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Abstract

We study the small deviation probabilities of a family of very smooth self-similar
Gaussian processes. The canonical process from the family has the same scaling prop-
erties as standard Brownian motion and plays an important role in the study of zeros
of random polynomials.

Our estimates are based on several approaches. The precise result for the L2-norm
is obtained by an appropriate modification of the entropy method, discovered in Kuelbs
and Li (1992) and developed further in Li and Linde (1999), Gao (2004), and Aurzada
et al. (2009), as well as on classical results about the entropy of classes of operators. In
the sup-norm case we use a combination of several methods and obtain also the correct
rate. The upper bound can be derived by purely probabilistic arguments, while for the
lower bound we again apply the entropy connection.
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1 Introduction

The small deviation problem for a stochastic process X = (X(t))t≥0 – also called small ball
or small value problem – consists in determining the probability

− logP (||X|| ≤ ε) , as ε→ 0,

where ||.|| is for example the norm in some Lp[0, 1] or in C[0, 1]. Small deviation probabilities
play a fundamental role in many problems in probability and analysis, see the lecture notes
[17] for details. This is why there has been a lot of interest in small deviation problems
in recent years, cf. the survey [19] and the literature compilation [21]. There are many
connections to other questions such as the law of the iterated logarithm of Chung type,
strong limit laws in statistics, metric entropy properties of linear operators, quantization,
and several other approximation quantities for stochastic processes. For Gaussian processes,
a reasonable amount of theory has been developed up to date, see e.g. [19].

The aim of this paper is to study a family of very smooth self-similar Gaussian processes
and their respective small deviation probabilities. The canonical process from the family has
the same scaling properties as Brownian motion and plays an important role in the study
of zeros of random polynomials, see Li and Shao [20]. The question of its small deviation
rate was posed at the AIM Workshop “Small ball inequalities in analysis, probability, and
irregularities of distribution” (Palo Alto, December 2008). During the workshop, a couple
of methods for obtaining small deviation estimates were discussed. It is the purpose of this
paper to use the mentioned family to illustrate some different methods.

To be more precise, we focus on the family of centered Gaussian processes Xα,β(t), t > 0,
defined by the covariance function

K(t, s) = EXα,β(t)Xα,β(s) =
22β+1(ts)α

(t+ s)2β+1
(1.1)

for α > 0 and β > −1/2. Note that for α > β + 1/2, we can define Xα,β(0) = 0. It is also
easy to check that Xα,β is an (α− β − 1/2)-self-similar process, i.e. (Xα,β(ct)) has the same
law as (cα−β−1/2Xα,β(t)). In particular, Xα,β has the same scaling property as Brownian
motion for α− β = 1. A useful stochastic integral representation is

Xα,β(t) =

√
22β+1

Γ(2β + 1)
tα
∫ ∞

0

xβe−xt dB(x), t > 0, (1.2)

where B is a standard Brownian motion.
If β = 0, it is easy to see, using integration by parts, that Xα,0 has the same law as the

process

X̃α,0(t) :=
√

2 t1+α

∫ ∞
0

e−xtB(x) dx, t > 0.

We also introduce, for α = 1, β = 0, the canonical process

X(t) := X1,0(t) =
√

2 t

∫ ∞
0

e−xt dB(x), t ≥ 0 .

1



This paper is structured as follows. In Section 2, an approach for obtaining the small
deviation probabilities via the metric entropy of a related linear operator is discussed. We
formulate the main results in Section 2.1. In Section 3, we prove further properties of the
family of processes defined above and use them to discuss an upper bound for the small
deviation rate via purely probabilistic arguments. Section 4 is devoted to the determinant
method, which was introduced at the mentioned AIM Workshop for the first time. Finally, a
relation to the metric entropy of certain function classes is described and utilized in Section 5.

Let us fix some notation. We write f � g or g � f if lim sup f/g <∞, and the asymptotic
equivalence f � g means that we have both f � g and g � f . Moreover, we write f . g or
g & f , if lim sup f/g ≤ 1. Finally, the strong equivalence f ∼ g means that lim f/g = 1.

Acknowledgement: We are grateful to the American Institute of Mathematics (AIM)
for supporting the workshop “Small ball inequalities in analysis, probability, and irregulari-
ties of distribution” (December 2008), where the work on this paper was started.

2 Small deviations under L2- and sup-norm

2.1 Results

We can clarify the small deviation order for the whole class of smooth processes introduced
above for the L2-norm and the sup-norm.

For the L2-norm, we obtain the following result.

Theorem 1 Let α > β > −1/2. Let Xα,β be the process defined by (1.1). Then

− logP
(∫ 1

0

|Xα,β(t)|2 dt ≤ ε2

)
∼ κα,β| log ε|3,

where the constant is given by

κα,β :=
1

3(α− β)π2
. (2.3)

For the sup-norm, we obtain the following theorem under optimal assumptions on the
parameters α and β. However, the result is less precise with respect to the small deviation
constant compared to the L2-norm result.

Theorem 2 Let α > β+1/2 > 0. Let Xα,β be the process defined by (1.1) with Xα,β(0) = 0.
Then, with some constant κ̃α,β > 0, we have

κ̃α,β| log ε|3 . − logP

(
sup
t∈[0,1]

|Xα,β(t)| ≤ ε

)
. κα−1/2,β| log ε|3, (2.4)

where κα,β was defined in (2.3), and κ̃α,β →∞ when α− β → 1/2.
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The proof of these two theorems uses the connection between small deviations of Gaussian
processes and the entropy numbers of a linear operator generating the process, cf. [14], [18],
[2]. In fact, due to Corollaries 2.2 and 2.4 in [2], Theorem 1 and Theorem 2 are equivalent to
Theorem 3 and Theorem 5, respectively, given in the next sections. Other interesting small
deviation estimates for smooth Gaussian processes can be found in [2] and [15].

In order to state and use the connection to the entropy numbers, let us first define the
entropy numbers. For a linear operator u : E → F between Banach spaces E and F and
n ∈ N the entropy numbers are defined as follows

en(u : E → F ) := inf

{
ε > 0 : ∃f1, . . . , f2n−1 ∈ F s.t. u(BE) ⊆

2n−1⋃
k=1

(fk +BF )

}
,

where BE and BF denote the closed unit balls in E and F , respectively. For elementary
properties and further information see e.g. [6]. Since u is compact if and only if lim

n→∞
en(u) =

0, the decay rate of the entropy numbers is a measure for the “degree of compactness” of u.
It turns out that there is a close relation between the small deviation problem for a

Gaussian process X attaining values in E and the entropy numbers of a compact operator
u : L2(S)→ E related to X via

E ei〈X,h〉 = exp

(
−1

2
‖u′(h)‖2

L2(S)

)
, h ∈ E ′, (2.5)

where u′ : E ′ → L2(S) is the dual operator and (S,S, λ) is some measure space. Here,
(E, ‖.‖) is some Banach space.

It can be checked easily that, up to an unimportant multiplicative constant, the process
Xα,β defined in (1.1) is related – via (2.5) – to the operator

(uf)(t) = tα
∫ ∞

0

xβe−xtf(x) dx, f ∈ L2[0,∞). (2.6)

2.2 Entropy arguments in the L2-case

Note that the process defined in (1.1) can be considered with values in the Banach spaces
E = L2[0, 1] for α > β > −1/2. In this L2-setting, we obtain the precise behavior of the
entropy numbers of the operator related to our process on the exponential scale.

Theorem 3 Let α > β > −1/2. Let u : L2[0,∞)→ L2[0, 1] be the operator given by (2.6).
Then

− log en(u) ∼ dα,β n
1/3,

where
dα,β := (3(α− β)π2 log 2)1/3. (2.7)

Proof. First note that the operator uu∗ : L2[0, 1] → L2[0, 1] , where u∗ denotes the adjoint
operator of u, is given by

(uu∗g)(t) = Γ(2β + 1) tα
∫ 1

0

xα

(t+ x)2β+1
g(x) dx .
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The exact asymptotic behavior of its singular numbers sn(uu∗) was found by Laptev [16].
He showed that

− log sn(uu∗) ∼ 2π(α− β)1/2n1/2 .

Similar operators were studied in [23], [12], and [3]. Since sn(uu∗) = sn(u)2 , this implies

− log sn(u) ∼ π(α− β)1/2n1/2. (2.8)

Since we are in the Hilbert space setting, we can return to the entropy numbers using a
result of Gordon, König, and Schütt (Proposition 1.7 in [11]), which states that the entropy
numbers of a diagonal operator Dσ with weight sequence (σn) can be estimated as follows:

sup
n≥1

(
2−k/n(σ1 · · ·σn)1/n

)
≤ ek+1(Dσ) ≤ 6 sup

n≥1

(
2−k/n(σ1 · · ·σn)1/n

)
.

In our case,

log ek(u) ∼ sup
n≥1

(
−k
n

log 2 +
1

n

n∑
i=1

log si(u)

)
.

Using the asymptotics of (sn(u)), we get

− log ek(u) ∼ inf
n≥1

(
k

n
log 2 +

π(α− β)1/2

n

n∑
i=1

i1/2

)
.

Therefore, integrating we obtain

− log ek(u) ∼ inf
n≥1

(
k

n
log 2 +

π(α− β)1/2

n
· 2

3
n3/2

)
.

The optimal n is of order

n ∼
(

3 log 2 · k
π(α− β)1/2

)2/3

.

Inserting this into the formula, we obtain the assertion

− log ek(u) ∼ (3(α− β)π2 log 2 · k)1/3 .

�

Remark: Since we deal with L2-norms, one can use e.g. Theorem 4.1 in [5] to derive
Theorem 1 directly from (2.8). In the same vein, we can use the well known Karhunen-
Loeve expansion and the asymptotics of the associated eigenvalues based on Widom [23] to
prove Theorem 1. In fact, the work of Laptev [16] on singular numbers sn(uu∗) is based on
[23].
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2.3 Entropy arguments in the sup-norm case

Before we state our entropy result in the sup-norm case for the concrete operators we are
interested in, we give a general theorem which might be of independent interest. Roughly
speaking, it provides a technique for deriving upper entropy estimates for an operator u from
a Banach space H into C[0, 1] based on entropy estimates of u : H → L2[0, 1], i.e. the same
operator, but considered as operator into a larger target space. The additional information
we need for this argument is that u should map H even into a smaller space than C[0, 1],
namely into a Hölder space Cλ[0, 1] for some 0 < λ ≤ 1. This space consists of all functions
f ∈ C[0, 1] such

‖f‖Cλ[0,1] := sup
0≤s<t≤1

|f(t)− f(s)|
|t− s|λ

+ sup
0≤t≤1

|f(t)| <∞ .

Moreover, Cλ[0, 1] is a Banach space under the norm ‖.‖Cλ[0,1].

Theorem 4 Let 0 < λ ≤ 1, let H be a Banach space and u : H → Cλ[0, 1] be an operator
of norm Aλ > 0. Then we have for large enough k ∈ N

ek(u : H → C[0, 1]) ≤ (1 + Aλ) ek(u : H → L2[0, 1])
λ

λ+1/2 .

Proof. Clearly, since Cλ[0, 1] is compactly embedded in L2[0, 1], the operator u : H →
L2[0, 1] is compact, whence its entropy numbers tend to zero.

For 0 < δ ≤ 1 and t ∈ [0, 1] we consider the interval Iδ(t) := [0, 1] ∩ [t − δ, t + δ] and
define for g ∈ L2[0, 1], the local averaging operator

(Pδg)(t) :=
1

|Iδ(t)|

∫
Iδ(t)

g(x) dx .

One can easily verify that the averaging operators Pδ map L2[0, 1] in C[0, 1].
Step 1: We need the following simple norm estimates:

‖Pδ : L2[0, 1]→ C[0, 1]‖ ≤ δ−1/2; (2.9)

‖id− Pδ : Cλ[0, 1]→ C[0, 1]‖ ≤ δλ (2.10)

For all t ∈ [0, 1] and g ∈ L2[0, 1] we have, by the Cauchy-Schwarz inequality,

|(Pδg)(t)| ≤ 1

|Iδ(t)|

∫
Iδ(t)

|g(x)| dx ≤ 1

|Iδ(t)|
|Iδ(t)|1/2‖g‖L2[0,1] ≤ δ−1/2‖g‖L2[0,1] ,

which implies (2.9).
Now let t ∈ [0, 1] and g ∈ Cλ[0, 1] with ‖g‖Cλ[0,1] ≤ 1. Then

|g(t)− Pδg(t)| = 1

|Iδ(t)|

∣∣∣∣∫
Iδ(t)

(g(t)− g(x)) dx

∣∣∣∣ ≤ 1

|Iδ(t)|

∫
Iδ(t)

|g(t)− g(x)| dx ≤ δλ ,

since |g(t) − g(x)| ≤ |t − x|λ‖g‖Cλ[0,1] ≤ δλ for every x ∈ Iδ(t) and 1
|Iδ(t)|

∫
Iδ(t)

dx = 1. To

finish the proof of (2.10), we take the supremum over all t ∈ [0, 1] and g ∈ Cλ[0, 1] with
‖g‖Cλ[0,1] ≤ 1 .
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Step 2: Using elementary properties of entropy numbers (cf. [6]) and the above norm
estimates (2.9) and (2.10), we obtain now for all k ∈ N and 0 < δ < 1

ek(u : H → C[0, 1]) ≤ ek(Pδu : H → C[0, 1]) + ‖u− Pδu : H → C[0, 1] ‖
≤ ek(u : H → L2[0, 1]) · ‖Pδ : L2[0, 1]→ C[0, 1] ‖

+ ‖u : H → Cλ[0, 1]‖ · ‖id− Pδ : Cλ[0, 1]→ C[0, 1] ‖
≤ ek(u : H → L2[0, 1]) · δ−1/2 + Aλ · δλ .

Finally, for k large enough, we choose the parameter δ such that

ek(u : H → L2[0, 1]) · δ−1/2 = δλ ,

i.e. δ = ek(u : H → L2[0, 1])
1

λ+1/2 . With this choice of δ we obtain the desired inequality

ek(u : H → C[0, 1]) ≤ (1 + Aλ)δ
λ = (1 + Aλ) ek(u : H → L2[0, 1])

λ
λ+1/2 .

�

Now we apply the general Theorem 4 to the special operators we are interested in. In the
sup-norm case we get the following result under the optimal assumption on the parameters
α− β > 1/2, which is when the process defined in (1.1) is almost surely in E = C[0, 1].

Theorem 5 Let α > β + 1/2 > 0. Let u : L2[0,∞)→ C[0, 1] be the operator given by (2.6)
Then

d̃α,β n
1/3 . − log en(u) . dα−1/2,β n

1/3,

where dα,β is defined in (2.7) and

d̃α,β :=
min(α− β − 1/2, 1/2)

1/2 + min(α− β − 1/2, 1/2)
· dα,β.

Note, in particular, that if α− β → 1/2, then

d̃α,β → 0 and dα−1/2,β → 0.

Proof of the upper bound for the entropy numbers in Theorem 5. Step 1: First we

show that u maps L2[0,∞) into the Hölder space Cλ[0, 1], where λ := min(α−β−1/2 , 1/2) ,
i.e. we show ‖u : L2[0,∞)→ Cλ[0, 1]‖ =: Aλ <∞ . Let f ∈ L2[0,∞), let 0 ≤ s < t ≤ 1, and
set h := t− s. We consider

|(uf)(t)− (uf)(s)| ≤
∫ ∞

0

|tαxβe−xt − sαxβe−xs| · |f(x)| dx.

Using the Cauchy-Schwartz inequality, this can be estimated by A1/2 ‖f‖L2[0,∞), with

A :=

∫ ∞
0

|tαxβe−xt − sαxβe−xs|2 dx.
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We have to show that A ≤ Ch2λ for some constant C independent of t, s, since then one can
take the supremum over all 0 ≤ s < t ≤ 1 and finally over all f .

In order to see that A ≤ Ch2λ, define

g(y) :=

∫ ∞
0

x2βe−2yx dx = y−2β−12−2β−1Γ(2β + 1)

and note that

A =

∫ ∞
0

x2β(t2αe−2xt − 2(ts)αe−x(t+s) + s2αe−2xs) dx

= t2αg(t)− 2(ts)αg((t+ s)/2) + s2αg(s) .

Therefore, using the notation γ := α− β − 1/2, we have

22β+1A

Γ(2β + 1)
= t2α−2β−1 − 2(ts)α

(
t+ s

2

)−2β−1

+ s2α−2β−1 (2.11)

=

[
t2γ − 2

(
t+ s

2

)2γ

+ s2γ

]
+ 2

[(
t+ s

2

)2γ

− (ts)α
(
t+ s

2

)−2β−1
]
.

If γ < 1/2, the first term is negative by the concavity of the function x 7→ x2γ; if γ ≥ 1/2,
the first term is no larger than γh. In either case, we have

22βA

Γ(2β + 1)
≤ γh

2
+

(
t+ s

2

)−2β−1
[(

t+ s

2

)2α

− (ts)α

]
.

Set a := st and b :=
(
t+s
2

)2
and note that a ≤ b. By the mean value theorem, the last

expression becomes, with some ξ ∈ (a, b),

22βA

Γ(2β + 1)
≤ γh

2
+

(
t+ s

2

)−2β−1 [
(b− a)αξα−1

]
. (2.12)

Now we have all crucial estimates to conclude:
Case 1: h ≥ s. In this case we have t = s+ h ≤ 2h and s ≤ h , and therefore (2.11) implies

22β+1A

Γ(2β + 1)
≤ t2γ + s2γ ≤ (2h)2γ + h2γ = Ch2γ.

Case 2: h ≤ s. In this case we have s < t = s + h ≤ 2s, implying s/2 ≤ (t + s)/2 ≤ 3s/2.
Therefore ξα−1 ≤ Cs2(α−1), independently on whether α ≥ 1 or α ≤ 1. Further, b − a =
1
4
(t2 + 2ts+ s2 − 4ts) = (t− s)2/4 = h2/4. Thus, estimating in (2.12), we get

22βA

Γ(2β + 1)
≤ γh

2
+ Cs−2β−1h2s2(α−1) =

γh

2
+ C

(
h

s

)2−2γ

h2γ ≤ C ′hmin(2γ,1),

as required.
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Step 2: Let ε > 0. Then, by Theorem 3, for large enough k,

ek(u : L2[0,∞)→ L2[0, 1]) ≤ e−(dα,β−ε)k1/3 .

Now Theorem 4 implies that

ek(u : L2[0,∞)→ C[0, 1]) ≤ (1 + Aλ) exp

(
− λ

λ+ 1/2
(dα,β − ε)k1/3

)
,

and consequently

− log ek(u : L2[0,∞)→ C[0, 1]) &
λ

λ+ 1/2
(dα,β − ε)k1/3 .

In other words, we have

lim inf
k→∞

− log ek(u : L2[0,∞)→ C[0, 1])

k1/3
≥ λ

λ+ 1/2
(dα,β − ε) .

Letting ε→ 0, we arrive at the desired upper bound for the entropy numbers. �

Proof of the lower bound for the entropy numbers in Theorem 5. Obviously,
ek(u : L2[0,∞) → C[0, 1]) ≥ ek(u : L2[0,∞) → L2[0, 1]). However, we can even gain a
bit concerning the constant. For this purpose, let us stress the dependence on α and β in
the definition (2.6) by denoting the operator uα,β. Further, for some fixed ε > 0, we let
v : C[0, 1] → L2[0, 1] denote the multiplication operator (vf)(t) = t−1/2+εf(t). Note that
v : C[0, 1]→ L2[0, 1] is bounded. Then one can observe that vuα,β = uα−1/2+ε. Therefore,

ek(uα−1/2+ε : L2[0,∞)→ L2[0, 1]) ≤ ek(uα,β : L2[0,∞)→ C[0, 1]) · ‖v : C[0, 1]→ L2[0, 1]‖ .

Using the L2 estimate from Theorem 3 for the left-hand side, this shows

− log ek(uα,β : L2[0,∞)→ C[0, 1]) . dα−1/2+ε,βk
1/3,

or in other words,

lim sup
k→∞

− log ek(uα,β : L2[0,∞)→ C[0, 1])

k1/3
≤ dα−1/2+ε,β.

This holds for all ε > 0. Letting ε tend to zero yields the lower bound for the entropy
numbers, since the constant dα,β (defined in (2.7)) is continuous in the parameters. �

3 Properties of the processes and probabilistic upper

bound

In this section, we prove several properties of the processes Xα,β. These properties are used
later on and they can also be of independent interest. Additionally, we show how they
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provide a probabilistic argument for the upper bound of the small deviation probability
under the sup-norm. The approach only seems to work for the canonical process X(t) and
is of independent interest. It is instructive to compare this with the standard Brownian
motion, which has the same scaling property but completely different path behavior and
thus small deviation probabilities.

First we prove the following proposition on some basic properties of the processes defined
above.

Proposition 1 Fix t > 0 and let X̂ be an independent copy of X = X1,0. Then we have

(a) Let γ > α− (2β + 1). Then, in distribution,

{sγXα,β(1/s), s ≥ 0} = {X2β+1+γ−α,β(s), s ≥ 0} .

In particular, the process (sγXα,β(1/s)) coincides in distribution with Xα,β if γ =
2α− 2β − 1.

(b) In distribution,

{X(s), s ≥ 0} =

{
t− s
t+ s

X(s) +
2s

t+ s
X̂(t), s ≥ 0

}
.

(c) In distribution,

{X(t)−X(s), s ≥ 0} =

{
t− s
t+ s

(X(s) + X̂(t)), s ≥ 0

}
.

(d) The process

Yt(s) = X(s)− 2s

s+ t
X(t), s ≥ 0

is independent of X(t).

(e) In distribution,{
Yt(s) = X(s)− 2s

s+ t
X(t), s ≥ 0

}
=

{
t− s
t+ s

X(s), s ≥ 0

}
.

Proof. To see (a), one just has to calculate the covariance structure: For s, t ≥ 0,

E [sγXα,β(1/s)tγXα,β(1/t)] = (st)γ
22β+1(ts)−α

(t−1 + s−1)2β+1
=

22β+1(ts)2β+1+γ−α

(t+ s)2β+1

= E [X2β+1+γ−α,β(s)X2β+1+γ−α,β(t)].

The property in (b) can be proved in the same way. Now, all other properties easily follow
from (b). �
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Now we use (d) and (e) from the above proposition to give an alternative proof of the
upper bound of the small deviation probability in (2.4) for α = 1 and β = 0.

Proof of the upper bound of the small deviation probability in (2.4). Let
0 < t1 < t2 < · · · < tn ≤ 1. Then

P( max
1≤i≤n

|X(ti)| ≤ ε) = P(|X(tn)| ≤ ε, max
1≤i≤n−1

|X(ti)−
2ti

ti + tn
X(tn) +

2ti
ti + tn

X(tn)| ≤ ε)

≤ P(|X(tn)| ≤ ε, max
1≤i≤n−1

|X(ti)−
2ti

ti + tn
X(tn)| ≤ ε)

= P(|X(tn)| ≤ ε) · P( max
1≤i≤n−1

|X(ti)−
2ti

ti + tn
X(tn)| ≤ ε)

= P(|X(tn)| ≤ ε) · P
(
|X(ti)| ≤

tn + ti
tn − ti

ε, 1 ≤ i ≤ n− 1

)
≤

n∏
i=1

P(|X(ti)| ≤ aiε), (3.13)

where the first inequality follows from Anderson’s inequality and (d) in Proposition 1, the
third step is due to (d) in Proposition 1, and the last equality is by property (e) in Proposi-
tion 1 and the last inequality follows from iteration. Here an := 1 and

ai :=
n∏

j=i+1

tj + ti
tj − ti

, i = 1, ..., n− 1.

Now let ti := (1 + δ)iε1/2 for 1 ≤ i ≤ n, where δ := 24/| log ε| and n is the integer part
of 4−1| log ε|/ log(1 + δ). Then it is clear that ε1/2 ≤ ti ≤ tn ≤ 2ε1/4 for small ε and that
n ∼ | log ε|2/96. Further, it follows from Lemma 1 below that

ai =
n∏

j=i+1

(1 + δ)j−i + 1

(1 + δ)j−i − 1
≤
∞∏
i=1

(1 + δ)i + 1

(1 + δ)i − 1
≤ e6/δ, for all i = 1, . . . , n.

Therefore, by the self-similarity of X,

P(|X(ti)| ≤ aiε) ≤ P(|Z| ≤ εe6/δ/
√
ti) ≤ P(|Z| ≤ ε1/4e6/δ) = P(|Z| ≤ ε1/2)

where we used the relation δ = 24/| log ε| and Z is the standard normal random variable.
Together with the early estimate (3.13), we obtain

logP( max
1≤i≤n

|X(ti)| ≤ ε) ≤
n∑
i=1

logP(|X(ti)| ≤ aiε)

≤ n logP(|Z| ≤ ε1/2)

≤ −cn · | log ε| ≤ −c′| log ε|3

which implies the upper bound for the small deviation probability in (2.4).
�
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Lemma 1 For all δ > 0 we have

∞∏
i=1

(1 + δ)i + 1

(1 + δ)i − 1
≤ exp

(
π2

4δ

)
.

Proof. We let a := 1 + δ > 1 and observe that

∞∑
i=1

log
ai + 1

ai − 1
=
∞∑
i=1

∫ 1

−1

1

ai + z
dz =

∫ 1

−1

∞∑
i=1

1

ai + z
dz. (3.14)

Using twice the formula for the geometric sum (1 + x)−1 =
∑∞

n=0(−x)n, |x| < 1, we have

∞∑
i=1

1

ai + z
=
∞∑
i=1

∞∑
n=0

1

ai
·
(
−z
ai

)n
=
∞∑
n=0

(−z)n

an+1 − 1
.

Therefore, the expression in (3.14) equals∫ 1

−1

∞∑
n=0

(−1)n

an+1 − 1
zn dz =

∞∑
n=0

(−1)n

an+1 − 1

∫ 1

−1

zn dz =
∞∑
n=0

2

(2n+ 1)(a2n+1 − 1)
.

Note that all changes of summations and integrations are easy to justify. Now, since a > 1
we have a2n+1−1

a−1
=
∑2n

j=0 a
j ≥ 2n+ 1. Thus,

∞∑
i=1

log
ai + 1

ai − 1
=
∞∑
n=0

2

(2n+ 1)(a2n+1 − 1)
≤

∞∑
n=0

2

(2n+ 1)2(a− 1)
=

2

a− 1

π2

8
,

which shows the assertion of the lemma. �

4 The determinant method

The main point of this section is to illustrate the method of determinants, which was first
presented in the AIM workshop by the fourth author as a possible tool to attack the well
known Brownian sheet problem, see AIM web page for more details. This method seems very
promising for providing a general tool to obtain upper bounds for small deviation problems.
Note also that the determinant method is used in [9] for a closely related problem. Here
we only work out the estimate for X(t) = X1,0(t) since precise determinant evaluations is
lacking for covariance matrix associated with Xα,β(t).

Proof of the upper bound of the small deviation probability in (2.4). We start
with the time reversed Gaussian process (cf. Proposition 1 (b)):

Y (t) = X(1/t), t > 0,

with covariance
EY (t)Y (s) = 2/(s+ t).

11



We will prove the relation

logP( sup
0<t≤1

|X(t)| ≤ ε) = logP(sup
t≥1
|Y (t)| ≤ ε) ≤ −1

4
| log ε|3,

for ε small enough. Note that by scaling, P(supt>0 |X(t)| ≤ ε) = 0.
The determinant method starts with the following simple observation. For any sequence

of numbers (δi)
n
i=1 with δi ≥ 1, consider the covariance matrix

Σ = (EY (δi)Y (δj))1≤i,j≤n =

(
2

δi + δj

)
1≤i,j≤n

.

Then one has

P
(

sup
t≥1
|Y (t)| ≤ ε

)
≤ P

(
max
1≤i≤n

|Y (δi)| ≤ ε

)
= (2π)−n/2(det Σ)−1/2

∫
[−ε,+ε]n

exp
(
−〈y,Σ−1y〉

)
dy

≤ (2π)−n/2(det Σ)−1/2(2ε)n ≤ εn(det Σ)−1/2. (4.15)

Now the main difficulty is posed by the evaluation or estimation of the determinant and
judicious choices of partition points. Using Cauchy’s determinant identity, see e.g. [13], we
know

det Σ = 2n
∏

1≤i<j≤n(δj − δi)2∏
1≤i,j≤n(δj + δi)

=
n∏
i=1

δ−1
i ·

∏
1≤i<j≤n

(
δj − δi
δj + δi

)2

.

We will use a geometric sequence δj := aj, j = 1, . . . , n, where a > 1 is chosen later
(depending on n) and n is chosen later (depending on ε). We get that

det Σ = a−
∑n
i=1 i ·

(
n−1∏
i=1

n∏
j=i+1

aj − ai

aj + ai

)2

= a−n(n+1)/2 ·

(
n−1∏
i=1

n∏
j=i+1

aj−i − 1

aj−i + 1

)2

≥ a−n
2 ·

(
n−1∏
i=1

∞∏
j=1

aj − 1

aj + 1

)2

≥ e−n
2 log a · exp

(
2(n− 1)

π2

4(a− 1)

)
≥ exp

(
−n2(a− 1) +

2n

a− 1

)
,
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where we used Lemma 1 in the second inequality. We can optimize the choice of a by setting

a := 1 + 2/
√
n,

which gives

det Σ ≥ e−n
3/2

.

By (4.15), this yields

P
(

sup
t≥1
|Y (t)| ≤ ε

)
≤ e−n| log ε|+n3/2/2.

This estimate is optimized for n being the integer part of | log ε|2, which shows the upper
bound of the probability in (2.4). �

5 Relation to the entropy of function classes

In this section, we relate the small deviation problem for Xα,β under the sup-norm to another
small deviation problem, which in turn is related to a metric entropy problem of a certain
function class. The function class related to the canonical case α = 1, β = 0 was studied in
Theorem 1.2 in [9].

Let us define the process

S(t) := tα
′
∫ 1

0

xβe−xt dB(x), t ≥ 1,

where α′ := 2β + 1− α and the natural restrictions are α > β + 1/2 > 0. Note that exactly
under these restrictions, S is bounded on [1,∞]. Our main theorem concerning S is as
follows.

Theorem 6 Let α > β + 1/2 > 0. Then

− logP
(

sup
t≥1
|S(t)| ≤ ε

)
� | log ε|3. (5.16)

Using the technique in [9], one finds that the associated convex hull for the process
S(t), t ≥ 1 is the function class F consisting of all the functions f on [0, 1] corresponding to
the kernel K(t, x) = tα

′
xβe−tx. More precisely, F can be expressed as

F :=

{
f : f(x) = xβ

∫ ∞
1

tα
′
e−txµ( dt) : ‖µ‖TV ≤ 1

}
.

Under the L2[0, 1] norm ‖f‖2 = (
∫ 1

0
f 2(x)dx)1/2, the class F is compact and its metric

entropy is denoted by logN(ε,F , ‖ · ‖2) where N(ε,F , ‖ · ‖2) is the minimum number of
ε-radii balls in the norm ‖ · ‖2 to cover the class F . Thus as discussed in detail in [9] via
the connection between the small ball probability and the metric entropy, we obtain the
following statement for the function class F associated with S:

13



Corollary 1 For the class F defined above, and α′ = 2β + 1− α with α > β + 1/2 > 0,

logN(ε,F , ‖ · ‖2) � | log ε|3. (5.17)

Our original proof of the lower bounds for the estimates of the probability in (5.16)
and (2.4) follows from a covering estimates of the upper bound in (5.17) which is lengthy
and unpleasant. The current approach for this part, which is turned around, is based on the
simple and soft arguments summarized in Theorem 5. However, the argument that the upper
bound of the metric entropy implies the lower bound of small ball probability, as discussed
in Section 2, is the same, like many other instances we know before. The key point is that
it seems easier to find an upper bound of the metric entropy via analytic tools than a lower
bound of the small ball probability via probabilistic tools, even though they are equivalent.
It would be interesting to find a probabilistic proof for the probability lower bound in (5.16)
or (2.4) for all parameters in the range α > β + 1/2 > 0.

Proof of Theorem 6. We recall the time inversion of the processes Xα,β from Propo-

sition 1 (a): (Xα,β(1/s)) has the same law as Xα′,β. For simplicity, set ρ :=
√

Γ(2β+1)
22β+1 .

Theorem 2 yields that

−| log ε/ρ|3 � logP
(

sup
t≤1
|ρXα,β(t)| ≤ ε

)
= logP

(
sup
t≥1
|ρXα′,β(t)| ≤ ε

)
.

Clearly, by Andersons inequality and the integral representation (1.2), the last expression is
smaller than

logP
(

sup
t≥1
|S(t)| ≤ ε

)
,

which already shows the lower bound of the small deviation probability of S in (5.16).
To see the opposite bound, note that

ρXα′,β(t) = tα
′
∫ 2/ε

0

xβe−xt dB(x) + tα
′
∫ ∞

2/ε

xβe−xt dB(x) =: V (t) + U(t)

and thus

e−c| log ε|3 ≥ P
(

sup
t≥1
|ρXα′,β(t)| ≤ ε

)
≥ P

(
sup
t≥1
|V (t)| ≤ ε/2

)
· P
(

sup
t≥1
|U(t)| ≤ ε/2

)
. (5.18)

Since

P
(

sup
t≥1
|V (t)| ≤ ε/2

)
= P

(
sup
t≥1

∣∣∣∣∣
∫ 2/ε

0

tα
′
xβe−tx dB(x)

∣∣∣∣∣ ≤ ε/2

)

= P
(

sup
t≥1

∣∣∣∣(ε/2)α
′
∫ 1

0

(2t/ε)α
′
(2x/ε)βe−2xt/ε(ε/2)−1/2 dB(x)

∣∣∣∣ ≤ ε/2

)
= P

(
sup
t≥2/ε

∣∣∣∣∫ 1

0

tα
′
xβe−xt dB(x)

∣∣∣∣ ≤ (ε/2)1+1/2+β−α′
)

≥ P(sup
t≥1
|S(t)| ≤ (ε/2)1+1/2+β−α′)
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and 1 + 1/2 + β − α′ > 0, it is sufficient to show that the second term in (5.18) is bounded
from below by a constant. This can be seen as follows: Note that the finite dimensional
distributions of U are the same as of the following process

tα
′
e−t/ε

∫ ∞
1/ε

(x+ 1/ε)βe−tx dB(x)

= tα
′
ε−βe−t/ε

∫ ∞
1/ε

(εx+ 1)βe−tx dB(x)

= (t/ε)α
′
εα
′−β−1/2e−t/ε

∫ ∞
1

(u+ 1)βe−tu/ε dB(u).

Therefore, estimating et/ε ≥ e1/ε in the first step, we obtain

P(sup
t≥1
|U(t)| ≤ ε/2) ≥ P

(
sup
t≥1

∣∣∣∣(t/ε)α′ ∫ ∞
1

(u+ 1)βe−tu/ε dB(u)

∣∣∣∣ ≤ ε1+β+1/2−α′e1/ε/2

)
= P

(
sup
s≥1/ε

∣∣∣∣sα′ ∫ ∞
1

(u+ 1)βe−su dB(u)

∣∣∣∣ ≤ ε1+β+1/2−α′e1/ε/2

)

≥ P
(

sup
s≥1

∣∣∣∣sα′ ∫ ∞
1

(u+ 1)βe−su dB(u)

∣∣∣∣ ≤ 1

)
,

for small ε because ε1+β+1/2−α′e1/ε →∞ as ε→ 0+. Note that the Gaussian process

Z(s) = sα
′
∫ ∞

1

(u+ 1)βe−su dB(u)

is sample bounded on [1,∞) under the assumption α− β > 1/2. Indeed,

E |Z(t)− Z(s)|2 =

∫ ∞
1

(u+ 1)2β(tα
′
e−tu − sα′e−su)2 du

≤ C

∫ ∞
0

u2β(tα
′
e−tu − sα′e−su)2 du

= C ′E |Xα′,β(t)−Xα′,β(s)|2

= C ′E |Xα,β(1/t)−Xα,β(1/s)|2.

Now, Theorem 2 implies that when α−β > 1/2, Z(t) is sample bounded on [1,∞). Therefore,

P
(

sup
s≥1

∣∣∣∣sα′ ∫ ∞
1

(u+ 1)βe−su dB(u)

∣∣∣∣ ≤ 1

)
is a positive constant, as required. �
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