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Abstract We prove the inequality that E|X1X2 · · ·Xn| ≤
√

per(Σ), for any centered
Gaussian random variables X1, . . . ,Xn with the covariance matrix Σ , followed by
several applications and examples. We also discuss a conjecture on the lower bound
of the expectation.
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1 Introduction

Gaussian integrals involving absolute value function arise in a variety of contexts,
ranging from roots of random functions to convex geometry. In [13], the author used
the expected absolute determinant of a certain Gaussian matrix to represent the num-
ber of zeros of random multihomogeneous polynomial system. In [11, 12], the ab-
solute value of a Gaussian quadratic function was studied and related to roots of
random harmonic functions. The intrinsic volume of a convex body can also be repre-
sented by E|detM| where M is a random matrix with independent standard Gaussian
entries; see [20] and [21]. See also [2–4] for other applications.
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In this paper, we focus on E|X1X2 · · ·Xn|, the expected absolute value of the prod-
uct of Gaussian variables. Explicit formulas for small n’s were given in a series of
papers [16–18]. For a special case when Xj,k = ξj −ξk where ξ ’s are i.i.d. Gaussians,
E|∏1≤j<k≤n Xj,k| can be evaluated by Mehta’s integral, which is a probabilistic
analog of Selberg’s integral; see [14] for details. When n is large, the complexity of
computation prevents people from finding the exact expression of E|X1X2 · · ·Xn| for
general Gaussian variables. In this case, estimation of such an expectation becomes
essential. In [10], the authors explored the product of Gauss–Markov variables and
provided a lower bound of the expectation by representing the expectation as an op-
erator norm. However, their method is not designed to find upper bounds. In general,
finding useful bounds for E|X1X2 · · ·Xn| is a challenging problem.

In this paper, we present an elegant inequality on E|X1X2 · · ·Xn| for general
Gaussian variables, which provides an upper bound of the expectation:

Theorem 1 Assume that X1,X2, . . . ,Xn are real centered jointly Gaussian random
variables, and Σ = (EXjXk)n×n is the covariance matrix, then

E|X1X2 · · ·Xn| ≤
√

per(Σ). (1.1)

Here the permanent of matrix Σ = (σjk)n×n is defined as per(Σ) =∑
π∈Sn

∏n
j=1 σj,π(j) where the sum is over all of the permutations π = (π(1),π(2),

. . . , π(n)) in the symmetric group Sn. It should be pointed out that this upper bound
of E|X1X2 · · ·Xn| is always better than the one given by the Cauchy–Schwarz in-
equality, i.e.,

E|X1X2 · · ·Xn| ≤
√

per(Σ) ≤ (
EX2

1X
2
2 · · ·X2

n

)1/2
. (1.2)

The second inequality in (1.2) is due to P.E. Frenkel; see [6].
This paper is organized as follows: The proof and some applications of Theorem 1

are given in Sects. 2 and 3. In Sect. 4, we propose a conjecture on a lower bound of
the expectation in this section, which is supported by known results.

2 Proof of Theorem 1

To prove Theorem 1, we need help from complex Gaussian variables (which
have Gaussian real and imaginary parts). As given in [8] and [7], we call Z =
(Z1,Z2, . . . ,Zn)

T a (circularly-)symmetric complex Gaussian random vector if
eiφZ has the same probability distribution as Z for any real φ. Equivalently, a cen-
tered complex jointly-Gaussian vector is (circularly-)symmetric if and only if EZ =
EZZT = 0. Next we recall a well known result on the symmetric complex Gaussian
variables (cf. [1] and [19]):

Lemma 1 Let Z1,Z2, . . . ,Zn and W1,W2, . . . ,Wn be centered and correlated sym-
metric complex Gaussian variables, then

E
(
Z1 · · ·ZnW 1 · · ·Wn

) = per
(
EZjWk

)
n×n

, (2.1)

where Wk is the conjugate of Wk .
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Remark 1 Different from the proofs given in [1] and [19], we use Wick formula to
obtain (2.1). According to [6] and [8], for a sequence of centered real or complex
Gaussian random variables X1,X2, . . . ,X2n, we have

E(X1X2 · · ·X2n) = haf(EXjXk)2n×2n,

where haf denotes the Hafnian of the 2n × 2n matrix. The Hafnian of a matrix A =
(aj,k) is defined to be

haf(A) :=
∑

σ∈F2n

aσ(1),σ (2)aσ(3),σ (4) · · ·aσ(2n−1),σ (2n),

where F2n is the set of all permutation σ satisfying σ(1) < σ(3) < · · · < σ(2n −
1) and σ(2i − 1) < σ(2i), for 1 ≤ i ≤ n. As Z1,Z2, . . . ,Zn and W1,W2, . . . ,Wn

are symmetric complex Gaussians, we always have EZjZk = EWjWk = 0 for all j

and k. Therefore,

E
(
Z1 · · ·ZnW 1 · · ·Wn

) = haf

(
0 (EZjWk)n×n

(EZjWk)n×n 0

)
= per

(
EZjWk

)
n×n

,

by the definition of the Hafnian.

Proof of Theorem 1 Let (Y1, . . . , Yn) be an independent copy of (X1, . . . ,Xn) and
Zj = Xj +iYj . Therefore, the (j, k)th entry of the covariance matrix of (Z1, . . . ,Zn)

is

EZjZk = E(Xj + iYj )(Xk − iYk) = EXjXk + EYjYk = 2σjk.

Then according to (2.1) we have

E|Z1 · · ·Zn|2 = per
(
EZjZk

)
n×n

= per(2σjk)n×n = 2nper(Σ).

On the other hand, by Cauchy–Schwarz inequality,

(

E

∣∣∣∣∣

n∏

j=1

Xj

∣∣∣∣∣

)2

≤ 2−n
E

(
X2

1 + Y 2
1

)(
X2

2 + Y 2
2

) · · · (X2
n + Y 2

n

)

= 2−n
E|Z1 · · ·Zn|2 = per(Σ),

which finishes the proof. �

Remark 2 From the Cauchy–Schwarz inequality used above, we can see that the
equality condition for (1.1) is Xj = Yj for all j ’s. Note that two independent contin-
uous random variables are equal to each other with probability zero, i.e., the equality
in (1.1) doesn’t hold almost surely.

3 Applications

In this section, we apply Theorem 1 to different types of Gaussian random vectors to
estimate the expected absolute value of corresponding Gaussian products.
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3.1 Gauss–Markov Variables

This particular type of Gaussian random variables was first analyzed in [10]. The
covariance function is given by EXjXk = ρ|j−k| for all j, k = 1,2, . . . , n. In their
paper, the authors showed that E|X1X2 · · ·Xn| ∼ λn, where λ is the maximal eigen-
value of the Hilbert–Schmidt kernel

J (x, y) =
√|xy|

√
2π(1 − ρ2)

exp

(
− 1 + ρ2

4(1 − ρ2)

(
x2 + y2) + ρxy

1 − ρ2

)
.

Therefore, λ can be written as

λ = sup
f

(Jf,f )

(f,f )
, where Jf (·) =

∫ ∞

−∞
J (·, y)f (y) dy.

In particular, setting fα(x) = √
x exp(−ax2/4) with positive a’s, we can bound λ

below by (Jfa, fa)/(fa, fa). As given in [10],

lim
n→∞

(
E|X1 · · ·Xn|

)1/n = λ >
2a

√
2π(1 − ρ2)

(
4

Δ
+ 4β

Δ3/2
tan−1 β√

Δ

)
, (3.1)

where β = 2ρ/(1 − ρ2), c = ((1 + ρ2)/(1 − ρ2) + a)/2 and Δ = 4c2 − β2.
Due to the supreme form of the variation representation, it is difficult to use their

method to provide upper bounds for E|X1 · · ·Xn|. Applying Theorem 1, we are able
to obtain an upper bound of this expectation. We start with the permanent of the
covariance matrix Σ , which can be represented in a combinatorial way in terms of
distances between permutations:

per(Σ) =
∑

π∈Sn

ρ
∑n

j=1 |j−π(j)| =
2[n2/4]∑

k=0

ρk · �{π ∈ Sn : dist(π, I ) = k
}
,

where � denotes the number of elements in the set and dist(π, I ) := ∑n
j=1 |j −

π(j)| is the distance between the permutation π and the identical permutation
I = (1,2, . . . , n). However, it appears that there is no explicit or useful formulas
to find the number of permutations within the same distance from the identical
permutation. Therefore, we consider upper bounds of per(Σ). According to [15],
per(A) ≤ ∏n

j=1 rj for n × n nonnegative matrix A, where rj is the sum of the j th

row of A. Set Σ̃ = (|ρ||j−k|)n×n, then

(
per(Σ)

)1/n ≤ (
per(Σ̃)

)1/n ≤
n∏

k=1

(
n∑

j=1

|ρ||j−k|
)1/n

≤
n∑

j=1

|ρ||j−[(n+1)/2]| → 1 + |ρ|
1 − |ρ| ,

as n → ∞. Thus

lim sup
n→∞

(
E|X1X2 · · ·Xn|

)1/n ≤
(

1 + |ρ|
1 − |ρ|

)1/2

. (3.2)
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Let us compare the lower and upper bounds by an example. Assume ρ = 0.55, we
can see that λ > 1.012 by choosing a = 0.5. Combining (3.2) and (3.1) together, we
have

1.012 < lim
n→∞

(
E|X1X2 · · ·Xn|

)1/n ≤ 1.856, when ρ = 0.55. (3.3)

We can obtain various lower and upper bounds by choosing different ρ’s. But numer-
ical analysis suggests that if we expect an unbounded E|X1X2 · · ·Xn|, then the lower
and upper bounds have the smallest gap when ρ = 0.55.

3.2 Same Correlations Case

Suppose we have a sequence of standard real Gaussian variables, and the correlations
between each two of them are the same. Then as a consequence of Theorem 1, we
have

Proposition 1 Let X1,X2, . . . ,Xn be a sequence of real centered Gaussian random
variables with EX2

j = 1 and EXjXk = ρ ∈ [0,1] for all j �= k, then we have

lim
n→∞n−1/2(

E|X1X2 · · ·Xn|
)1/n = e−1/2ρ1/2.

Proof First, note that the k × k principal minor of the covariance matrix Σ under
the above setting is (kρ + 1)(1 − ρ)k−1, for k = 1,2, . . . , n. So the domain of ρ is
[−1/n,1] due to Σ being positive semidefinite. As n → ∞, the domain approaches
[0,1].

In this setting, the permanent of Σ can be expressed as:

per(Σ) =
∑

σ∈Sn

n∏

j=1

11j=σ(j)ρ1j �=σ(j) =
∑

σ∈Sn

ρ�{j :j �=σ(j),j=1,2,...,n} =
n∑

j=0

djρ
j ,

where � denotes the number of elements in the set and dj is the number of permu-
tations in which the longest derangement string is of length j . Here derangement
means that none of the elements in the string appears at its original position before
permutation. It is known that the number of different derangement strings of length j

is j ! · ∑j

k=0(−1)k/k! (see, e.g., [5]). Therefore, we have

per(Σ) =
n∑

j=0

(
n

j

)
j !

(
j∑

k=0

(−1)k

k!

)

ρj = n!ρn
n∑

l=0

1

l!

(
n−l∑

k=0

(−1)k

k!

)

ρ−l .

Since
∑∞

k=0(−1)k/k! is bounded due to the convergence of the series, and the infinite
series

∑∞
l=0 ρ−l/ l! is also convergent, we can see that

lim
n→∞

n∑

l=0

1

l!

(
n−l∑

k=0

(−1)k

k!

)

ρ−l =
∞∑

l=0

1

l!

( ∞∑

k=0

(−1)k

k!

)

ρ−l = e1/ρ−1.
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Therefore, we have

lim sup
n→∞

n−1/2(
E|X1X2 · · ·Xn|

)1/n ≤ e−1/2ρ1/2. (3.4)

Now let us prove that e−1/2ρ1/2 is also a lower bound. When n is even, we have

E|X1 · · ·Xn| ≥
∣∣E(X1 · · ·Xn)

∣∣ = n!
2n/2(n/2)!ρ

n/2.

This is because we have 2−n/2n!/(n/2)! different ways to pair X1,X2, . . . ,Xn up,
and the number of pairs is always n/2. As a consequence,

lim inf
n→∞ n−1/2(

E|X1X2 · · ·Xn|
)1/n ≥ e−1/2ρ1/2. (3.5)

Combining (3.4) and (3.5), we prove the proposition for even n’s. When n is odd, we
first observe that the inverse of the covariance matrix in this case is

Σ−1 = (1 − ρ)−1(1 + (n − 1)ρ
)−1

⎛

⎜⎜⎜⎜
⎝

1 + (n − 2)ρ −ρ · · · −ρ

−ρ
. . .

. . .
...

...
. . .

. . . −ρ

−ρ · · · −ρ 1 + (n − 2)ρ

⎞

⎟⎟⎟⎟
⎠

.

According to Corollary 1.1 and Theorem 3.1 of [9], the density of (|X1|, |X2|,
. . . , |Xn|) is therefore Multivariate Totally Positive of order 2 (MTP2) and as a con-
sequence

E
[
φ1

(|X1|, . . . , |Xn|
) · · ·φk

(|X1|, . . . , |Xn|
)] ≥

k∏

j=1

Eφj

(|X1|, . . . , |Xn|
)
,

due to φj ’s being nonnegative and increasing. Now we set φ1(|X1|, . . . , |Xn|) =
|X1X2 · · ·Xm−1| and φ2(|X1|, . . . , |Xn|) = |Xm|, for m = n and n + 1, and obtain

√
2/πE|X1 · · ·Xn−1| ≤ E|X1 · · ·Xn| ≤

√
π/2E|X1 · · ·Xn+1|,

which implies that the odd and even n cases are equivalent. �

3.3 Tridiagonal Covariance Matrix Case

Considering the case when EX2
j = 1 and EXjXk = ρ1{|j−k|=1} for j �= k with ρ posi-

tive, we can evaluate the permanent of the tridiagonal covariance matrix explicitly. By
the definition of the permanent, let Σn be the covariance matrix of (X1,X2, . . . ,Xn),
then we have the following recursive relation:

per(Σn+2) = per(Σn+1) + ρ2per(Σn), n = 1,2, . . . ,
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which indicates that the general terms are

per(Σn) = (1 + √
1 + 4ρ2)n+1 − (1 − √

1 + 4ρ2)n+1

2n+1
√

1 + 4ρ2

∼ (1 + √
1 + 4ρ2)n+1

2n+1
√

1 + 4ρ2
, for large n.

Therefore, we have

lim sup
n→∞

(
E|X1X2 · · ·Xn|

)1/n ≤
(

1/2 +
√

1/4 + ρ2
)1/2

.

Similar to the argument obtaining (3.5), we can find a lower bound in this setting as
well:

lim inf
n→∞

(
E|X1X2 · · ·Xn|

)1/n ≥ ρ1/2.

4 A Conjecture on the Lower Bound

We can also use Hölder’s inequality directly on E|X1 · · ·Xn| and show that the
maximum of this expectation is achieved when |Corr(Xj ,Xk)| = 1 for all j, k =
1,2, . . . , n. It is natural to conjecture that the minimum of E|X1 · · ·Xn| would be
achieved when X1,X2, . . . ,Xn are independent. Based on this idea, we propose the
following conjecture,

Conjecture For the centered real jointly Gaussian random variable X1, X2, . . . , Xn

and nonnegative αj , j = 1,2, . . . , n, we have

E|X1|α1 |X2|α2 · · · |Xn|αn ≥
n∏

j=1

E|Xj |αj . (4.1)

Remark 3 It is easy to check the case αj = 1, n = 2. When αj = 1, n = 3, an ex-
plicit formula for E|X1X2X3| was given in [17]. Numerical analysis suggests that
E|X1X2X3| reaches its minimum when X1, X2 and X3 are independent. The case
αj = 2 was proved in [6]. Actually, when the joint density of (|X1|, |X2|, . . . , |Xn|)
is Multivariate Totally Positive of order 2 (MTP2), the conjecture (4.1) is true for all
αj ≥ 0, which is supported by Corollary 1.1 and Theorem 3.1 of [9].
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