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a b s t r a c t

The detrended Brownian motion is defined as the orthogonal component of projection
of the standard Brownian motion into the subspace spanned by linear functions.
Karhunen–Loeve expansion for the process is obtained, together with the explicit formula
for the Laplace transform of the squared L2 norm. Distribution identities are established
in connection with the second order Brownian bridge developed by MacNeill (1978). As
applications, large and small deviation asymptotic behaviors for the L2 norm are given.
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1. Introduction

Let X = {X(t), 0 ≤ t ≤ 1} be a mean zero Gaussian process on C[0, 1] with covariance function KX (t, s) =

EX(t)X(s), 0 ≤ s, t ≤ 1. Then the well-known Karhunen–Loeve (KL) expansion is

X(t) =


k≥1

ηk


λkfk(t), (1.1)

where {ηk, k ≥ 1} is a sequence of i.i.d. N(0, 1) random variables, {fk(t), k ≥ 1} forms an orthogonal sequence in L2[0, 1]
and {λk, k ≥ 1} is the set of eigenvalues of the integral operator TX f (t) =

 1
0 KX (t, s)f (s)ds. A natural consequence of the KL

expansions is the distributional identity 1

0
X2(t)dt law

=

∞
k=1

λkη
2
k . (1.2)

The KL expansions for the so-called demeaned (or centered) Gaussian process on [0, 1], denoted by X , have been studied
for various X extensively, where one defines

X(t) = X(t) −

 1

0
X(s)ds,

with mean zero and covariance function KX (t, s) = EX(t)X(s), 0 ≤ s, t ≤ 1. In particular, results on the demeaned
(or centered) Brownian process W and Brownian bridge B can be found in Beghin et al. (2005), Deheuvels (2007) and
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Karol et al. (2008). And one has the distribution identities 1

0
B2(t)dt law

=

 1

0
W

2
(t)dt law

=

 1

0
W 2

∗
(t)dt law

=

 1

0
Ỹ 2(t)dt,

where W (t), 0 ≤ t ≤ 1, is a standard Brownian motion with the covariance function KW (t, s) = EW (t)W (s) = min(t, s),
the process B(t) is a standard Brownian bridge with the covariance function KB(t, s) = EB(t)B(s) = min(s, t) − st, 0 ≤

s, t ≤ 1, the processW∗(t) = W (t) − t−1
 t
0 W (u)du is a Brownian motion centered at its on-line average, and the process

Ỹ (t) = B(t) − 12t(1 − t)
 1
0 B(u)du is a mean-centered Brownian bridge.

The spectra of the demeaned Brownian motion W and demeaned Brownian bridge B can be extracted from Karol et al.
(2008), and are given by λ

(W )
k = (kπ)−2, λ(B)

2k−1 = λ
(B)
2k = (2kπ)−2 for k ≥ 1. Consequently, 1

0
B
2
(t)dt law

=
1
4

 1

0
W

2
(t)dt +

1
4

 1

0
W ∗

2
(t)dt,

whereW (t) and W ∗(t) are two independent demeaned Brownian motions.
From statistical application point of view, similar results are studied as the limiting distributions for various generalized

KPSS-tests of stationarity of univariate time series under the null hypothesis; see Nyblom and Harvey (2000), Hobijn et al.
(2004), Taylor (2003) and Ahlgren and Nyblom (2008) for additional references and related work. In particular, the L2 norm
of the detrended Brownian motion that we defined below and studied in this paper is one of the asymptotic distribution
used by Hobijn et al. (2004). The KL expansion for the generalized Brownian bridge is given byMacNeill (1978) and provides
us the second distribution identity in law in Theorem 1.

To motive the definition of the detrended process, it is natural to view the demeaned process X as the orthogonal
component of projection of X(t) into a constant function subspace in L2([0, 1]). That is 1

0
X(t)2dt = min

a∈R

 1

0
(X(t) − a)2dt. (1.3)

To generalize the projection idea into the linear detrended process, we consider

min
a,b∈R

 1

0
(X(t) − a − bt)2dt, (1.4)

where the optimal constant a and b satisfy

∂

∂a

 1

0
(X(t) − a − bt)2dt = 0,

∂

∂b

 1

0
(X(t) − a − bt)2dt = 0.

It follows that

a = 4
 1

0
X(s)ds − 6

 1

0
sX(s)ds, b = 12

 1

0
sX(s)ds − 6

 1

0
X(s)ds.

Then we can define the detrended Gaussian process, the orthogonal component of the projection,

X(t) = X(t) − a − bt = X(t) + (6t − 4)
 1

0
X(s)ds + (6 − 12t)

 1

0
sX(s)ds, (1.5)

with covariance functionsKX (t, s) = EX(t)X(s), 0 ≤ s, t ≤ 1.
In this paper, we will concentrate on the KL expansion of the detrended Brownian motion

W (t) = W (t) + (6t − 4)
 1

0
W (s)ds + (6 − 12t)

 1

0
sW (s)ds. (1.6)

One can also consider the detrended Brownian bridge

B(t) = B(t) + (6t − 4)
 1

0
B(s)ds + (6 − 12t)

 1

0
sB(s)ds.

However, a simple covariance computation given in Lemma 2.1 in the next section shows that W (t) andB(t) are the same
process on C[0, 1].

Before stating Theorem 1, we need some notations and facts. For v > −1, let Jv(·) denote the Bessel function of the
first kind with index v. The positive zeros of Jv(·) form an infinite sequence, denoted by 0 < zv,1 < zv,2 < · · · . These
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zeros are interlaced with zeros 0 < zv+1,1 < zv+1,2 < · · · of Jv+1(·) (see, e.g., Watson, 1952, pp. 479) in such a way that
0 < zv,1 < zv+1,1 < zv,2 < zv+1,2 < · · · . Considering the special cases v = 1/2 and v = 3/2, for all x > 0,

J1/2(x) = (2/(πx))1/2 sin(x), (1.7)

J3/2(x) = (2/(πx))1/2(sin(x)/x − cos(x)). (1.8)

Since the positive zeros of J1/2(·) are given by z1/2,k = kπ, k = 1, 2, . . . , thus

0 < z1/2,1 = π < z3/2,1 < z1/2,2 = 2π < z3/2,2 < · · · , (1.9)

where {z3/2,k, k ≥ 1} are the ordered positive zeros of J3/2(x).
Now we can state one of the main results of this paper.

Theorem 1. The spectrum of the KL expansion for the detrended Brownian motion {W (t), t ∈ [0, 1]} is given by (2.27) and
(2.28). In particular, we have the distribution identities 1

0

W (t)2dt law
=

 1

0
B2(t)2dt

law
=


k≥1

η2
k

4π2k2
+


k≥1

η∗2
k

4z23/2,k
, (1.10)

where {ηk, k ≥ 1} and {η∗

k , k ≥ 1} denote two independent sequences of independently and identically distributed N(0, 1)
random variables, and the process

B2(t) = W (t) − tW (1) + 3t(1 − t)

W (1) − 2

 1

0
W (s)ds


= B(t) − 6t(1 − t)

 1

0
B(u)du, 0 ≤ t ≤ 1 (1.11)

is the second level (order) Brownian bridge.

Note that the process B2(t) given in (1.11) has properties of B2(0) = B2(1) = 0,
 1
0 B2(t)dt = 0 and the covariance

function

EB2(t)B2(s) = t ∧ s − st − 3s(1 − s)t(1 − t), s, t ∈ [0, 1]. (1.12)

Actually, the process B2(t) is a Brownian bridge B(t) conditioned on
 1
0 B(t)dt = 0, i.e. B2(t) = B(t)| 1

0 B(t)dt=0. Its KL
expansion is given by MacNeill (1978) as a special case (second order) of a family of generalized Brownian bridges. More
detailed study about B2(t) can be found from Deheuvels (2007) in connection with a family of mean-centered Brownian
bridges, where the second identity in law in (1.10) is also presented.

The rest of the paper is organized as follows. In Section 2, we give the proof of Theorem 1. As applications, in Section 3,
we study the Laplace transforms, large deviations and small deviations of the detrended Brownian motion W (t).

2. The KL expansion for the detrended BM

We start with the following lemma that provides the explicit covariance function.

Lemma 2.1. The covariance function of the detrended Brownian motion W (t) on [0, 1] is given by

KW (s, t) = EW (t)W (s) = t ∧ s −
11
10

t −
11
10

s + 2t2 + 2s2 − t3 − s3

−3st2 − 3ts2 + 2st3 + 2ts3 +
6
5
st +

2
15

. (2.13)

Proof. For 0 ≤ s, t ≤ 1, we have

E

W (s)

 1

0
W (u)du


=

 1

0
E(W (s)W (u))du =

 1

0
(s ∧ u)du = s −

s2

2
,

E

W (t)

 1

0
vW (v)dv


=

 1

0
v(v ∧ t)dv =

t
2

−
t3

6
.
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Similarly, and using the above computation, we obtain

E
 1

0
W (u)du

 1

0
W (v)dv


=

 1

0
E

W (u)

 1

0
W (v)dv


du

=

 1

0


u −

u2

2


du =

1
3
,

E
 1

0
W (u)du

 1

0
vW (v)dv


=

 1

0
E

W (u)

 1

0
vW (v)dv


du

=

 1

0


u
2

−
u3

6


du =

5
24

,

E
 1

0
uW (u)du

 1

0
vW (v)dv


=

 1

0
uE

W (u)

 1

0
vW (v)dv


du

=

 1

0
u

u
2

−
u3

6


du =

2
15

.

Substituting the above equations into the product expansion

EW (t)W (s) = E


W (t) + (6t − 4)
 1

0
W (u)du + (6 − 12t)

 1

0
uW (u)du


×


W (s) + (6s − 4)

 1

0
W (v)dv + (6 − 12s)

 1

0
vW (v)dv


,

we obtain (2.13) after simplification. �

Proof of Theorem 1. We first compute the eigenvalues of W (t) by substitutingKW (s, t) of (2.13) into

TW f (t) =

 1

0

KW (s, t)f (s)ds = λf (t). (2.14)

In order to handle the t ∧ s = min(t, s) term, we split the integration range and obtain t

0
sf (s)ds + t

 1

t
f (s)ds +

 1

0


−

11
10

t −
11
10

s + 2t2 + 2s2 − t3 − s3 − 3st2 − 3ts2 + 2st3 + 2ts3

+
6
5
st +

2
15


f (s)ds = λf (t) (2.15)

with the boundary conditions

λf (0) =

 1

0


−

11
10

s + 2s2 − s3 +
2
15


f (s)ds (2.16)

and

λf (1) =

 1

0


1
10

s − s2 + s3 +
1
30


f (s)ds. (2.17)

By differentiating both sides of (2.15) with respect to t , we obtain 1

t
f (s)ds +

 1

0


−

11
10

+ 4t − 3t2 − 6st − 3s2 + 6st2 + 2s3 +
6
5
s

f (s)ds = λf ′(t) (2.18)

with the boundary conditions

λf ′(0) =

 1

0


−

1
10

− 3s2 + 2s3 +
6
5
s

f (s)ds, (2.19)

λf ′(1) =

 1

0


−

1
10

− 3s2 + 2s3 +
6
5
s

f (s)ds. (2.20)
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By differentiating again both sides of (2.18), we obtain the equation

λf ′′(t) + f (t) + a + bt = 0, (2.21)

where the constants a =
 1
0 (6s − 4)f (s)ds and b =

 1
0 (6 − 12s)f (s)ds.

The general solution of the inhomogeneous second order differential equation (2.21) is given by

f (t) = C2 sin(λ−1/2t) + C1 cos(λ−1/2t) − a − bt, (2.22)

where C1 and C2 are constants.
The boundary conditions (2.19) and (2.20) give f ′(0) = f ′(1) which reduces to

C2(cos(λ−1/2) − 1) − C1 sin(λ−1/2) = 0. (2.23)

The boundary conditions (2.16), (2.17) and (2.19) imply f ′(0) = f (1) − f (0) which simplifies to

C2(sin(λ−1/2) − λ−1/2) + C1(cos(λ−1/2) − 1) = 0. (2.24)

In order to have constants C1 and C2 such that C2
1 + C2

2 ≠ 0, Eqs. (2.23) and (2.24) imply

2(1 − cos(λ−1/2)) − λ−1/2 sin(λ−1/2) = 0, (2.25)

which can be rewritten as

2−1πλ−1J1/2(2−1λ−1/2)J3/2(2−1λ−1/2) = 0, (2.26)

where J1/2(x) and J3/2(x) are given in (1.7) and (1.8) respectively. Thus the solutions of (2.26) are

λ2k−1 = (2kπ)−2, k = 1, 2, . . . , (2.27)

λ2k = (2z3/2,k)−2, k = 1, 2, . . . , (2.28)

where z3/2,k are the ordered positive zeros of Bessel function and λ1 > λ2 > λ3 > · · · > 0.
The eigenfunctions are

√
2 cos(2kπ t), k = 1, 2, . . . associated with the eigenvalues λ2k−1, k = 1, 2, . . . and the

other eigenfunctions associated with the eigenvalues λ2k, k = 1, 2, . . . can be found by using two boundary conditions
(2.16) and (2.19) with normalizing condition

 1
0 (f (t))2dt = 1. Furthermore, λ2k−1 = (2kπ)−2, k = 1, 2, . . . and

λ2k = (2z3/2,k)−2, k = 1, 2, . . . give 1

0

W (t)2dt law
=

∞
k=1

λkη
2
k =


k≥1

η2
kk

−2π−2/4 +


k≥1

η∗2
k z−2

3/2,k/4, (2.29)

where {ηk, k ≥ 1} and {η∗
k, k ≥ 1} denote two independent sequences of independently and identically distributed N(0, 1)

random variables. From (1.20) of Deheuvels (2007), the mean-centered Gaussian process or the second order Brownian
bridge B2(t) = B(t) − 6t(1 − t)

 1
0 B(u)du has the same norm in L2[0, 1] as W (t). The proof is completed. �

3. Applications

There are very fewGaussian processeswhere theKL expansions are known through the explicit eigenvalues of {λk, k ≥ 1}
and with simple forms of the eigenfunctions. However, like the KL expansion given in Theorem 1, the Laplace transform for 1
0
W 2(t)dt can be more explicit by using the associated Fredholm determinant.

Proposition 3.1. For each θ ∈ R,

E exp


−
θ2

2

 1

0

W (t)2dt


= (12θ−4(2 + θ sinh(θ) − 2 cosh(θ)))−1/2.

Proof. This follows from the general fact that

E exp


−
θ2

2

 1

0

W (t)2dt


= E exp


−

θ2

2

∞
k=1

λkξ
2
k



=

∞
k=1

(1 + λkθ
2)−1/2

= (D(−θ2))−1/2

with λ1 > λ2 > · · · > 0 and


∞

k=1 λk < ∞.
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Here Fredholm determinant D(λ) of the covarianceKW (s, t) of the detrended Brownian motion W (t) can be written as

D(λ) = 12λ−2(2 − λ1/2 sin(λ1/2) − 2 cos(λ1/2)), (3.30)

with D(0) = 1; see page 151–154 in Tanaka (1996) for a similar argument. In particular, one needs the Taylor expansion of
the sin and cos functions to ensure D(0) = 1. �

One additional consequence of the associated Fredholm determinant D(λ) is Smirnov formula (see Martynov, 1977),
which gives for all x > 0,

P
 1

0

W (t)2dt > x


=
1
π

∞
k=1

(−1)k+1
 γ2k

γ2k−1

e−
u
2 x

u
√

−D(u)
du, (3.31)

where γk = λ−1
k , k = 1, 2, . . . .

Next we give the large deviation probability for L2-norm of the detrended Brownian motion.

Proposition 3.2. Let W (t) be a detrended Brownian motion, then as x → ∞,

P
 1

0

W (t)2dt > x


= (c + o(1))x−1/2 exp(−2π2x), (3.32)

where c = π−1/2(4π2)−1(3(32π2
− 1) cos(2π)−1

+ 30π sin(2π)−1
− 96π2)−1/2.

Proof. By Lemma 1.1 and Remark 1.2 in Deheuvels and Martynov (2003), we have for all x > 0,

P
 1

0

W (t)2dt > x


= (1 + o(1))(2/π)1/2γ −1
1 (−D′(γ1))

−1/2x−1/2 exp(−γ1x/2),

where γ1 = (2π)2,D(γ1) is from Eq. (3.30) and D′(γ1) is the derivative of D(γ1), and the proof is completed. �

Finally, we briefly describe the small deviation probability for L2-norm of the detrended Brownianmotion. The argument
is well developed and applied to many similar problems. We also choose to provide less precise description of several
constants involved since they do not play significant role in applications.

Proposition 3.3. There exists some constant c > 0 such that as ε → 0,

P
 1

0

W (t)2dt ≤ ε


= (c + o(1))ε−1 exp


−

1
8ε


.

Proof. The starting point is Theorem 2 of Li (1992a) that we recall here. Given any two sequences ak > 0 and bk > 0 with
k≥1

ak < ∞,

k≥1

bk < ∞,

k≥1

|1 − ak/bk| < ∞, (3.33)

we have, as ε → 0,

P


k≥1

akξ 2
k ≤ ε


= (1 + o(1))


k≥1

bk/ak

1/2

P


k≥1

bkξ 2
k ≤ ε


. (3.34)

So for our setting, by the asymptotic formula for zeros of the Bessel function, we have z3/2,k = (k + 1/2)π + O(k−1), as
k → ∞ (see Korenev, 2002; Barczy and Igloi, 2011).We set ak = λk, b2k−1 = (2kπ)−2, b2k = ((2k+1)π)−2 and they satisfy
(3.33). Then by the distribution identity

 1
0
W (t)2dt law

=


k≥1 λ2k−1η
2
k +


k≥1 λ2kη

∗2
k and (3.34), there exists a constant c1

such that as ε → 0,

P
 1

0

W (t)2dt ≤ ε


= P


k≥1

λ2k−1η
2
k +


k≥1

λ2kη
∗2
k ≤ ε



= (1 + o(1))

k≥1

(bk/ak)1/2P


k≥1

bkξ 2
k ≤ ε



= (1 + o(1))c1P


k≥1

ξ 2
2k−1

(2kπ)2
+


k≥1

ξ 2
2k

((2k + 1)π)2
≤ ε



= (1 + o(1))c1P


k≥1

(k + 1)−2ξ 2
k ≤ επ2


. (3.35)
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Now from Lemma 1 of Li (1992b), ∀d > −1, there exists a constant c2 > 0, such that as ε → 0,

P


k≥1

(k + d)−2ξ 2
k ≤ επ2


= (1 + o(1))c2ε−d exp


−

1
8ε


. (3.36)

Combining together (3.35) and (3.36), we complete the proof. �
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