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1. Introduction. Throughout this paper (ξk)∞k=1 denotes a sequence of indepen-
dent, centered, Gaussian random variables with variance one. We shall study the
behavior of

(1.1) P
(
(
∑
k≥1

ak|ξk|p)1/p ≤ ε
)

as ε → 0+ for p > 0

where (ak)∞k=1 is a given sequence of positive numbers and
∑

k≥1 ak < +∞.
In section 2 we give a lower bound of (1.1) for p ≥ 2 and a upper bound of (1.1)

for p > 0 when ε > 0 is small. In particular for ak = k−α and α > 1, we obtain for
p > 2 and ε > 0 small

(1.2) −Cα,p · ε−p/(α−1) ≤ log P
(
(
∑
k≥1

ak|ξk|p)1/p ≤ ε
)
≤ −Dα,p · ε−p/(α−1)

where Cα,p and Dα,p are positive constants. This extends the results (Theorem
4.1-4.4) of Hoffmann-Jørgensen, Shepp and Dudley[4] for p = 2 and can be used
to determine the nature rate of escape for an independent coordinate lp-valued
Brownian motion for p > 2 (see Cox[2] and Erickson[3]). As a consequence of (1.2),
we give a positive answer to a conjecture in Erickson[3].

In section 3, as an application of the result given in section 2 for the lower bound
of (1.1), we give a lower bound for P (sup0≤t≤1 |X(t)| ≤ ε) under certain conditions
where X(t) =

∑
k≥1 λkφk(t)ξk, 0 ≤ t ≤ 1. Note that {X(t) : 0 ≤ t ≤ 1} is a mean

zero Gaussian process but not necessarily a stationary process.

2. Upper and Lower Bound for lp-norm. The following claim about the
volume of the unit ball under lnp -norm is probably known, though we could not
locate a reference (The claim is known and the author would like to thank the
referee for providing a reference: Saint-Raymond[7]). Lemma 1 is a key step for the
proof of our results.

Lemma 1.

V (n, p) =
∫

. . .

∫
Pn

i=1 |xi|p≤1

1 dx1 . . . dxn = 2nΓ(
1
p

+ 1)n · Γ(
n

p
+ 1)−1.

Proof. Let

yk = (1−
k∑

i=1

xp
i )

1/p, k = 0, 1, 2, . . . , n
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and

Im,n =
∫ 1

0

∫ y1

0

. . .

∫ yn−2

0

∫ yn−1

0

ym
n dxn dxn−1 . . . dx1.

Note that∫ yn−1

0

ym
n dxn =

∫ yn−1

0

(yp
n−1 − xp

n)m/pdxn = ym+1
n−1

∫ 1

0

(1− xp)m/p dx = ym+1
n−1 Cm

where

Cm =
∫ 1

0

(1− xp)m/p dx = Γ(
1
p

+ 1)Γ(
m

p
+ 1)Γ(

m + 1
p

+ 1)−1.

We have Im,n = CmIm+1,n−1 and Im,1 = Cm. Hence

2−nV (n, p) = I0,n = C0I1,n−1 = . . . =
( n−2∏

m=0

Cm

)
In−1,1 = Γ(

1
p

+ 1)nΓ(
n

p
+ 1)−1.

Lemma 2. For x large enough, we have
√

πxx+ 1
2 e−x ≤ Γ(1 + x) ≤ 2

√
πxx+ 1

2 e−x.

Proof. It is easy to see by Stirling’s formula

Γ(1 + x) =
√

2πxx+ 1
2 e−x

(
1 + θ(x)

)
, |θ(x)| ≤ e

1
12x − 1.

Theorem 1. If ε is small and p > 2, we have

(2.1) P
(
(
∑
k≥1

ak|ξk|p)1/p ≤ ε
)
≥

(
1− δ−1E|ξ1|p

∑
k≥n+1

ak

)
(2π−1)n/2

( n∏
k=1

ak

)−1/p

·

exp
(
− 1

2
( n∑

k=1

a
−2/(p−2)
k

)(p−2)/p ·
(
εp− δ

)2/p
)
· (εp− δ)n/p ·Γ

(1
p

+ 1
)n ·Γ

(n

p
+ 1

)−1
.

for all positive integer n and all δ ∈ (0, εp).

Proof. Note that for any positive integer n and δ ∈ (0, εp)

(2.2) P
(
(
∑
k≥1

ak|ξk|p)1/p ≤ ε
)
≥ P

( n∑
k=1

ak|ξk|p ≤ εp − δ
)
· P

( ∑
k≥n+1

ak|ξk|p ≤ δ
)
.

By putting in the Gaussian density and making the change of variables, we have
for the first term on the right side of (2.2)

P
( n∑

k=1

ak|ξk|p ≤ εp − δ
)

=(2π)−n/2
( n∏

k=1

ak

)−1/p
∫
· · ·

∫
Pn

k=1 |xk|p≤εp−δ

exp
(
− 1

2

n∑
k=1

a
−2/p
k x2

k

)
dx1 . . . dxn.

(2.3)
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Using Hölder’s inequality, we obtain for the exponent in the integrand of (2.3)

n∑
k=1

a
−2/p
k x2

k ≤
( n∑

k=1

a
−2/(p−2)
k

)(p−2)/p ·
( n∑

k=1

|xk|p
)2/p

≤
( n∑

k=1

a
−2/(p−2)
k

)(p−2)/p ·
(
εp − δ

)2/p
.

(2.4)

Now putting (2.3), (2.4) and Lemma 1 together yields

P
( n∑

k=1

ak|ξk|p ≤ εp − δ
)

≥(2π−1)n/2
( n∏

k=1

ak

)−1/p

exp
(
− 1

2
( n∑

k=1

a
−2/(p−2)
k

)(p−2)/p ·
(
εp − δ

)2/p
)
·

(εp − δ)n/p · Γ
(1
p

+ 1
)n · Γ

(n

p
+ 1

)−1
.

(2.5)

By using Chebyshev’s inequality we have for the second term on the right side
of (2.2)

P
( ∑

k≥n+1

ak|ξk|p ≤ δ
)

= 1− P
( ∑

k≥n+1

ak|ξk|p > δ
)

≥ 1− δ−1E
( ∑

k≥n+1

ak|ξk|p
)

= 1− δ−1E|ξ1|p
∑

k≥n+1

ak.

(2.6)

Combining (2.2), (2.5) and (2.6), we obtain (2.1) and finish the proof.

Remark. Our proof here (also the next theorem) is along the same lines as the proof
for the case p = 2 in [4]. The main difference is that we benefit a lot from Lemma
1 and use Hölder’s inequality to take care of the rest. In application of (2.1) one
should try to maximize the right-hand side in n and δ for fixed ε. Many examples
are given in [4] for the case p = 2. Similarly, lengthy estimates for particular (ak)∞k=1

also work in our setting. However, here we are only going to evaluate one of the
most important cases (also see the remark after Theorem 2).

Example. If p > 2, ak = k−α and α > 1, then we have for ε > 0 small

(2.7) log P
( ∑

k≥1

k−α|ξk|p ≤ εp
)
≥ −Cα,p · ε−p/(α−1).

In this case we have

∞∑
k=n+1

ak =
∞∑

k=n+1

k−α ≤
∞∑

k=n+1

∫ k

k−1

x−α dx =
1

α− 1
n−(α−1).
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So there exists a constant Mα,p such that if n ≥ Mα,pδ
−1/(α−1), then

1− δ−1E|ξ1|p
∑

k≥n+1

ak ≥ e−1.

Now for n large, we have by Lemma 2

( n∏
k=1

ak

)−1/p = (n!)α/p ≥ nα(n+1/2)/pe−αn/p;

Γ
(n

p
+ 1

)−1 ≥ (2
√

π)−1
(n

p

)n/p+1/2
e−n/p;

( n∑
k=1

a
−2/(p−2)
k

)(p−2)/p =
( n∑

k=1

k2α/(p−2)
)(p−2)/p ≤ n(2α−2+p)/p.

Thus by Theorem 1 for n ≥ Mα,pδ
−1/(α−1) and ε small enough (hence δ small

enough and n large enough), we obtain

log P
(
(
∑
k≥1

ak|ξk|p)1/p ≤ ε
)

≥− 1 +
n

2
log(2π−1) +

α

p
(n +

1
2
) log n− α

p
n− 1

2
n(2α−2+p)/p(εp − δ)2/p

+
n

p
log(εp − δ) + n log Γ

(1
p

+ 1
)
− log(2

√
π)−

(n

p
+

1
2
)
log

n

p
+

n

p

≥
(1

2
log(2π−1)− α− 1

p
+

1
p

log
(
nα−1(εp − δ)

))
n− 1

2
n(2α−2+p)/p(εp − δ)2/p.

Now choose δ = εp/2 and n = [Kα,pε
−p/(α−1)] where Kα,p is a constant such that

Kα,pε
−p/(α−1) − 1 ≥ Mα,pδ

−1/(α−1);

2−1 log(2π−1)− (α− 1)/p + p−1 log
(
nα−1(εp − δ)

)
≥ 0

for all ε small. Then we have

log P
( ∑

k≥1

k−α|ξk|p ≤ εp
)
≥ −2−1

(
Kα,pε

−p/(α−1)
)(2α−2+p)/p · 2−2/p · ε2

= −Cα,pε
−p/(α−1).

Theorem 2. For any positive integer n, we have

(2.8) P
(
(
∑
k≥1

ak|ξk|p)1/p ≤ ε
)
≤ (2π−1)n/2

( n∏
k=1

ak

)−1/p

·Γ
(1
p

+1
)n ·Γ

(n

p
+1

)−1 ·εn.
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Proof. Observe that for any positive integer n,

P
(
(
∑
k≥1

ak|ξk|p)1/p ≤ ε
)
≤ P

( n∑
k=1

ak|ξk|p ≤ εp
)

=(2π)−n/2
( n∏

k=1

ak

)−1/p
∫
· · ·

∫
Pn

k=1 |xk|p≤εp

exp
(
− 1

2

n∑
k=1

a
−2/p
k x2

k

)
dx1 . . . dxn

≤(2π)−n/2
( n∏

k=1

ak

)−1/p
∫
· · ·

∫
Pn

k=1 |xk|p≤εp

1 dx1 . . . dxn.

Hence the theorem is proved by Lemma 1.

Remark. In application of (2.8) one should try to minimize the right-hand side in
n for fixed ε. Also the remark after Theorem 1 is valid here.

Example. If p > 0, ak = k−α and α > 1, then we have

(2.9) log P
( ∑

k≥1

k−α|ξk|p ≤ εp
)
≤ −Dα,p · ε−p/(α−1).

In this case we have for n large,

( n∏
k=1

ak

)−1/p = (n!)α/p ≤ (2
√

π)α/pnα(n+1/2)/pe−αn/p;

Γ
(n

p
+ 1

)−1 ≤ π−1/2
(n

p

)−(n/p+1/2) · en/p.

Thus by Theorem 2 for n large, we have

log P
( ∑

k≥1

k−α|ξk|p ≤ εp
)
≤ +

n

2
log(2π−1) +

α

p
log(2

√
π) +

α

p
(n +

1
2
) log n− α

p
n

+ n log ε + n log Γ
(1
p

+ 1
)
− 1

2
log π −

(n

p
+

1
2
)
log

n

p
+

n

p

=
(

α

p
log(2

√
π)− 1

2
log π +

α

2p
log n− 1

2
log

n

p
− n

2
log(2π−1)− α− 1

p
n

)
+

(
α

p
n log n + n log ε + n log Γ

(1
p

+ 1
)
− n

p
log n +

log p

p
n

)
≤

(
log Γ

(1
p

+ 1
)

+
log p

p
+ log(εn(α−1)/p)

)
n.

Choose n = [δα,pε
−p/(α−1)] where δα,p > 0 is a constant such that

log Γ
(1
p

+ 1
)

+
log p

p
+

α− 1
p

log δα,p ≤ −1,

then we obtain

log P
( ∑

k≥1

k−α|ξk|p ≤ εp
)
≤ −[δα,pε

−p/(α−1)] ≤ −Dα,pε
−p/(α−1).
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Remark. Combining (2.7) and (2.9) as given in (2.1), we see that for the canonical
example ak = k−α, α > 1, our upper and lower bound estimates are sharp at the
logarithmic level (up to a constant) for ε small.

Remark. Cox[2] showed that genuinely infinite dimensional Brownian motions on
lp sequence spaces have natural rates of escape, provided the coordinates are inde-
pendent. But finding the rate functions depends heavily on the sharp asymptotic
estimates for (1.1). Our estimates given here are an attempt to serve this need.
In particular, our (1.2) settles the conjecture 3 in Erickson[3]. Namely, the natural
rate of escape for the process Zβ =

∑
k≥1 k−βBk(t)ek, t ≥ 0 with respect to the lp

(p ≥ 2) norm is given by

(2.10) γp,β(t) = t1/2/(log log t)(β−1)/p i.e. lim
t→∞

γp,β(t)−1‖Zβ‖p = C(p, β) a.s.

for 0 < C(p, β) < ∞, provided α = βp > 1. Here {Bk(t), t ≥ 0}k≥1 is a sequence of
mutually independent one dimensional standard Brownian motions all defined on
the same probability space and ek is kth unit coordinate vector. The proof of (2.10)
is routine (see Erickson[3]) if we have (1.2). So we omit it here.

At the end of Erickson’s paper[3], it was added that the above mentioned conjec-
ture had been solved by Cox[1]. Unfortunately, the lower bound arguments about
(1.1) in Cox[1] contains a flaw.

3. Bounds for sup-norm. Let X(t) =
∑

k≥1 λkφk(t)ξk, 0 ≤ t ≤ 1,
∑

k≥1 λk < ∞
and λk > 0. Here {φk(t) : 0 ≤ t ≤ 1} is a sequence of functions satisfying the
condition

(3.1) sup
k≥1

sup
0≤t≤1

|φk(t)| ≤ M < +∞.

By the way we define X(t), it is clear that sup0≤t≤1 |X(t)| < ∞ a.s. and X(t) is
a mean zero Gaussian process but not necessarily a stationary process. Our next
result gives a lower bound of the lower tail of X(t) under the sup-norm. This bound
can be evaluated by using Theorem 1.

Theorem 3. If there exist x ∈ (0, 1) independent of p such that

(3.2) Qp =
( ∑

k≥1

λ
xp/(p−1)
k

)(p−1)/p ≤ Q < ∞,

then for any m > 0, we have

P ( sup
0≤t≤1

|X(t)| ≤ ε) ≥ P
( ∑

k≥1

λ
(1−x)m
k |ξk|m ≤ (Q−1M−1ε)m

)
.

Proof. Using Hölder’s inequality for q = p/(p− 1) and q′ = p, we have

|X(t)|p ≤
( ∑

k≥1

λk|φk(t)ξk|
)p ≤

( ∑
k≥1

λxq
k

)p/q ·
( ∑

k≥1

λ
(1−x)q′

k |φk(t)ξk|q
′)p/q′

=
( ∑

k≥1

λ
xp/(p−1)
k

)p−1 ·
( ∑

k≥1

λ
(1−x)p
k |φk(t)ξk|p

)
≤

∑
k≥1

(
QMλ1−x

k |φk(t)ξk|
)p
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where the last inequality holds by (3.1) and (3.2). Hence

P ( sup
0≤t≤1

|X(t)| ≤ ε) = P
(

lim
p→∞

( ∫ 1

0

|X(t)|p dt
)1/p ≤ ε

)
= lim

p→∞
P

( ∫ 1

0

|X(t)|p dt ≤ εp
)

≥ lim
p→∞

P
( ∑

k≥1

(
QMλ1−x

k |ξk|
)p ≤ εp

)
= lim

p→∞
P

( ∑
k≥1

(
QMλ1−x

k |ξk|ε−1M
)p ≤ 1

)
≥ lim

p→∞
P

( ∑
k≥1

(
QMλ1−x

k |ξk|ε−1
)m ≤ 1

)
= P

( ∑
k≥1

(
λ

(1−x)m
k |ξk|m

)
≤ (Q−1M−1ε)m

)
which finishes our proof.

Remark. If {φk(t)}k≥1 are some orthonormal basis in L2[0, 1], then we have the
following upper bound:

P ( sup
0≤t≤1

|X(t)| ≤ ε) ≤ P
( ∫ 1

0

X2(t) dt ≤ ε2
)

= P
( ∑

k≥1

λ2
kξ2

k ≤ ε2
)
.

The behavior of P (
∑

k≥1 λ2
kξ2

k ≤ ε2) as ε → 0 can be found in Li[6] and the reference
there.

Finally we carry out the following simple example.

Example. If λk = k−α, α > 1 and (3.1) holds, then for any δ > 0 small, we have

log P ( sup
0≤t≤1

|X(t)| ≤ ε) ≥ −C
(1

ε

)1/(α−1−δ)

where C = C(δ) is a positive constant.
Let x = (1 + δ/2)α−1 < 1 , then we have

Qp =
( ∑

k≥1

k−αxp/(p−1)
)(p−1)/p ≤

∑
k≥1

k−αxp/(p−1) ≤
∑
k≥1

k−αx =
∑
k≥1

k−(1+δ/2) = Cδ.

Thus applying Theorem 3 with m = 2δ−1 gives us

log P ( sup
0≤t≤1

|X(t)| ≤ ε)

≥ log P
( ∑

k≥1

k−(2(α−1)/δ−1)|ξk|2/δ ≤ (C−1
δ M−1ε)2/δ

)
≥ −Cα,δ(C−1

δ M−1ε)1/(α−1−δ)

= −C
(1

ε

)1/(α−1−δ)
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where the last inequality is by using (2.7) for p = 2δ−1.
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