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Abstract

We consider a supercritical Galton-Watson branching process with immigration. It
is well known that under suitable conditions on the offspring and immigration distri-
butions, there is a finite, strictly positive and non-degenerate limit for the normalized
population size, denoted as W. The main purpose of this paper is to investigate the
small value probabilities of W, that is to estimate P(W ≤ ε) for ε > 0 small. In com-
parison with the well-studied results for supercritical Galton-Watson branching process
without immigration, precise effects of the balance between offspring and immigration
distributions on small value probability of W, are obtained. Several illustrative ex-
amples are analyzed carefully. They demonstrate the sharpness of our results and the
significant effect of the immigration which can cause the near-constancy phenomena
even when there is no oscillation in the setting without immigration.

Key words and phrases: Supercritical Galton-Watson branching process, small
value property, immigration

1 Introduction

Small value probability for a positive random variable V studies the rate of decay of the so
called left tail probability P(V ≤ ε) as ε→ 0+. When V is the norm of a random element in
a Banach space, one is dealing with small ball probability, see [LS01] for a survey of Gaussian
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measure. When V is the maximum of a continuous random process starting at zero, one
is estimating lower tail probability which is closely related to studies of boundary crossing
probabilities or the first exit time associated with a general domain, see [L03] and [LS04]
for Gaussian processes. A comprehensive study of small value probability is emerging and
available in various talks and lecture notes formats in [L03], [L11+], see also the literature
compilation [Lif10].

In this paper, we further develop the most natural aspect of the branching tree approach
originated in [MO08] on the martingale limit of a supercritical Galton-Watson process. The
problem has been solved initially in [D71a], [D71b] in the Schröder case and, up to a Taube-
rian theorem of Bingham [B88], also in the Böttcher case, see later part of this section for
more details. The approach uses an integral transform together with some nontrivial com-
plex analysis, which is powerful but inflexible and un-intuitive. On the other hand, the
“branching tree heuristic” method developed in [MO08] for the martingale limit of a super-
critical Galton-Watson process is very simple and based on an easy intuition. The main
goal of this paper is developing additional tools to treat small value probabilities for the
martingale limit of a supercritical Galton-Watson process with immigration. The interplay
between the offspring and the immigration distribution can be seen clearly from our main
result Theorem 2. We next provide a more detailed and precise discussion by introducing
additional notations, surveying relevant results and stating our results.

Let (Zn, n ≥ 0) be a supercritical Galton-Watson branching process with Z0=1, offspring
distribution pk = P(X = k), k ≥ 0, and mean m = EX ∈ (1,∞). To avoid non-branching
case, we suppose pk < 1 for all k throughout this paper. Under the natural condition
E [X log+X] <∞, the positive martingale Znm

−n converges to a nontrivial random variable
W <∞ in the sense (see Kesten and Stigum [KS66])

Znm
−n −→ W a.s. & L1 as n→∞.

Here and throughout this paper, log+ x = log max(x, 1) ≥ 0. The distribution of the limit W
is of great interests in various applications. However, except for some very special cases, the
explicit distribution of W is not available, see, for example, Harris [H48], Williams [W08]
Section 0.9. In general, it is known that W has a continuous positive density on (0,∞)
satisfying a Lipschitz condition, see [AN72], Ch. II, p.84 Lemma 2. However it is not
clear what type of densities can arise in this way. This lack of complete information on the
distribution ofW prompts a search for asymptotic information such as the behavior of the left
tail, or the small value probabilities of W and its density. General estimates, near-constancy
phenomena, specific examples, and various implications have been studied to various degree
of accuracy in Harris [H48], Karlin and McGregor [KM68a] [KM68b], Dubuc [D71a] , [D71b]
and [D82], Barlow and Perkins [BP88], Goldstein [G87], Kusuoka [K87], Bingham [B88],
Biggins and Bingham [BB91] and [BB93], Biggins and Nadarajah [BN93], Fleischman and
Wachtel [FW07] and [FW09].

For instance, in [D71b], the following results were given with assumption p0 = 0 which
holds without the loss of generality after the standard Harris-Sevastyanov transformation,
see [H48], p.478 Theorem 3.2 or [B88] p.216) Here and throughout this paper we use f(x) �
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g(x) as x → 0+ (∞) to represent c ≤ f(x)/g(x) ≤ C as x → 0+ (∞) for two constants
C > c > 0 and f(x) ∼ g(x) as x→ 0+ (∞) to represent f(x)/g(x)→ 1 as x→ 0+ (∞).

Theorem 1 (Dubuc 1971(b))
(a) If p1 > 0, then

P(W ≤ ε) � ε| log p1|/ logm.

(b) If p1 = 0, then
− logP(W ≤ ε) � ε−β/(1−β),

with β := log γ/ logm and γ := inf{n : pn > 0} ≥ 2.

Note that P(W ≤ ε) = P(W < ε) since W has a continuous density, see, e.g. Athreya and
Ney [AN72], Ch. I, Section 10, Corollary 4. Also, the so called near-constancy phenomena
refers to the fact that the rough asymptotic � in Theorem 1 can not be improved into more
precise asymptotic ∼ and the oscillation is very small, see [B88] for more details. In fact,
it is still an open conjecture that the Laplace transform of W being non-oscillating near ∞
(and hence the small value probability of W being non-oscillating near 0) is only specific to
the case p1 > 0 in [KM68a] p.127.

In the present paper, we consider the supercritical branching process with immigration
denoted by (Zn, n ≥ 0), and follow the definition in [AN72], Ch. VI, Section 7.1, p.263. To
be more precise, we have

Z0 = Y0, Zn+1 = Xn
1 +Xn

2 + · · ·+Xn
Zn + Yn+1, n ≥ 0,

where Xn
1 , X

n
2 , · · · are independent and identically distributed with the same offspring dis-

tribution as X, the Y0, Y1, · · · are i.i.d. with the same immigration distribution {qk, k ≥ 0}
and the X ′s and Y ′s are independent. It is classic result, see [S70] for example, that

lim
n→∞

Zn/mn =W (1.1)

exists and is finite a.s. if and only if

E log+ Y <∞ and E (X log+X) <∞. (1.2)

Our main result of this paper is the following small value probabilities for W .

Theorem 2 Assume the condition (1.2) holds.
(a) If p0 = 0 and 0 < q0 < 1, then

P(W ≤ ε) � ε| log q0|/ logm as ε→ 0+. (1.3)

(b) If p0 = 0, q0 = 0 and p1 > 0, then

logP(W ≤ ε) ∼ −K| log p1|
2(logm)2

· | log ε|2, as ε→ 0+, (1.4)
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with K = inf{n : qn > 0}.
(c) If p0 = 0, q0 = 0 and p1 = 0, then

logP(W ≤ ε) � −ε−β/(1−β), as ε→ 0+,

with β being defined as in Theorem 1(b).
(d) If p0 > 0, then

P(W ≤ ε) � ε| log h(ρ)|/ logm, as ε→ 0+, (1.5)

where ρ is the solution of f(s) = s between (0, 1), and h is the generating function of
immigration.

Similar to the case of Theorem 1, as it can be seen from Proposition 1 in Section 6, there
is also the near-constancy phenomena here and thus the rough asymptotic � in our Theorem
2 can not be improved into more precise asymptotic ∼.

Our proof of Theorem 2, which appears in sections 3, 4 and 5, is based on Dubuc’s result.
Note that it seems impossible to extend the involved analytic method used in [D71b] to the
branching process with immigration. However, Mörters and Ortgiese [MO08] provided a very
useful probabilistic approach for Theorem 1. Our approach is built on top of their powerful
arguments, and overcome additional difficulties of immigration effects. More specifically,
we start with a fundamental decomposition for W given in (2.2). A suitable truncation is
needed in order to handle the infinite series. To estimate the lower bound of P(W ≤ ε),
we investigate when the least population size happens. For the upper bound, we use the
exponential Chebyshev’s inequality and estimate the Laplace transform ofW . The property
of P(W ≤ ε) is then obtained through Tauberian type Theorems.

We put the proof of p0 > 0 case in Section 5. In this case, the extinction probability
is strictly positive, and plays the most important role in the small value probability of W .
Moreover, the immigration makes effect also.

Next we turn to consider a slightly different type of supercritical branching process with
immigration, which is denoted by (Z̃n, n ≥ 0). The only difference is to assume Z̃0 = 1. The

corresponding limit of Z̃n/mn is denoted by W̃ . Then by simple computation we get that

W̃ =d W +
W
m

(1.6)

in distribution, as denoted by =d throughout this paper. Due to (1.6) and the fact that

P(W +W/m ≤ ε) ≥ P(W ≤ ε/2) · P(W/m ≤ ε/2),

P(W +W/m ≤ ε) ≤ P(W ≤ ε) · P(W/m ≤ ε), (1.7)

we can obtain the following result as a consequence of combining Theorem 1 and Theorem
2.
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Theorem 3 Assume the condition (1.2) holds.
(a) If p0 = 0, p1 > 0 and q0 > 0, then

P(W̃ ≤ ε) � ε| log(p1q0)|/ logm as ε→ 0+.

(b) If p0 = 0, p1 > 0 and q0 = 0, then

logP(W̃ ≤ ε) ∼ −K| log p1|
2(logm)2

| log ε|2 as ε→ 0+,

with K being defined as in Theorem 2(b).
(c) If p0 = 0 and p1 = 0, then

logP(W̃ ≤ ε) � −ε−β/(1−β) as ε→ 0+,

with β being defined as in Theorem 1(b).
(d) If p0 > 0, then

P(W̃ ≤ ε) � ε| log h(ρ)|/ logm, as ε→ 0+.

Taking q0 = 1 in Theorem 3, then it degenerates into Theorem 1.
In Section 6, we give some examples, where the offspring and immigration are both

shifted geometric distributed (for definition see Section 6). Then we can calculate the Laplace
transform ofW directly. As enumerated in Proposition 1, we obtain more precise results than
Theorem 2. For those results, we use the conclusions of [W08] Section 0.9 and Proposition
3.1 of Barlow and Perkins [BP88]. Especially in [BP88], they showed us a case when the
Laplace transform of W indeed has an oscillation. Based on this, we can also construct an
example when the Laplace transform ofW is oscillating. As we can see in Section 2, the small
value probabilities of W can be drawn from its Laplace transform directly. Additionally, we
show that there are also oscillations in other case with immigration.

2 Basic relations and estimates

The following two Tauberian type theorems are useful tools in our investigation. The asymp-
totic equivalent type can be found in Bingham, Goldie and Teugels [BGT87], Theorem 1.7.1
on p.37 and Theorem 4.12.9 on p.254. The one-sided equivalent type is given in Li [L11+].

Lemma 1 Assume V is a positive random variable and α > 0 is a constant.
(i) For constant C > 0,

E e−λV ∼ Cλ−α as λ→∞,

if and only if

P(V ≤ t) ∼ C

Γ(1 + α)
tα as t→ 0+.
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(ii) The one-sided relation

P(V ≤ t) ≤ C1t
α for some constant C1 > 0 and all t > 0

is equivalent to

E e−λV ≤ C2λ
−α for some constant C2 > 0 and all λ > 0.

Lemma 2 Assume V is a positive random variable and α > 0, θ ∈ R, or α = 0, θ > 0 are
constants.

(i) For constant C > 0,

logP(V ≤ t) ∼ −Ct−α| log t|θ as t→ 0+,

if and only if

logE e−λV ∼ −(1 + α)1−θ/(1+α)α−α/(1+α)C1/(1+α)λα/(1+α)(log λ)θ/(1+α) as λ→∞.

When α = 0 and θ > 0, the product of constants above-mentioned is just C.
(ii) The one-sided relation

logP(V ≤ t) ≤ −C1t
−α| log t|θ for some constant C1 > 0 and all t > 0

is equivalent to

logE e−λV ≤ −C2λ
α/(1+α)(log λ)θ/(1+α) for some constant C2 > 0 and all λ > 0.

Now we consider the supercritical branching process with immigration (Zn, n ≥ 0) and
Z0 = Y0. For fixed integer r ≥ 0 and l ≥ 1, let ξr(1), · · · , ξr(Zr) be the individuals in
generation r, and ηl(j), j = 1, · · · , Yl be the individuals of immigration in generation l.
Then for any r ≥ 0 and n ≥ r + 1,

Zn =
Zr∑
i=1

Zn−r(ξr(i)) +
n∑

l=r+1

Yl∑
j=1

Zn−l(ηl(j)).

Here (Zn(v), n ≥ 0) is a supercritical G-W branching process initiated with one individual
v and W (v) is the limit of positive martingale m−nZn(v).

Divided by mn on both sides, then let n→∞, we get

W = m−r
Zr∑
i=1

W (ξr(i)) +
∞∑

l=r+1

m−l
Yl∑
j=1

W (ηl(j)). (2.1)

For simplicity, we rewrite (2.1) as

W = m−r
Zr∑
i=1

Wi +
∞∑

l=r+1

m−l
Yl∑
j=1

W j
l . (2.2)

Here all the Wi,W
j
l , i = 1, · · · ,Zr, l = r + 1, · · · , n, j = 1, · · · , Yl are independent and

identically distributed as W . The relation (2.2) is the fundamental distribution identity of
W and it is used repeatedly in our approach.
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3 Proof of Theorem 2: Lower bound

We start with a simple but crucial probability estimates that is a consequence of the condition
E log+ Y <∞ in (1.2).

Lemma 3 Under condition E log+ Y < ∞ in (1.2), for any fixed constant δ > 0, there
exists integer l such that

P(max
i≥l+1

Yie
−δi ≤ 1) ≥ e−1. (3.1)

Proof. For any given δ > 0, we have

∞∑
i=1

P(log+ Y ≥ δi) =
∞∑
i=1

∞∑
k=i

P(k ≤ δ−1 log+ Y < k + 1)

=
∞∑
k=1

kE I(k ≤ δ−1 log+ Y < k + 1)

≤ δ−1E log+ Y <∞.

Let Yi and Y be our independent and identically distributed immigration random variables.
Then for any large integer l such that

∞∑
i=l+1

P(log+ Y ≥ δi) ≤ 1/2 (3.2)

we have

P(max
i≥l+1

Yie
−δi ≤ 1) ≥

∞∏
i=l+1

(
1− P(log+ Y ≥ δi)

)
≥ exp

(
−2

∞∑
i=l+1

P(log+ Y ≥ δi)

)
≥ e−1

where we used the fact that (1− x)e2x is increasing for 0 ≤ x < 1/2. This finishes our proof
of the lemma.

Proof of (a) and (b). For any ε > 0, let k = kε be the integer such that

m−k ≤ ε < m−k+1, (3.3)

which is equivalent to say that

k − 1 < | log ε|/ logm ≤ k, or k = d| log ε|/ logme. (3.4)

7



Using the fundamental distribution identity (2.2) with r = 0, we have for a fixed integer l
to be chosen later,

P(W ≤ ε) = P
( ∞∑

i=0

m−i
Yi∑
j=1

W j
i ≤ ε

)

≥ P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
· P
( ∞∑
i=k+l+1

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
. (3.5)

For the second term in (3.5), we have by using ε ≥ m−k in (3.3),

P
( ∞∑
i=k+l+1

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
≥ P

( ∞∑
i=k+l+1

m−i
Yi∑
j=1

W j
i ≤

m−k

2

)

= P
( ∞∑
i=l+1

m−i
Yi∑
j=1

W j
i ≤

1

2

)
. (3.6)

Note that the last equality follows from the independence and identical distribution of all
W j
i ’s and Yi’s.

Next we have by controlling the size of Yi, i ≥ l + 1, given in the Lemma 3,

P
( ∞∑
i=l+1

m−i
Yi∑
j=1

W j
i ≤

1

2

)
≥ P

( ∞∑
i=l+1

m−i
Yi∑
j=1

W j
i ≤

1

2
,max
i≥l+1

Yie
−δi ≤ 1

)

≥ P
( ∞∑
i=l+1

m−i
eδi∑
j=1

W j
i ≤

1

2

)
· P
(

max
i≥l+1

Yie
−δi ≤ 1

)
. (3.7)

Using Chebyshev’s inequality for the first part of (3.7), we get

P
( ∞∑
i=l+1

m−i
eδi∑
j=1

W j
i ≤

1

2

)
≥ 1− 2E

∞∑
i=l+1

m−i
eδi∑
j=1

W j
i (3.8)

= 1− 2eδ(l+1)

(m− eδ)ml
. (3.9)

We can now choose δ such that eδ < m, and then find large enough integer l so that

2eδ(l+1)

(m− eδ)ml
<

1

2
. (3.10)

Combining (3.6)–(3.10) and Lemma 3, we obtain that

P
( ∞∑
i=k+l+1

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
≥ P

( ∞∑
i=l+1

m−i
Yi∑
j=1

W j
i ≤

1

2

)
≥ 1

2e
. (3.11)
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Now back to the first part of (3.5), we have to handle it under conditions (a) and (b)
separately. In the case (a) with q0 > 0, we have the simple estimate

P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
≥ P

(
Y0 = · · · = Yk+l = 0

)
= qk+l+1

0 . (3.12)

Using k − 1 < | log ε|/ logm in (3.4), it’s easy to deduce that

qk0 ≥ q0 · q| log ε|/ logm0 = q0ε
| log q0|/ logm. (3.13)

Combining (3.5) and (3.11)–(3.13) we have shown the lower bound in Theorem 2(a).
For the case (b) with q0 = 0, we have, recalling the definition of K = inf{n : qn > 0},

P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
≥ P

( k+l∑
i=0

m−i
Yi∑
j=1

W j
i ≤

ε

2
, Y0 = · · · = Yk+l = K

)

= P
( k+l∑

i=0

m−i
K∑
j=1

W j
i ≤

ε

2

)
· qk+l+1

K . (3.14)

The above probability of sums can be bounded termwise, and thus

P
( k+l∑

i=0

m−i
K∑
j=1

W j
i ≤

ε

2

)
≥ P

(
max

0≤i≤k+l
max
1≤j≤K

m−iW j
i ≤

ε/2

K(k + l + 1)

)

=
k+l∏
i=0

PK
(
m−iW ≤ ε/2

K(k + l + 1)

)

≥
k+l∏
i=0

PK
(
W ≤ mi−k/2

K(k + l + 1)

)
. (3.15)

where we used the independence of all W j
i ’s in the last equality and ε ≥ m−k from (3.3) in

the last inequality.
From Theorem 1(a) there exists a constant c > 0 such that, for i = 0, 1, · · · , k + l,

P
(
W ≤ mi−k/2

K(k + l + 1)

)
≥ c

(
mi−k/2

K(k + l + 1)

)| log p1|/ logm
. (3.16)

Combining (3.5), (3.11) and (3.14)–(3.16) together and take care of summation over 0 ≤ i ≤
k + l after taking logarithm, we have

logP(W ≤ ε) ≥ −K| log p1|
2

k2 −O(k log k)

≥ −K| log p1|
2(logm)2

| log ε|2 −O(log ε−1 log log ε−1)

9



where we used k < 1 + | log ε|/ logm from (3.4).

Proof of (c). First observe that, in this case with γ = inf{n : pn > 0} ≥ 2, K = inf{n :
qn > 0} ≥ 1, the smallest number of particles in generation n (n ≥ 1) is

b(n) := K(γn + γn−1 + · ·+1) = K(γn+1 − 1)/(γ − 1). (3.17)

It is also easy to see that the chance this occurs is

P(Zn = b(n)) = pb(n−1)+··+b(0)γ qn+1
K := pB(n)

γ qn+1
K , (3.18)

where

B(0) = 0, B(n) = b(n− 1) + · ·+b(0) =
K (γn+1 − (n+ 1)γ + n)

(γ − 1)2
, n ≥ 1. (3.19)

Given ε > 0, we can choose k = kε such that

γk

mk
≤ ε <

γk−1

mk−1 , (3.20)

which is equivalent to say that

k − 1 < | log ε|/ log(m/γ) ≤ k, or k = d| log ε|/ log(m/γ)e. (3.21)

Next let l be an integer that will be determined later. Using the fundamental distribution
identity (2.2) with r = k + l and (3.18), we have that

P(W ≤ ε) ≥ P
(
W ≤ (γ/m)k|Zk+l = b(k + l)

)
P(Zk+l = b(k + l))

= P
(
m−k−l

b(k+l)∑
i=1

Wi +
∞∑

i=k+l+1

m−i
Yi∑
j=1

W j
i ≤ (γ/m)k

)
pB(k+l)
γ qk+l+1

K

≥ P
( b(k+l)∑

i=1

Wi ≤
mlγk

2

)
P
( ∞∑

i=1

m−i
Yi∑
j=1

W j
i ≤

mlγk

2

)
pB(k+l)
γ qk+l+1

K .(3.22)

For the first term in (3.22) we have by Chebyshev’s inequality and choosing suitable l

P
( b(k+l)∑

i=1

Wi ≤ mlγk/2

)
≥ 1− 2

mlγk
E

b(k+l)∑
i=1

Wi = 1− 2b(k + l)

mlγk

≥ 1− 2Kγ

γ − 1
(γ/m)l ≥ 1/2 (3.23)

where we used the fact that EW = 1 and b(n) ≤ K(γ − 1)−1γn+1 from (3.17).
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For the second part of (3.22), we have

P
( ∞∑

i=1

m−i
Yi∑
j=1

W j
i ≤

mlγk

2

)
= P

( ∞∑
i=l+1

m−i
Yi∑
j=1

W j
i ≤

γk

2

)

≥ P
( ∞∑
i=l+1

m−i
Yi∑
j=1

W j
i ≤

1

2

)
≥ e−1/2 (3.24)

where the last inequality follows from (3.11).
Combing (3.22)–(3.24), we get

P(W ≤ ε) ≥ pB(k+l)
γ qk+l+1

K e−1/4. (3.25)

Recalling the definition of B(k + l) in (3.19) and k − 1 < | log ε|/ log(m/γ) in (3.21), we see

B(k + l) ≤ K

(γ − 1)2
γk+l+1 ≤ Cγ| log ε|/ log(m/γ) = Cε−β/(1−β),

where β is defined as in Theorem 1(b) and C is a fixed constant. Therefore from (3.25) we
obtain

logP(W ≤ ε) ≥ −Cε−β/(1−β)

for some constant C > 0.

4 Proof of Theorem 2: Upper bound

As we can see from the arguments in section 3, only the finite terms in (2.2) are contributing
to the small value probabilities of W . Hence we take only r = 0 in (2.2), choose suitable cut
off k, and focus on properties of

∑k
l=0m

−l∑Yl
j=1W

j
l .

Proof of (a). Let k = kε be the integer defined as in (3.3). Using the fundamental
distribution identity (2.2) with r = 0 and exponential Chebyshev’s inequality, we have for
any λ > 0,

P(W ≤ ε) ≤ P
( k∑

i=0

m−i
Yi∑
j=1

W j
i ≤ ε

)

≤ eλε · E exp

(
− λ

k∑
i=0

m−i
Yi∑
j=1

W j
i

)
. (4.1)

Notice that all the (W j
i , i = 0, · · · , k, j = 1, · · · , Yi) are independent, we have

E exp

(
− λ

k∑
i=0

m−i
Yi∑
j=1

W j
i

)
=

k∏
i=0

E exp

(
− λm−i

Yi∑
j=1

W j
i

)
. (4.2)

11



Conditioning on Yi = 0 or Yi ≥ 1, we have

E exp

(
− λm−i

Yi∑
j=1

W j
i

)
≤ q0 + (1− q0)E exp

(
− λm−iW 1

i

)
≤ q0(1 + δi), (4.3)

where

δi = q−10 E exp
(
− λm−iW 1

i

)
= q−10 E exp

(
− λm−iW

)
, i = 0, · · · , k. (4.4)

Substituting (4.3) into (4.1) and letting λ = ε−1, we obtain

P(W ≤ ε) ≤ eqk+1
0

k∏
i=0

(1 + δi).

Since k ≥ | log ε|/ logm in (3.4), we have

qk0 ≤ ε| log q0|/ logm.

So we finish the proof by showing

k∑
i=0

log(1 + δi) ≤
k∑
i=0

δi ≤M (4.5)

where M > 0 is a constant independent of ε (noticing that the k depends on ε). To show
(4.5), we have to argue separately according to p1 > 0 or p1 = 0.

When p1 > 0, by Theorem 1(a) and Lemma 1(ii), there exists a constant C > 0 satisfying
that

E e−λW ≤ Cλ−| log p1|/ logm, λ > 0. (4.6)

Combining (4.4) with λ = ε−1, and then using (4.6), we have

k∑
i=0

δi = q−10

k∑
i=0

E exp(−ε−1m−iW )

≤ q−10 C
k∑
i=0

(εmi)| log p1|/ logm

= Cq−10 ε| log p1|/ logm
k∑
i=0

p−i1

≤ C ′ε| log p1|/ logm · p−k1 ≤ C ′p−11

where C ′ is a constant and the last inequality follows from (3.4).
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When p1 = 0, using Theorem 1(b) and Lemma 2(ii) with α = β/(1 − β) and θ = 0, we
have for some constant b > 0,

logE e−λW ≤ −bλβ, λ > 0, (4.7)

from which it’s similar to show that (4.5) holds. Indeed, setting λ = ε−1 in (4.4), and then
using (4.7) and (3.3), we obtain

k∑
i=0

δi = q−10

k∑
i=0

E exp(−ε−1m−iW )

≤ q−10

k∑
i=0

exp(−bε−βm−iβ)

≤ q−10

k∑
i=0

exp(−bm(k−i−1)β)

≤ q−10

∞∑
i=0

exp(−bm(i−1)β) <∞.

Proof of (b). Let k be defined as in (3.3). Using (4.1) and the fact that Yi ≥ K for any
i ≥ 0,

P(W ≤ ε) ≤ eλε
k∏
i=0

K∏
j=1

E exp
(
−λm−iW j

i

)
, λ > 0. (4.8)

In the case (b) with p1 > 0, substituting (4.6) into (4.8) with λ = ε−1, we obtain

P(W ≤ ε) ≤ e
k∏
i=0

K∏
j=1

C(εmi)| log p1|/ logm.

Taking the logarithm we obtain

logP(W ≤ ε) ≤ 1 +K(k + 1)(logC − | log ε| · | log p1|/ logm) + k(k + 1) ·K| log p1|/2
= −k · | log ε| ·K| log p1|/ logm+ (k − 1)2 ·K| log p1|/2 +O(k)

≤ −K| log p1|
2(logm)2

| log ε|2 +O(| log ε|)

where we used in the last inequality the fact that k − 1 < | log ε|/ logm ≤ k in (3.4).

Proof of (c). It is clear that

P(W ≤ ε) ≤ P(W ≤ ε), (4.9)

and therefore we finish the proof of (c) by using estimate in Theorem 1(b).
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5 Proof of Theorem 2(d)

If p0 > 0, then f(s) = s has a unique solution ρ ∈ (0, 1) and P(W = 0) = ρ. By means of
the Harris-Sevastyanov transformation

f̃(s) :=
f((1− ρ)s+ ρ)− ρ

(1− ρ)
,

f̃ defines a new branching mechanism with p̃0 = 0 and f̃ ′(1) = m. Denote (Z̃n, n ≥ 0) as the

corresponding branching process and W̃ as the limit of m−nZ̃n. By Theorem 3.2 in [H48],

W =d W0 · W̃ , (5.1)

where W0 is independent of W̃ and takes the values 0 and 1/(1− ρ) with probabilities ρ and

1−ρ respectively. Notice that the small value probability of W̃ has the asymptotic behavior
described in Theorem 1(a) with p̃1 = f̃ ′(0) = f ′(ρ) > 0, and τ = | log p̃1|/ logm, that is

P(W̃ ≤ ε) � ετ . (5.2)

Now we start to prove Theorem 2(d).

Proof of Lower Bound For any ε > 0, let k = kε be the integer defined in (3.3), then
using (3.5) and (3.11), we only need to estimate the first part of (3.5).

P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
≥

k+l∏
i=0

P
( Yi∑
j=1

W j
i = 0

)
=

k+l∏
i=0

(
∞∑
k=0

qkρ
k

)
= h(ρ)k+l+1, (5.3)

where h is the generating function of immigration Y . Using k − 1 < | log ε|/ logm in (3.4),
it’s easy to deduce that

h(ρ)k ≥ h(ρ) · h(ρ)| log ε|/ logm = h(ρ) · ε| log h(ρ)|/ logm. (5.4)

Combining (3.5), (3.11), (5.3) and (5.4) we obtain the lower bound of (d).

Proof of Upper Bound Using (5.1), we have, for any λ > 0,

E e−λW = ρ+ E e−λW I{W>0} := ρ+ δ(λ). (5.5)
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Using (4.1), (4.2) and the independence of all the (W j
i , i = 0, · · · , k, j = 1, · · · , Yi), we have

P(W ≤ ε) ≤ eλεE exp

(
− λ

k∑
i=0

m−i
Yi∑
j=1

W j
i

)

= eλε
k∏
i=0

h
(
ρ+ δ(λm−i)

)
= (h(ρ))k+1 exp

(
λε+

k∑
i=0

log
(
h
(
ρ+ δ(λm−i)

)
/h(ρ)

))
, (5.6)

where λ = λk depends on k(= kε) and will be given later. Since k ≥ | log ε|/ logm in (3.4),
we have

(h(ρ))k ≤ ε| log h(ρ)|/ logm. (5.7)

So we finish the proof by showing that there is a constant M > 0, which does not depend
on ε, such that

λε+
k∑
i=0

log
(
h
(
ρ+ δ(λm−i)

)
/h(ρ)

)
≤ λm−k+1 + h(ρ)−1

k∑
i=0

(
h
(
ρ+ δ(λm−i)

)
− h(ρ)

)
≤M. (5.8)

Since δ(λm−x) is increasing in x, we have

k∑
i=0

(
h
(
ρ+ δ(λm−i)

)
− h(ρ)

)
≤
∫ k+1

0

(
h
(
ρ+ δ(λm−x)

)
− h(ρ)

)
dx. (5.9)

Note that δ(λ) = (1 − ρ)E e−(λ/(1−ρ))W̃ . By (5.2) and Lemma 1(ii), there exists C > 0 such
that

δ(λm−x) ≤ C(λm−x)−τ , (5.10)

with τ = | log f ′(ρ)|/ logm, thus

k∑
i=0

(
h
(
ρ+ δ(λm−i)

)
− h(ρ)

)
≤

∫ k+1

0

(
h
(
ρ+ C(λm−x)−τ

)
− h(ρ)

)
dx

= 1/(τ logm) ·
∫ λ−τm(k+1)τ

λ−τ
1/y · (h (ρ+ Cy)− h(ρ)) dy

≤ 1/(τ logm) ·
∫ λ−τm(k+1)τ

0

1/y · (h (ρ+ Cy)− h(ρ)) dy. (5.11)
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Since ρ < 1, we may choose δ0 > 0 such that ρ + δ0 < 1. We choose λ = (C/δ0)
1/τ m(k+1).

Then
λm−k+1 = m2 (C/δ0)

1/τ := M1, (5.12)

and
ρ+ Cy ≤ ρ+ Cλ−τm(k+1)τ = ρ+ δ0 < 1, ∀ y ≤ λ−τm(k+1)τ .

Then we continue (5.11) to get

k∑
i=0

(
h
(
ρ+ δ(λm−i)

)
− h(ρ)

)
≤ 1/(τ logm) ·

∫ δ0/C

0

1/y · (h (ρ+ Cy)− h(ρ)) dy

:= M2 <∞, (5.13)

where we used the fact that

lim
y→0

1/y · (h (ρ+ Cy)− h(ρ)) = Ch′(ρ) <∞.

From (5.8), (5.12) and (5.13) we obtain that (5.8) holds with M = M1 + M2. We finished
the proof of Theorem 2(d).

6 Examples

We start with some well known facts on the generating function approach to branching
processes. Suppose that f and h are generating functions of the offspring number X and
immigration number Y respectively, i.e.

f(s) = E sX and h(s) = E sY , 0 < s < 1.

For fixed integer k ≥ 1, let fk = f(fk−1) be the k-fold composition of f with f0(s) = s. Set

φ(λ) = E e−λW and Φ(λ) = E e−λW , 0 < s < 1. (6.1)

Using (2.2) with r = 0, we get

Φ(λ) =
∞∏
k=0

h
(
φ
(
m−kλ

))
. (6.2)

For the remaining part of this section, we assume for 0 < p, q ≤ 1, X =d a + Geo(p)
and Y =d b + Geo(q) where a and b are integers, and X =d a + Geo(p) is called shift
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geometric random variable with P(X = a + k) = p(1 − p)k−1, k ≥ 1. Clearly, the mean of
X =d a+Geo(p) is m = EX = a+ 1/p and the generating function is

f(s) =
sa+1

s+ (1− s)/p
, a ≥ −1, 0 < p < 1. (6.3)

The generating function for Y =d b+Geo(q) is

h(s) = sb+1/(s+ (1− s)/q), b ≥ −1, 0 < q ≤ 1. (6.4)

When a = −1, it is known that (see [W08] Section 0.9) the generating function of the
offspring is

f(s) = p/(1− (1− p)s) 0 < p < 1/2,

The mean of the offspring and extinction probability are

m = (1− p)/p > 1, ρ = p/(1− p) = 1/m (6.5)

respectively, and the Laplace transform of limit W of the martingale m−nZn is given by

E e−λW = (pλ+ 1− 2p)/((1− p)λ+ 1− 2p). (6.6)

When a = 0 and X =d Geo(p) is standard geometric, it is well known that (see Example
3 of [FW07], p.237 for instance)

fk(s) =
s

s+ (1− s)/pk
, k = 1, 2, · · · , (6.7)

thus we have for any λ > 0

E e−λW = lim
n→∞

fn
(
exp(−λm−n)

)
= 1/(λ+ 1). (6.8)

When a ≥ 1, then φ(λ) in (6.1) satisfies

φ(mλ) = f(φ(λ)) =
φ(λ)a+1

φ(λ) + (1− φ(λ))/p
. (6.9)

For λ > 0, let

g(λ) = −λ−β log φ(λ) (6.10)

with β = log(a + 1)/ logm as defined in Theorem 1(b). Combining (6.9) and (6.10), we
obtain

g(mλ) = g(λ) + λ−β| log p|/(a+ 1) + λ−β log
(
1− (1− p)φ(λ)

)
/(a+ 1).
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The special case of a = 1 and p = 1/4 in the above equality is studied in detail by Barlow
and Perkins [BP88], in connection with Brownian motion on the sierpinski gasket. We follow
their approach to obtain (6.14) below. Using 0 < φ(λ) < 1, it is clear

g(λ) ≤ g(mλ) ≤ g(λ) + λ−β| log p|/(a+ 1),

which implies that g(mnλ) is increasing with respect to n and

g(λ) ≤ g(mnλ) ≤ g(λ) + λ−β
(
| log p|/(a+ 1)

)(
(1−m−βn)/(1−m−β)

)
.

Thus there exists a positive function, denoted by G(λ), such that

lim
n→∞

g(mnλ) = G(λ), λ > 0, (6.11)

and it is easy to check that

G(mkλ) = G(λ), for any integer k. (6.12)

When a = 1 and p = 1/4, from p.573-p.574 in [BP88], it is known that there is an oscillation
for G(x) near 0+, that is

lim inf
x→0+

G(x) < lim sup
x→0+

G(x). (6.13)

By the similar argument in the proof of Proposition 3.1(b) of [BP88], p.572, we can prove
easily that there exist some strictly positive constants C1, C2 and C3 such that

exp(−C1λ
β) ≤ E e−λW ≤ C2 exp(−C3λ

β), λ > 0. (6.14)

This can be refined significantly, even with immigration, and here is our precise estimates.

Proposition 1 Assume that the offspring X =d a + Geo(p), and the immigration Y =d

b+Geo(q) with integers a ≥ −1, b ≥ −1, and m = EX = a+ 1/p.
(i) When a = 0 and b ≥ 0, we have

logE e−λW ∼ − b+ 1

2 logm
(log λ)2 as λ→∞, (6.15)

Equivalently, according to Lemma 2(i),

logP(W ≤ ε) ∼ − b+ 1

2 logm
| log ε|2 as ε→ 0. (6.16)

(ii) When a = 0 and b = −1, we have

lim inf
λ→∞

λ| log q|/ logmE e−λW = C inf
0<x<1

eC(x) (6.17)

lim sup
λ→∞

λ| log q|/ logmE e−λW = C sup
0<x<1

eC(x) (6.18)
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where C(x) is defined in (6.41) and

C = exp
(
− | log q|2/(2 logm)− | log q|/2

)
. (6.19)

Especially, when m = 4, and q = 1/8, we have

0 < lim inf
λ→∞

λ| log q|/ logmE e−λW < lim sup
λ→∞

λ| log q|/ logmE e−λW <∞. (6.20)

Equivalently, according to Lemma 1(i),

0 < lim inf
ε→0

ε−| log q|/ logmP(W ≤ ε) < lim sup
ε→0

ε−| log q|/ logmP(W ≤ ε) <∞. (6.21)

(iii) When a ≥ 1 and b ≥ 0, for G(λ) defined as in (6.11), we have

lim inf
λ→∞

λ−β logE e−λW = − sup
0<x<1

G(x) · (b+ 1)(a+ 1)/a, (6.22)

lim sup
λ→∞

λ−β logE e−λW = − inf
0<x<1

G(x) · (b+ 1)(a+ 1)/a (6.23)

where β = log(a+ 1)/ logm.
Especially when a = 1 and p = 1/4, from (6.13), then using Lemma 2(i), we have

−∞ < lim inf
ε→0

ε−β/(1−β) logP(W ≤ ε) < lim sup
ε→0

ε−β/(1−β) logP(W ≤ ε) < 0. (6.24)

(iv) When a ≥ 1 and b = −1, we have

lim inf
λ→∞

λ| log q|/ logmE e−λW = C inf
0<x<1

e−C(x,φ) (6.25)

lim sup
λ→∞

λ| log q|/ logmE e−λW = C sup
0<x<1

e−C(x,φ) (6.26)

where C(x, φ) is defined in (6.62) and C = exp(−C1 −C2 − | log q|/2) with C1 and C2 being
defined in (6.58) and (6.60) respectively.

(v) When a = −1, we have

lim inf
λ→∞

λ| log h(ρ)|/ logmE e−λW = C inf
0<x<1

exp(−C−1(x)), (6.27)

lim sup
λ→∞

λ| log h(ρ)|/ logmE e−λW = C sup
0<x<1

exp(−C−1(x)), (6.28)

where C = exp(−C1 − C2 − | log h(ρ)|/2) with C1 and C2 being defined in (6.66) and (6.67)
respectively, and C−1(λ) being defined in (6.68).

Remark: In special cases, we can check that C(x), C(x, φ) and C−1(x) are not constant
but have near constancy phenomena using Matlab Calculus method. But for the general
case, we can’t prove this result. We only checked that C(x) is oscillating near 0 for instance.
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From Proposition 1(ii), the oscillation occurs with immigration even there is no oscillation
without immigration. This is quite unexpected and demonstrates the significant effects of
the immigration. Of course, Proposition 1 also shows that the asymptotic � in our main
Theorem 2 is best possible in the sense that it can not be improved into the more precise
asymptotic ∼.

Now we turn to consider W̃ defined in (1.6). Together with (6.6), (6.8), (6.11) and
Proposition 1, it is easy to obtain the following results.

Corollary 1 The same assumption as in Proposition 1.
(i) When a = 0 and b ≥ 0, we have

logE e−λW̃ ∼ − b+ 1

2 logm
(log λ)2 as λ→∞.

Equivalently, according to Lemma 2(i),

logP(W̃ ≤ ε) ∼ − b+ 1

2 logm
| log ε|2 as ε→ 0.

(ii) When a = 0 and b = −1, we have

lim inf
λ→∞

λ1+| log q|/ logmE e−λW̃ = inf
0<x<1

C/q · exp(C(x)),

lim sup
λ→∞

λ1+| log q|/ logmE e−λW̃ = sup
0<x<1

C/q · exp(C(x)),

where C(λ) and C are defined in Proposition 1(ii).
(iii) When a ≥ 1 and b ≥ 0, for G(λ) defined as in (6.11), we have

lim inf
λ→∞

λ−β logE e−λW̃ = − sup
0<x<1

G(x) · (a+ b+ 1)/a,

lim sup
λ→∞

λ−β logE e−λW̃ = − inf
0<x<1

G(x) · (a+ b+ 1)/a,

where β = log(a+ 1)/ logm.
(iv) When a ≥ 1 and b = −1, we have

lim inf
λ→∞

λ−β logE e−λW̃ = − sup
0<x<1

G(x),

lim sup
λ→∞

λ−β logE e−λW̃ = − inf
0<x<1

G(x),

where β = log(a+ 1)/ logm.
(v) When a = −1, we have

lim inf
λ→∞

λ| log h(ρ)|/ logmE e−λW = Cρ/h(ρ) · inf
0<x<1

exp(−C−1(x)),

lim sup
λ→∞

λ| log h(ρ)|/ logmE e−λW = Cρ/h(ρ) · sup
0<x<1

exp(−C−1(x)),

where C, C(x) and ρ are defined in Proposition 1(v).
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Remark: We should mention that when q = 1 and b = −1, we have W̃ = W . Since (6.8)
and (6.11), we have (ii) and (iv) holds obviously.

Proof of Proposition 1(i) Recall m = 1/p in this case. Combining (6.2), (6.4) and
(6.8), we obtain

I(λ) := − logE e−λW =
∞∑
k=0

log
(
(λm−k + 1)b(1 + λm−k/q)

)
. (6.29)

Using the integral representation

log(1 + xm−k) =

∫ x

0

(t+mk)−1dt,

we can rewrite (6.29) via Fubini theorem to obtain

I(λ) = b

∫ λ

0

Q(t)dt+

∫ λq−1

0

Q(t)dt (6.30)

where

Q(t) :=
∞∑
k=0

1

t+mk
=

∫ ∞
0

dx

t+mx
+
∞∑
k=0

∫ k+1

k

mx −mk

(t+mk)(t+mx)
dx. (6.31)

We can explicitly evaluate the integral term in (6.31),∫ ∞
0

dx

t+mx
= (logm)−1

∫ ∞
1

dy

y(t+ y)
= (logm)−1

log(t+ 1)

t
(6.32)

and also estimate the sum term

0 ≤
∞∑
k=0

∫ k+1

k

mx −mk

(t+mk)(t+mx)
dx ≤

∫ ∞
0

mx

(t+mx−1)(t+mx)
dx

=
C

t
log
(
(1 +mt)/(1 + t)

)
≤ mC(1 ∧ t−1)(6.33)

for some constant C > 0, by using the substitution mx = ty for the last integral. Combining
(6.31), (6.32) and (6.33), we have as λ→∞∫ λ

0

Q(t)dt ∼
∫ λ

1

Q(t)dt

∼ (logm)−1
∫ λ

1

log(t+ 1)

t
dt

∼ (2 logm)−1 · (log λ)2.
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Thus from (6.30), we have as λ→∞

I(λ) ∼ (b+ 1)(2 logm)−1 · (log λ)2

which finishes the proof of part (i), in the case b ≥ 0.

Proof of Proposition 1(ii) Letting b = −1 in (6.29), then using

log
((

1 + λm−k/q
)
/
(
λm−k + 1

))
=

∫ λ/q

λ

(t+mk)−1dt,

if we define f(x) = 1/(t+mx), then we can write (6.29) as

I(λ) =

∫ λ/q

λ

∞∑
k=0

f(k)dt (6.34)

We first use Euler-Maclaurin formula to obtain

n∑
k=0

f(k) =

∫ n

0

f(x)dx+ (f(n) + f(0))/2 +Rn(t) (6.35)

where the remainder

Rn(t) =

∫ n

0

f
′
(x)P1(x)dx, (6.36)

and

P1(x) = x− bxc − 1/2, and bxc is the largest integer less than x. (6.37)

Substituting the definition of f(x) and its derivative f ′(x) into (6.35), and letting n → ∞,
we have

∞∑
k=0

f(k) =
log(t+ 1)

t logm
+

1

2(t+ 1)
+R∞(t) (6.38)

with

R∞(t) = − logm ·
∫ ∞
0

P1(x)(t+mx)−2mxdx. (6.39)

Thus we obtain from (6.34) and (6.38), as λ→∞

I(λ) =

∫ λ/q

λ

log(t+ 1)

t logm
dt+

∫ λ/q

λ

1

2(t+ 1)
dt+

∫ λ/q

λ

R∞(t)dt

= | log q|/ logm · log λ+ | log q|2/(2 logm) + | log q|/2−R(λ) +O(λ−1) (6.40)
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where

R(λ) = logm ·
∫ λ/q

λ

∫ ∞
0

P1(x)(t+mx)−2mxdxdt

=

∫ 1/q

1

∫ ∞
1/λ

P1 (log(λy)/ logm) (s+ y)−2dyds

=

∫ 1/q

1

∫ ∞
0

P1 (log(λy)/ logm) (s+ y)−2dyds+O(λ−1)

:= C(λ) +O(λ−1), (6.41)

here we use variable substitutions mx = λy and t = λs. Clearly, the function C(λ) is
bounded since |P1(x)| ≤ 1/2, and in fact,

|C(λ)| ≤
∫ 1/q

1

∫ ∞
0

(s+ y)−2dyds = | log q| <∞.

It is easy to check by the periodicity of P1(x) that for any integer k ≥ 1 and positive real
number x,

C(m−kx) = C(x). (6.42)

Combining (6.40) and (6.42), we obtain (6.17) and (6.18). It is necessary here to show that
the C(x) is oscillating near 0+, that is to say

lim inf
x→0+

C(x) < lim sup
x→0+

C(x). (6.43)

In fact, when m = 4 and q = 1/8, using Matlab calculus we found the value of C(x) satisfies

sup
0<x<1

C(x) ≥ C(25 · 10−10) = −1.568763331475900

inf
0<x<1

C(x) ≤ C(11 · 10−10) = −1.609054498122461 (6.44)

when x takes values in 11 · 10−10, 12 · 10−10, 13 · 10−10, · · · , 31 · 10−10. Therefore we obtain
(6.20).

Proof of Proposition 1(iii) From now on, let a ≥ 1 be an integer. Recall the definition
of Φ given by (6.2), and h given by (6.4). For any λ > 0 and integer n > 0, we have

(mnλ)−β log Φ(mnλ)

= (b+ 1)(mnλ)−β
∞∑
k=0

log φ(mn−kλ)− (mnλ)−β
∞∑
k=0

log
(
1/q − (1/q − 1)φ(mn−kλ)

)
:= (b+ 1)II(n, λ)− III(n, λ), (6.45)
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where β = log(a+1)/ logm. Now we handle II(n, λ) and III(n, λ) separately. First observe
that

II(n, λ) =
n∑
k=0

(mk)−β(mn−kλ)−β log φ(mn−kλ) + (mnλ)−β
∞∑
j=1

log φ(m−jλ)

:= II(1)(n, λ) + II(2)(n, λ). (6.46)

By definition the of G(λ), we know that for ∀ ε > 0, there exists some integer n0 such that∣∣(mkλ)−β log φ(mkλ) +G(λ)
∣∣ ≤ ε, ∀ k ≥ n0. (6.47)

For fixed integer n large enough, using (6.47), we have∣∣∣∣∣II(1)(n, λ) +
n∑
k=0

m−kβG(λ)

∣∣∣∣∣
≤ ε

n−n0∑
k=0

m−kβ +
n∑

k=n−n0+1

m−kβ
( ∣∣(mn−kλ)−β log φ(mn−kλ)

∣∣+G(λ)
)
. (6.48)

By (6.14), the second term of (6.48) is bounded by
n∑

k=n−n0+1

m−kβ
(
C1 +G(λ)

)
−→ 0 as n→∞. (6.49)

Combining (6.48) and (6.49), then taking n→∞ and ε→ 0+, we get

II(1)(n, λ) −→ −mβ

mβ − 1
G(λ) = −(a+ 1)/a ·G(λ) as n→∞,

for the last equality we used the definition of β = log(a + 1)/ logm. For II(2)(n, λ), by
Jensen’s inequality, we have

0 >
∞∑
j=1

log φ(m−jλ) ≥
∞∑
j=1

−m−jλ ≥ −λ/(m− 1),

and then II(2)(n, λ)→ 0 as n→∞. Therefore we obtain

II(n, λ) −→ −mβ

mβ − 1
G(λ) = −(a+ 1)/a ·G(λ) as n→∞. (6.50)

Now, we only need to prove that III(n, λ)→ 0. Notice that

III(n, λ) = (mnλ)−β
∞∑

k=−n

log
(
1 + (1/q − 1)(1− φ(m−kλ)

)
≤ (mnλ)−β

∞∑
k=−n

(1/q − 1)
(
1− φ(m−kλ)

)
≤ (mnλ)−β(1/q − 1)

∞∑
k=−n

(
1− exp(−m−kλ)

)
,
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here we used log(1 + x) ≤ x on [0,∞) and Jensen’s inequality. Furthermore, since

∞∑
k=−n

(
1− exp(−m−kλ)

)
≤

∫ ∞
−n−1

1− exp(−m−xλ)dx

=

∫ λmn+1

0

(
1− e−y

)
/
(
y logm

)
dy

≤
∫ 1

0

1/ logmdy +

∫ λmn+1

1

1/
(
y logm

)
dy

=
(
1 + log λ

)
/ logm+ (n+ 1),

we have

III(n, λ)→ 0 as n→∞. (6.51)

Then combining (6.45), (6.50) and (6.51), we obtain

−(mnλ)−β log Φ(mnλ) −→ (b+ 1)(a+ 1)/a ·G(λ) as n→∞. (6.52)

From which we obtain (6.22) and (6.23).

Proof of Proposition 1(iv) By the definition of Φ given by (6.2) and h being defined in
(6.4) with b = −1, we have for any real number λ > 0,

− log Φ(λ) =
∞∑
k=0

log
(
1/q − (1/q − 1)φ(λm−k)

)
:=

∞∑
k=0

f(k). (6.53)

Using Euler-Maclaurin formula, we obtain

∞∑
k=0

f(k) =

∫ ∞
0

f(x)dx+ f(0)/2 +R(λ, φ) (6.54)

with

R(λ, φ) = (1/q − 1)λ logm ·
∫ ∞
0

P1(x)φ′(λm−x)m−x

1/q − (1/q − 1)φ(λm−x)
dx. (6.55)

It is obvious from (6.14) that

f(0) = log (1/q − (1/q − 1)φ(λ)) ∼ | log q|+ o(λ−1) as λ→∞. (6.56)

For the first term in (6.54), by variable substitution y = λm−x, we have∫ ∞
0

f(x)dx =

∫ λ

0

log
(
1/q − (1/q − 1)φ(y)

)
/(y logm)dy. (6.57)
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It is obvious from the definition of φ that∫ 1

0

log
(
1/q − (1/q − 1)φ(y)

)
/(y logm)dy := C1 (6.58)

is a finite positive constant. Thus we only need to estimate∫ λ

1

log
(
1/q − (1/q − 1)φ(y)

)
/(y logm)dy

= | log q|/ logm · log λ+

∫ λ

1

log
(
1− (1− q)φ(y)

)
/(y logm)dy. (6.59)

Using log(1− x) ∼ −x as x→ 0 and (6.14), we obtain that∫ ∞
λ

log
(
1− (1− q)φ(y)

)
/(y logm)dy

∼ −(1− q)/ logm ·
∫ ∞
λ

φ(y)/ydy = −o(λ−1) as λ→∞.

Thus we obtain that as λ→∞,∫ λ

1

log
(
1− (1− q)φ(y)

)
/(y logm)dy

=

∫ ∞
1

log
(
1− (1− q)φ(y)

)
/(y logm)dy + o(λ−1) := C2 + o(λ−1). (6.60)

Combining (6.57)–(6.60), we obtain that∫ ∞
0

f(x)dx ∼ | log q|/ logm · log λ+ C1 + C2 as λ→∞. (6.61)

Now we only need to estimate R(λ, φ) in (6.55). Using variable substitution λm−x = y, we
obtain

R(λ, φ) = (1− q) ·
∫ λ

0

P1

(
log(λ/y)/ logm

)
φ′(y)

1− (1− q)φ(y)
dy

= (1− q) ·
∫ ∞
0

P1

(
log(λ/y)/ logm

)
φ′(y)

1− (1− q)φ(y)
dy + o(λ−1)

:= C(λ, φ) + o(λ−1) as λ→∞. (6.62)

Here we use (6.14) to obtain the second equality. It is easy to check that C(λ, φ) is bounded
by | log q|. Then using the periodicity of P1, we have for any integer k > 0,

C(mkλ, φ) = C(λ, φ). (6.63)
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Combining (6.53)–(6.56) and (6.61), (6.62), we obtain

E e−λW = λ−| log q|/ logm exp (−C1 − C2 − | log q|/2) exp(−C(λ, φ)),

then together with (6.63), we obtain (6.25) and (6.26).

Proof of Proposition 1(v) Now we assume a = −1. Using (6.2) and (6.6), we have when
h(s) satisfies (6.4),

E e−λW =
∞∏
k=0

q(pλm−k + 1− 2p)b+1((1− p)λm−k + 1− 2p)−b

(1− 2p+ pq)λm−k + (1− 2p)q
.

Define
I(λ) = − logE exp(−λW).

When b = −1, we have

I(λ) =
∞∑
k=0

log
(1− 2p+ qp)λm−k + (1− 2p)q

(1− p)qλm−k + (1− 2p)q
.

By Euler-Maclaurin formula, if we define

f(x) = log
(1− 2p+ qp)λm−x + (1− 2p)q

(1− p)qλm−x + (1− 2p)q
,

then we have

I(λ) =

∫ ∞
0

f(x)dx+
f(0)

2
+

∫ ∞
0

P1(x)f ′(x)dx (6.64)

with∫ ∞
0

f(x)dx = 1/ logm ·
∫ λ

0

1/y · log
(1− 2p+ qp)y + (1− 2p)q

(1− p)qy + (1− 2p)q
dy

= C1 + 1/ logm ·
∫ λ

1

1/y ·
(

log
1− 2p+ qp

(1− p)q
+ log

y + q(1− 2p)/(1− 2p+ qp)

y + (1− 2p)/(1− p)

)
dy

= C1 + | log h(ρ)|/ logm · log λ+ C2 −O(λ−1) as λ→∞ (6.65)

where we used the definition of ρ in (6.5) and h in (6.4) with b = −1 for the last equality,
and

C1 = 1/ logm ·
∫ 1

0

1/y · log
(1− 2p+ qp)y + (1− 2p)q

(1− p)qy + (1− 2p)q
dy (6.66)

and

C2 = 1/ logm ·
∫ ∞
1

1/y · log
y + q(1− 2p)/(1− 2p+ qp)

y + (1− 2p)/(1− p)
dy. (6.67)
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By the definition of f ′(x) and P1(x) in (6.37), we obtain that the third term of (6.64) is

−
∫ ∞
0

(1− 2p)2(1− q) · λm−x · logm

(1− p) · λm−x + (1− 2p)

P1(x)

(1− 2p+ qp)λm−x + (1− 2p)q
dx

= −
∫ λ

0

(1− 2p)2(1− q)
(1− p) · y + (1− 2p)

P1 (log(λ/y)/ logm)

(1− 2p+ qp) · y + (1− 2p)q
dy

= −
∫ ∞
0

(1− 2p)2(1− q)
(1− p) · y + (1− 2p)

P1 (log(λ/y)/ logm)

(1− 2p+ qp) · y + (1− 2p)q
dy +O(λ−1)

:= C−1(λ) +O(λ−1), as λ→∞ (6.68)

and it is easy to check that C−1(λ) is a bounded periodic function. Notice that

f(0) = | log h(ρ)|, (6.69)

then together with (6.64), (6.65), (6.68) and (6.69), we obtain

I(λ) = | log h(ρ)|/ logm · log λ+ C1 + C2 + | log h(ρ)|/2 + C−1(λ) as λ→∞, (6.70)

which implies (6.27) and (6.28).
When b ≥ 0, we can similarly obtain (6.27) and (6.28), and the details are omitted.
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