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a b s t r a c t

We consider a family of stochastic processes {Xεt , t ∈ T } on a metric space T , with a
parameter ε ↓ 0. We study the conditions under which

lim
ε→0

P
(
sup
t∈T
|Xεt | < δ

)
= 1

when one has an a priori estimate on the modulus of continuity and the value at one point.
We compare our problem to the celebrated Kolmogorov continuity criteria for stochastic
processes, and finally give an application of our main result for stochastic integrals with
respect to compound Poisson randommeasures with infinite intensity measures.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let (T , d) be a metric space with finite diameter,

D(T ) = sup {d(s, t) : s, t ∈ T } <∞.

Let N(T , d, δ) denote the covering number, i.e., for every δ > 0, let N(T , d, δ) denote the minimal number of closed d-balls
of radius δ required to cover T . The supremum of a stochastic process Xt defined on T , supt∈T Xt can be quantified in terms
of N(T , d, δ) (see Talagrand (2005, Chapter 1) for instance) under various assumptions on the process Xt .
In this article we consider a family of stochastic processes Xεt on T , with a parameter ε > 0. In certain applications in

nonparametric statistics (see Section 4) it is of interest to study the limiting behaviour of the supremum, limε→0 supt∈T Xεt
when one has an a priori estimate of the form

E|Xεt − X
ε
s |
β
≤ Bεd(s, t)γ

for some β, γ > 0 and Bε → 0 as ε → 0. In particular, we would like to identify conditions under which, for every δ > 0,

lim
ε→0

P
(
sup
t∈T
|Xεt | < δ

)
= 1. (1.1)

In our main result in Section 2, we find conditions in terms of the covering number N(T , d, δ) that ensure (1.1) holds.
Although our technique is based on well known chaining methods, our principal result appears to be new. In Section 3
we discuss briefly the optimality of our hypotheses and compare our theoremwith the Kolmogorov criterion for continuity
of stochastic processes. In Section 4 we present an application of our main theorem to random fields constructed from Lévy
randommeasures.
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2. Main result

Let (T , d) be a complete separable metric space and (Xεt )t∈T a family of real-valued, centered, L2 stochastic processes on
T , indexed by ε > 0.
Let n0 be the largest integer n such that N(T , d, 2−n) = 1 (note n0 < 0 is possible). For every n ≥ n0, fix a covering of T

of cardinality Nn = N(T , d, 2−n) by closed balls of radius 2−n. From this we can construct a partitionAn of T of cardinality
|An| = Nn by Borel sets with diameter at most 2−n+1. For each n ≥ n0, fix a designated point in each element A of the
partition An, and denote by Tn the collection of these points. Without loss of generality, let the designated point in the
single element of partitionAn0 = {T } be Tn0 = {t0} for a point t0 ∈ T to be specified in the statement of Theorem 1 below.
For t ∈ T denote by An(t) the partition element A ∈ An that contains t . For every t and every n, let sn(t) be the element
of Tn in t ’s partition element, so that t ∈ An(sn(t)). It is clear that d(t, sn(t)) ≤ 2−n+1 for every t ∈ T and n ≥ n0. By the
triangle inequality

d(sn(t), sn−1(t)) ≤ d(sn(t), t)+ d(t, sn−1(t)) ≤ 2−n+1 + 2−n+2 = 6 · 2−n.

Define the set

Hn ≡
{
(u, v) ∈ Tn × Tn−1 : d(u, v) ≤ 6 · 2−n

}
. (2.2)

The following is our main result:

Theorem 1. Suppose that:

1. There exists a point t0 ∈ T such that

lim
ε→0

E(Xεt0)
2
= 0. (2.3a)

2. There exist α, β > 0 and positive numbers {Bε} with limε→0 Bε = 0 such that for any s, t ∈ T

E|Xεt − X
ε
s |
β
≤ Bεd(s, t)1+α. (2.3b)

3. There exists a family of partitionsAn of T of sets of diameter no more than 21−n and a constant γ < α such that

∞∑
n=1

|Hn|2−(1+γ )n <∞ (2.3c)

where Hn is as defined in (2.2).

Then for any δ > 0,

lim
ε→0

P
(
sup
t∈T
|Xεt | < δ

)
= 1. (2.6)

Remark. For each fixed ε > 0, Eq. (2.3b) guarantees the existence of a path-continuous version of (Xεt ) (by Kolmogorov’s
continuity criterion; see Durrett, 1996, p. 375. For more on this connection see Section 3). Since Hn satisfies the bound

|Hn| ≤ |Tn| · |Tn−1| ≤ N2(T , d, 2−n),

the monotonicity of N(T , d, δ) implies that the entropy condition (2.3c) holds whenever∫ D(T )

0
aγN2(T , d, a) da <∞.

Frequently in applications we have a bound of the form

|Hn| ≤ C · |Tn| ≤ C · N(T , d, 2−n) (2.7)

for a universal constant C and in this case (2.3c) holds if∫ D(T )

0
aγN(T , d, a) da <∞. (2.8)

For example it can be easily shown that, with T = [0, 1] and d(u, v) = |u− v|, the dyadic partition

An =
{[
i21−n, (i+ 1)21−n

]
: 0 ≤ i < 2n−1

}
of T into Nn = 2n−1 d-balls of radius 2−n for n ≥ n0 = 1 satisfies (2.3c) for C = 5.
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Proof. Fix δ > 0. First observe that

P
(
sup
t∈T
|Xεt | < δ

)
≥ P

(
sup
t∈T
|Xεt − X

ε
t0 | < δ/2, |Xεt0 | < δ/2

)
≥ P

(
sup
t∈T
|Xεt − X

ε
t0 | < δ/2

)
− P

(
|Xεt0 | ≥ δ/2

)
and

P(|Xεt0 | ≥ δ/2) ≤ 4δ
−2E|Xεt0 |

2
→ 0

as ε → 0 by Eq. (2.3a). Thus we only need to control supt∈T |Xεt − X
ε
t0 |.

We employ the so-called generic chaining principle of Ledoux (1996) (see also Talagrand, 2005, or Xiao, 2010 for a
refinement similar in spirit to our approach). The fundamental relation is the convergent telescoping sum

Xt − Xt0 =
∑
n>n0

(
Xsn(t) − Xsn−1(t)

)
for every t ∈ T , where we note that sn0(t) = t0 for every t ∈ T . Then,

sup
t∈T
|Xt − Xt0 | ≤ sup

t∈T

∑
n>n0

|Xsn(t) − Xsn−1(t)|

≤

∑
n>n0

max
(u,v)∈Hn

|Xu − Xv|.

For (u, v) ∈ T × T , let {wn(u, v)}n≥n0 be a sequence of non-negative real numbers such that
∑
n≥n0

wn(u, v) = 1. For any
δ > 0, by the triangle inequality⋂

n>n0

⋂
(u,v)∈Hn

{|Xu − Xv| ≤ wn(u, v) δ/2} ⊂
{
sup
t∈T
|Xt − Xt0 | ≤ δ/2

}
.

Therefore,

P
(
sup
t∈T
|Xεt − X

ε
t0 | > δ/2

)
≤ P

(⋃
n>n0

⋃
(u,v)∈Tn

{
|Xεu − X

ε
v | > wn(u, v) δ/2

})
≤

∑
n>n0

∑
(u,v)∈Hn

P(|Xεu − X
ε
v | > wn(u, v) δ/2).

Next use Eqs. (2.3b) and (2.3c) to find optimal choices for wn(v) (the so-called ‘‘majorizing measure’’, see Talagrand,
2005, Chapter 1). Set

wn(u, v) ≡ wn ≡ (1− 2−h)2−h(n−n0), h = (α − γ )/β, v ∈ T .

Notice that
∑
n≥n0

wn(u, v) = 1. By Markov’s inequality and (2.3b), for v ∈ Tn,

P
(
|Xεu − X

ε
v | ≥ wnδ/2

)
≤ (wnδ/2)−βE|Xεu − X

ε
v |
β

≤ (δ/2)−β(1− 2−h)−β2βh(n−n0)Bεd(u, v)1+α

≤ (δ/2)−β(1− 2−h)−β2−βhn02βhnBε(6 · 2−n)1+α.

Putting all the estimates together,

P
(
sup
t∈T
|Xεt − X

ε
t0 | ≥ δ/2

)
≤ (δ/2)−β(1− 2−h)−β61+α 2−βhn0Bε

(∑
n>n0

∑
(u,v)∈Hn

2βhn2−(1+α)n
)

= CBε
∑
n>n0

|Hn|2−(1+γ )n

for a finite constant C <∞. Since Bε → 0 as ε → 0 and the sum converges by (2.3c),

lim
ε→0

P
(
sup
t∈T
|Xεt − X

ε
t0 | ≥ δ/2

)
= 0

and the theorem is proved. �
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3. Near optimality of our hypothesis

Kolmogorov’s continuity criterion asserts the existence of a path continuous version of any stochastic process Xt , t ∈
[0, 1] that satisfies

E
(
|Xt − Xs|β

)
≤ C |t − s|1+α

for some fixed α, β > 0, C < ∞ and all 0 ≤ s, t ≤ 1 (cf. (2.3b)). Strict inequality α > 0 is necessary, as illustrated by the
well known counter example

Xt = 1{U≤t}

for U ∼ Un[0, 1] which satisfies E|Xt − Xs|β ≤ C |t − s| for all β > 0 and C ≥ 1 but is almost surely discontinuous. In the
spirit of this example, here we construct a stochastic process which shows that our hypothesis (2) in Theorem 1 is ‘‘very
close’’ to optimal.
Let U ∼ Un[0, 1], 0 < ε < 1 and Xεt = 1{t<U≤t+ε}, 0 ≤ t ≤ 1. Then for any fixed t ∈ [0, 1],

E(Xεt )
2
= P(t < U ≤ t + ε) = min(ε, 1− t). (3.9)

Since

EXεt X
ε
s =

{0 if |t − s| > ε
ε − |t − s| if |t − s| ≤ ε,min(s, t) ≤ 1− ε
1−max(s, t) if |t − s| ≤ ε,min(s, t) ≥ 1− ε,

it follows that

E(Xεt − X
ε
s )
2
≤ 2min(ε, |t − s|). (3.10)

By (3.9) Xεt satisfies (2.3a) for any t0 ∈ [0, 1], and by (3.10) we have bounds on E[(Xεt − X
ε
s )
β
] for β = 2 both of the form

B|t − s| (for fixed B = 2) and of the form Bε → 0 (with Bε = 2ε), but not quite a bound of the form required by (2.3b). The
conclusion (2.6) of Theorem 1 fails for the process Xεt since, for any ε > 0, sup0≤t≤1 X

ε
t = 1 almost surely.

Notice that the ongoing example does not show the optimality of hypothesis (2.3b) since the above calculations do not
imply the existence of a sequence Bε → 0 with

E(Xεt − X
ε
s )
2
≤ Bε |t − s|.

However, we believe that the condition α > 0 in Eq. (2.3b) cannot be relaxed and state this as a conjecture.

Conjecture 1. Theorem 1 is not true if hypothesis (2) (Eq. (2.3b)) is replaced by

E|Xεt − X
ε
s |
β
≤ Bε d(s, t).

4. Application: Compensated Poisson randommeasures

In this section we present an application of Theorem 1 to a stochastic process constructed from compensated Poisson
randommeasures.
LetΩ be a Polish space and ν(du dω) be a positive sigma-finite measure on (−1, 1)×Ω such that

ν ((−a, a)×Ω) = ∞, ∀a ∈ [0, 1]∫∫
(−1,1)×Ω

u2ν(du dω) <∞.

Let

N(du dω) ∼ Po(ν)

be a Poisson random measure on (−1, 1) × Ω which assigns independent Po(ν(Bi)) distributions to disjoint Borel sets
Bi ⊂ (−1, 1)×Ω . Let

Ñ(du dω) ≡ N(du dω)− ν(du dω)

denote the compensated Poissonmeasurewithmean0, an isometry from L2((−1, 1)×Ω, ν(du dω)) to the square-integrable
zero-mean random variables (Sato, 1999, p. 38).
Let K(t, ω) : [0, 1] ×Ω → R be a Borel measurable function such that∫∫

(−1,1)×Ω
K 2(t, ω)u2ν(du dω) <∞ (4.11)
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for all 0 ≤ t ≤ 1. For 0 < ε ≤ 1 define a stochastic process Xεt by

Xεt ≡
∫∫
{0<|u|<ε}×Ω

K(t, ω)uÑ(du dω), t ∈ [0, 1]. (4.12)

For every t ∈ [0, 1] the stochastic integral (4.12) iswell defined by (4.11) (seeWolpert and Taqqu, 2005; Rajput and Rosiński,
1989). For t ∈ [0, 1], we have:

E
[
Xεt
]
= 0

E
[
(Xεt )

2]
=

∫∫
(−ε,ε)×Ω

K 2(t, ω)u2ν(du dω) <∞

E
[
eiζX

ε
t

]
= exp

{∫∫
(−ε,ε)×Ω

[
eiζK(t,ω)u − 1− iζK(t, ω)u

]
ν(du dω)

}
,

the Lévy–Khintchine formula for the characteristic function of an infinitely divisible random variable.
The stochastic process {Xε ≡ Xεt , t ∈ [0, 1]} is the discretization error arising from the approximation of certain stochas-

tic integrals by finite sums (see Pillai and Wolpert, 2008; Wolpert et al., 2006). The limiting behaviour of the process Xε as
ε goes to zero (see Pillai and Wolpert, 2008, Section 3) is of particular interest; we would like to identify the conditions on
the function K under which

lim
ε→0

P
(
sup
t∈[0,1]

|Xεt | > δ

)
= 0 (4.13)

for all δ > 0, so the approximation error vanishes in the limit. Concentration equalities similar to (4.13) were studied by
Reynaud-Bouret (2006) for finite intensity measures (i.e., ν((−1, 1) × Ω) < ∞) using methods that are not applicable to
our infinite intensity case.
In the next proposition we apply Theorem 1 to identify conditions for the kernel K(·, ·) under which (4.13) holds.

Although it is stated for the index set T ≡ [0, 1], the conclusions hold for any T satisfying the hypothesis of Theorem 1.

Proposition 1. Let K(t, ω) : [0, 1] ×Ω → R satisfy (4.11) and

|K(t, ω)− K(s, ω)|2 ≤ C(ω)|t − s|1+α, s, t ∈ [0, 1], ω ∈ Ω (4.14)

for some α > 0 and Borel measurable function C : Ω → R+ satisfying∫∫
(−1,1)×Ω

C(ω)u2ν(du dω) <∞. (4.15)

Let Xε be the stochastic process on [0, 1] given in (4.12). Then, for any δ > 0,

lim
ε→0

P
(
sup
t∈[0,1]

|Xεt | > δ

)
= 0.

Proof. For any t0 ∈ [0, 1], by (4.11) and the dominated convergence theorem

lim
ε→0

E
[(
Xεt0
)2]
= lim

ε→0

∫
{|u|≤ε}×Ω

K 2(t0, ω)u2ν(du dω) = 0, (4.16)

verifying hypothesis 1 (Eq. (2.3a)) of Theorem 1. For t, s ∈ [0, 1], by (4.14) and by the isometric property of Ñ(du dω),

E
[(
Xεt − X

ε
s

)2]
=

∫∫
{|u|≤ε}×Ω

|K(t, ω)− K(s, ω)|2u2ν(du dω)

≤ Bε |t − s|1+α, where

Bε ≡
∫∫
{|u|≤ε}×Ω

C(ω)u2ν(du dω)→ 0 (4.17)

as ε → 0 by (4.15), so hypothesis 2 (Eq. (2.3b)) of Theorem 1 is satisfied with the Euclidean metric d(t, s) ≡ |t − s|. For
dyadic partitions of [0, 1], we have already shown that (2.7) holds. Since N([0, 1], d, a) = d 1a e ≤

2
a for all 0 < a < 1, for

any γ > 0 (say, γ = α/2),∫ 1

0
aγN([0, 1], d, a) da ≤ 2

∫ 1

0
aγ−1da =

2
γ
<∞ (4.18)
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verifying Eq. (2.8). Therefore by (4.16)–(4.18) and Theorem 1, it follows that for any δ > 0,

lim
ε→0

P
(
sup
t∈[0,1]

|Xεt | > δ

)
= 0

and we are done. �

Remark. It is not known whether the conclusion of the above proposition still holds if (4.14) is weakened to

|K(t, ω)− K(s, ω)|2 ≤ C(ω)|t − s|, s, t ∈ [0, 1].
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