrete-time
methods, the proof of Theorem 1.1 requires a different approach.

We also consider the related problem: how smali can R(¢, 1) be? Put another way, let (¢) decrease
monotonically as ¢ — . How quickly can e(z) decrease and still permit R(¢, 1) < £(¢) with probability
one for arbitrarily large #? Likewise, how slowly can &(¢) decrease and yet ensure that eventually
R(t, 1) > &(¢) with probability one? Theorem 1.1 suggests that the function 7/ /2 log ¢ is critical. In fact
we have the precise statement:

Theorem 1.2.
lim inf ylog tR(¢, 1) ==/V2 a.s., (1.1)
>
lim inf log ¢ inf R(s,1)=m/V2 a.s. (1.2)
t—o0 I<s<t
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Given 8 > 0, (1.1) implies that with probability one, for all T > 0, there exists a ¢ > T such that

R(t,)<(1+6)m/y2logt.

On the other hand, for almost all w, there exists a T(w) such that for all ¢ > T(w),

R(t,1)>(1-8)w/y2log t. (1.3)

(1.2) strengthens (1.3) in that the same conclusion holds with inf, _, _,R(s, 1) in place of R(¢, 1). Taylor
(1972) investigates other properties of R(¢) in connection with Brownian path variation.
Theorem 1.1 and Theorem 1.2 rely on the small-ball estimate for R(1):

P(R(1) <¢&) ~(8/¢%) exp(—m?/(2¢%)) ase—0. (1.4)

This is obtained by Feller (1951) by observing the connection between the joint distribution function of
the maximum and minimum of W, for 0 <¢<1 and a certain distribution function arising in the
Kolmogorov—Smirnov theorem on empirical distributions. Combining the rescaling and stationary
incrtements properties of Brownian motion, we observe that R(¢, /) is distributed as vh R(1), hence (1.4)
can be adapted easily to estimates for R(t, k).

In Section 2 we give the proof of Theorem 1.1. In Section 3 we give the proof of Theorem 1.2. We
conclude this paper with some brief remarks.

2. Proof of Theorem 1.1

Given £ > 0, let
0=6(¢)=min{k>1, ke Z: R(k, 1) <e}.

Then 7(¢) > 6(¢). Next we give a lower bound for 7(¢). Let N >2 be an integer. For each integer
i€[0, N— 1], and each integer k > 0, let

iy=k+i/N, h=1—1/N,
T,=T,(¢) = min{i;: R(i;, h) <&}
and
T=T(e)=min{0 <i<N—1: T,(¢)}.
It is clear that T(e) < 7(¢). Hence we have
E(T(g)) <E(7(e)) <E(8(e)).

First we show that

lim sup £ log E(7(¢)) < lim &2 log E(0(¢g)) = 37> (2.1)
£—0

e—0

Let p=P(R(1)<e) and g =1—p. Since the increments of W, are independent, P(8 >m)=q"™ for
m > 0. Thus E(8)=1/p and (2.1) follows from (1.4).
Next we show that

lim iélf e log E(7(¢)) = 3> (2.2)
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For convenience, we introduce the notation (x) =x (mod N). First we calculate E(T(¢)). Let P=
PGh R <e)and Q=1-P.For 0<i<N -2,

{T(e) =i} ={R(i;, h) >&,..., R(iy_i, h) > &, R(ig, h) <s&}.
By the independence of the increments of W,, P(T(e)=i,)=P-Q* . Hence

hd i 1 i

E(T(e)) = kz=:1(k+ N)P«Qk 1= 7 + N’ 0<ig<N-2.

Similarly, for i =N — 1,
1 -

E(Ty_(g))= R
Consequently,

E(T(s))——l— _(_z_ijl\?_—l_’ O<ig<N-1. (2.3)

For each i €{0,..., N — 1}, write
E(T(e))=E(T) +E(T,~T)=E(T)+ Y E((T,~T)I(T=T,)). (2.4)
0<i<N-—1

j*i

If i >j, then

(= D=1 £ £ ymid- BT mi T i) =A 5

1=0 k=1
where
A= Z(il—jl)‘P(T=T/=jl,Ti=i,),
=0
B = Z Z (ik‘/z)'P(T=T Iis "lk)

1=0k=I[+1

Since i, —j,=({ —j)/N,

A< —N—’ “P(T=T,). (2.5)

To estimate B we note that
P(T=T=j,T,=i)
<P(T= T,=j;, R(i;11, h) >e,...,R(i;_y, h) > &, R(iy, h) <s)
<P(T=T=j) P- Q"""
Thus for i >,

ZP(T T,=J)) Z ( —l+—l—]%—£)P-Qk‘1—1

k=I+1

=P(T=T)" (i + 1_]\—]_;)
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Combining this with (2.5), we obtain for i > j,

1 i—j
E((T,—-T)(T=T))<P(T=T)- (; +2 —N—)
The case i <j can be handled similarly and in general we have
1 =7
E(T,-T)I(T=T,)))<P(T=T)- T2 (2.6)
Now plugging (2.3) and (2.6) into (2.4) we obtain
1 G+1)-1 1 2 N-1
—t < — P(T=T)+ — [ —jy - P(T=T).
P N <E(T)+ PO .ZN_l ( ]) N E:O <l ]> ( })
<j< j
j#i
But X, ,,P(T=T)=1-P(T=T,) so that
L opr=ry+ STV b 2Nf<' Y-P(T=T
— - =T)+ ————— g + — —j)- =T).
P ( l) N ( ) N 20 l J ( ])
By adding these equations together and observing that
1 N1 N—1N-1
— 2 i+ -1)=3%N-3) and — Y} ) (+1)P(T=T)=N-1,
N Do N 2o izo
we obtain the inequality
1/P(VhR(1) <e) <NE(T) + 3(N+1).
Hence
lim inf £* log E(7(¢)) > lim inf &2 log E(T)
e—0 e—0
> — lim inf &? log P(VAR(1) <e)=h-jm°.
g0
Letting /4 tend to 1, we obtain (2.2) which finishes the proof of Theorem 1.1. O
3. Proof of Theorem 1.2
We only need to show
lim inf ylog t R(z, 1) <w/V2 as. (3.1)
t—>o
and
lim inf log ¢ inf R(s,1)>w/V2 as. (32)
t—>00 1<s<t

First we show that (3.1) holds. Choose A >y >1and for k=1, 2,..., let

A= {\/log kR(k,1)<Vr - ’IT/\/E}”
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Since R(k, 1) is distributed as R(1), we have by (1.4), for k sufficiently large,
M- (log k) ™' log P(A,) > —

Thus X3_P(A4,) = ® and P(A4,, i.0.) = 1, by the Borel-Cantelli lemma, which in turn implies (3.1).

Now we turn to the proof of (3.2). Fix an integer N> 2 and let h=1—-1/N. Let t,=k/N, k=0,
k € Z. Note that for s > 1, t, €[s — 1/N, s] for some k. Moreover, t, —h >s— 1. Hence R(t,, h) <
R(s, 1). Consequently, for > 1,

inf  R(t;, k)< inf R(s,1). (3.3)

N—-1<j<[Nt] 1<s<t

We will show that

lim inf Jflog t, inf R(t, h)>Vh -w/V2 as. (3.4)

k— o N-1<j<k
Combining (3.4) with (3.3) and observing lim, _,, log(¢,,})/log t = 1, we obtain

lim inf log ¢ inf R(s,1)=vh -w/V2 as.

t—>o 1<s<t

Letting A tend to 1 yields (3.2) and we are left to show (3.4).
Let A be chosen so that # > A > 0. Choose 1>y > 0 so that y2 > A. Let

By = {\/m “R(t,, k) < VA -m/V2 for some N — 1< <k>"
Then for k sufficiently large,
P(B,) <k-P(flog 7, -R(h) <VX -w/V2)
=k-P(ylog 1, *R(1) <ya/h - m/V2)
< NYR/A g =Oh /A=),

where the last inequality follows from (1.4). Since yh/A > 1, we have X5_,P(B,x) <® and P(B,
1.0.) = 0. This is true for all A <A, which implies

liminf Jlog t,x  inf R(t;, h)>Vh -w/V2 as. (3.5)
ko N-1<j<2*

We are left to fill in the gaps. Let
= {\log 1, *R(t;, h) < VX ~m/V2 for some 2¢ <j<2¢71}.
Arguing as above,
P(D,) < (28+1 —2Kk) "P(\/Eg—t;k “R(h, h) <Vx .Tr/‘/f) < N/ =Gk /A=Dk
Hence, we have ©5_,P(D,) < ® and P(D,, i0.) =0 as well. Thus,
liminf flog 7« inf R(f;, h)>Vh -m/V2  as. (3.6)

k—> o0 2k cjgak+l
For 2% <i < 2%*1 we have log ¢, > log ¢,« and
inf  R(t, min inf R(t;, h inf  R(t;, h)|.
N-1gj<i ( ) N-1<j<2* (” )’ 2k <jg 2kt (’ )

Consequently, (3.4) follows from (3.5) and (3.6). O
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4. Remarks

In essence, Theorem 1.1 tells us that
log E(7(e)) ~ —log P(R(1) <e) ase—0,

and an easy observation vields P(R(1) < e)E(1(¢e)) < 1. However, one cannot hope that
E(7(g)) ~1/P(R(1) <g) ase—0,

as indicated by the following proposition.

Proposition 4.1. lim, , , P(R(1) <&)E(7(¢)) = 0.

Proof. Let ¢t >0, then
P(R(t+1,1)<e) = [ P(R(t+1 1) <elr(s) =s)P(r(e) € ds)
[0,2]

+P(R(t+1,1)<¢e,7(e) >1).
However P(R(t + 1, 1) < &) = P(R(1) < £) and for s €0, t],
P(R(t+1,1)<elr(e) =5) =P(R(1) <¢),
by the independence of the increments of Brownian motion. Consequently,
P(R(1)<e)P(7(e)>t)=P(R(t+1,1) <e, 7(e) >1).
Integrating with respect to Lebesgue measure, we obtain
P(R(1) <) E(r(¢)) = [ P(R(t+1,1) <&, 7(g) > 1) dr. (4.1)
Choose 1> 6 > 0. Then
P(R(t+1,1)<e, 7(e) > 1)

SP(R(r+1L,1)<e, t<7(e)<t+1-8)+P(r+1-6<r(e)<t+1).

An casy calculation reveals

'/:P(t+1—8 <r(e)<t+1)dr= fllﬂsP(T(s) >t) dt<8. (4.2)
Moreover,
P(R(t+1,1)<e, t<t(e) <t+1-9)
<P(R(t+1,8)<e, t<7(g)<t+1-9)
=P(R(8)<e) P(t<7(e)<t+1-9).

Integrating this expression, we obtain
[ P(R(t+1,1) <z, t<r(e) <t+1-8) dt
0

<P(R(5) <¢) - ‘/:P(t<'r(e) <t+1-8)dt

<P(R(3) <e¢). (4.3)
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Combining (4.1), (4.2) and (4.3), it follows that
lim sup P(R(1) <&)E(7(g)) <34.

£—0

Letting & tend to O finishes the proof. O

Theorem 1.2 can be compared to a result of Cs6rgd and Révész (1981). For 0 < h < ¢, let

V(t,h)= sup |W(t—h+s)—W(t—h)|.
O<s<h
V(t, h) and R(z, h) are measures of the variation of an increment of Brownian motion. V(t, k) differs
from R(¢, h) in that it measures the largest variation of the Brownian motion from W(t — k) over the
interval [t — h, ] rather than the difference between the maximum and the minimum over that same
interval. As an application of their Theorem 1.7.1, Csorgé and Révész obtain

lim inf inf V(s,8log t/m*)=1 as. (4.4)

t=>® glog t/mi<s <t
Setting aside the differences between R(z, h) and V(¢, h), (4.4) addresses the possibility of seeing
increasingly long increments of Brownian motion of consistent width while Theorem 1.2 addresses the
possibility of seeing consistently long but increasingly flat increments of Brownian motion. The magni-
tudes of the scalings (log ¢ versus 1/y/log ¢ ) are consistent with the self-similarity of Brownian motion.
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