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An exact formula for the expected length of the minimum spanning tree of a connected

graph, with independent and identical edge distribution, is given, which generalizes Steele’s

formula in the uniform case. For a complete graph, the difference of expected lengths

between exponential distribution, with rate one, and uniform distribution on the interval

(0, 1) is shown to be positive and of rate ζ(3)/n. For wheel graphs, precise values of expected

lengths are given via calculations of the associated Tutte polynomials.

1. Introduction

For a simple, finite and connected graph G = (V (G), E(G)) with vertex set V (G) and edge

set E(G), we assign a non-negative independent and identical distributed (i.i.d.) random

weight ξe with distribution F to each edge e ∈ E(G) and denote the total length of the

minimum spanning tree (MST) of the graph G by

LF
MST(G) =

∑
e∈E(MST(G))

ξe.

If {ξe, e ∈ E(G)} follows the uniform distribution on (0, 1) or the exponential distribution

with rate 1, then the expectation of the length of the MST of the graph G is denoted by

ELu
MST(G) or ELe

MST(G), respectively.

Frieze [10] first showed that, for a complete graph Kn with n vertices,

lim
n→∞

ELe
MST(Kn) = lim

n→∞
ELu

MST(Kn) = ζ(3) =

∞∑
k=1

k−3 = 1.202 . . . .

The expected lengths of the MSTs have been extensively studied since then. Steele [22]

relaxed the restriction on the assumption of the edge distribution and Janson [16] proved

the uniform case by a different method and showed a central limit theorem for Lu
MST(Kn).
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The deviation properties of Lu
MST(Kn) were examined in McDiarmid [17] and Flaxman

[9]. Various other special graphs have also been studied, including the bipartite graph by

Frieze and McDiarmid [11], the cubic graph by Penrose [19], the ‘modestly expensive’

regular graph by Beveridge, Frieze and McDiarmid [4] and Frieze, Ruszinkó and Thoma

[12], and the cylinder graph by Hutson and Lewis [14].

Recently, Steele [23] started the investigation on exact formulae for the expected lengths

of MSTs of any simple graph, and discovered the following nice formula:

ELu
MST(G) =

∫ 1

0

(1 − t)

t

Tx(G; 1/t, 1/(1 − t))

T (G; 1/t, 1/(1 − t))
dt, (1.1)

where T (G; x, y) is the Tutte polynomial of G and Tx(G; x, y) denotes the partial derivative

of T (G; x, y) with respect to x. For the complete graph Kn, Fill and Steele [8] found a

recursive method to compute the exact values of ELu
MST(Kn), and very recently Gamarnik

[13] derived an exact formula in terms of the number of connected labelled graphs on n

vertices and m edges, which reduces the computation complexity. In this paper, following

the idea of Steele [23], we establish the following exact formula, which generalizes Steele’s

formula in the uniform case.

Theorem 1.1 (General formula). If G is a simple, finite and connected graph and ξe is a

positive random variable with distribution F(x) = P (ξe � x), then

ELF
MST(G) =

∫ ∞

0

1 − F(t)

F(t)

Tx(G; x, y)

T (G; x, y)
dt, (1.2)

where x = 1/F(t), y = 1/(1 − F(t)), and Tx(G; x, y) is the partial derivative of the Tutte

polynomial T (G; x, y) with respect to x. In particular, for the exponential distribution with

rate one, i.e., F(x) = 1 − e−x, for x ∈ (0,∞),

ELe
MST(G) =

∫ 1

0

1

t

Tx(G; 1/t, 1/(1 − t))

T (G; 1/t, 1/(1 − t))
dt, (1.3)

and for any connected graph G,

ELu
MST(G) < ELe

MST(G). (1.4)

Note that (1.3) follows from (1.2) by a simple change of variable. Although it is not

hard to prove (1.4) directly, a comparison of formulae (1.3) and (1.1) makes this intuitive

inequality obvious, since the coefficients of T (G; x, y) and Tx(G; x, y) are non-negative

integers. See more details in the next section.

The main result of this paper is the application of the general formula (1.2) to a

comparison between ELe
MST(Kn) and ELu

MST(Kn).

Theorem 1.2. For a complete graph Kn,

0 < ELe
MST(Kn) − ELu

MST(Kn) =
ζ(3)

n
+ O

(
n−2 log2 n

)
.
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The basic idea of the proof is to rewrite the difference, substituting back into an integral,

in terms of the expected number of components of a random graph associated with the

uniform case, and then modify the arguments showing ELu
MST(Kn) → ζ(3) in Janson [16].

The rest of the paper is organized as follows. We prove Theorem 1.1 in Section 2

following the idea of Steele [23] in the uniform case. Basic properties of the Tutte

polynomial and its connections with the rank and component functions are reviewed and

analysed. They are also used in Section 4 for the derivation of the Tutte polynomials

of wheel graphs. In Section 3 we prove Theorem 1.2 by decomposing the number

of components of a (random) graph into the numbers of tree, unicyclic and complex

components of various orders. Several technical estimates follow similar ones used by

Janson [16] in the proof of the central limit theorem for Lu
MST(Kn). In the crucial case

of the complex component, direct and somewhat atypical estimates are used for random

graph with large edge probability. Finally, as an additional example, we examine wheel

graphs in Section 4. Their Tutte polynomials are found explicitly via recursive relations,

which are of independent interest. For wheel graphs, the difference of expected lengths

between exponential distribution with rate one and uniform distribution on (0, 1) is of

rate proportional to the number of vertices, and their individual expected lengths are

monotone increasing.

2. The Tutte polynomial and the Proof of Theorem 1.1

It is well known that the Tutte polynomial contains much information about the graph.

Given a graph G = (V (G), E(G)) (not necessarily simple), one can derive its Tutte poly-

nomial T (G; x, y) by the following simple rules based on the graph structure.

(1) If G has no edges, then T (G; x, y) = 1.

(2) If e is an edge of G that is neither a loop nor an isthmus, then

T (G; x, y) = T (G′
e; x, y) + T (G′′

e ; x, y) (deletion–contraction equation),

where G′
e is the graph G with the edge e deleted and G′′

e is the graph G with the edge

e contracted.

(3) If e is an isthmus, then T (G; x, y) = xT (G′
e; x, y).

(4) If e is a loop, then T (G; x, y) = yT (G′′
e ; x, y).

Applying these rules recursively for a graph, one may derive its Tutte polynomial

explicitly. Taking the complete graph Kn, for example, one can find T (K2; x, y) = x,

T (K3; x, y) = x + x2 + y, and with enough patience, T (K4; x, y) = x3 + y3 + 3x2 + 4xy +

3y2 + 2x + 2y. But as n grows larger, it seems much more difficult to find T (Kn; x, y). In

Section 4, we calculate explicitly the Tutte polynomials of wheel graphs, which seem new,

based on recursive patterns.

The Tutte polynomial is mostly used by relating it to the rank function, which measures

how much the graph is connected. For an edge subset A ⊆ E(G), the rank of A, r(A) is

defined by

r(A) = |V (G)| − k(A),
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where k(A) is the number of components of the graph with vertex set V (G) and edge set

A. The Tutte polynomial of the graph G is then a two-variable polynomial defined by

T (G; x, y) =
∑

A⊆E(G)

(x − 1)r(E)−r(A)(y − 1)|A|−r(A). (2.1)

Note that along the hyperbola H1 = {(x, y) : (x − 1)(y − 1) = 1}, T (G; x, y) is simplified to

T (G; x, y) = x|E|(x − 1)r(E)−|E|.

For more properties of the Tutte polynomial, one may refer to [6, 25].

Since the Tutte polynomial is a sum over all the edge subsets of E(G), one can connect

it to a probability model and interpret it as an expectation on certain probability space,

with a careful choice of x and y. Indeed,

T (G; x, y) =
yN

(x − 1)(y − 1)n

∑
A⊆E(G)

(
y − 1

y

)|A|(
1

y

)N−|A|
((x − 1)(y − 1))k(A), (2.2)

where N = |E(G)|; see Steele [23] for an excellent discussion.

Next we present a proof of Theorem 1.1 by considering a continuous-time random

graph process Gn(t). The edge set of Gn(t) is defined to consist of all edges with weight

no more than t, that is, E(Gn(t)) = {e : ξe � t}. In addition, let k(t) be the number of

components of the graph Gn(t) and let N(t) be the number of MST edges selected up to

time t, that is,

N(t) =
∑

e∈E(Gn(t))

I(e ∈ E(MST(G))) =
∑

e∈E(MST(G))

I(ξe � t).

Then k(t) = n − N(t), since the selection of each MST edge in the random graph process

decreases the number of components by 1. Hence we have the following nice representation

for the length of MST,

LF
MST(G) =

∑
e∈E(MST(G))

ξe =
∑

e∈E(MST(G))

∫ ∞

0

I(t < ξe) dt

=

∫ ∞

0

∑
e∈E(MST(G))

(1 − I(ξe � t)) dt

=

∫ ∞

0

(n − 1 − N(t)) dt

=

∫ ∞

0

(k(t) − 1) dt.

Note that the integration limit is only up to maxe∈E(G) ξe, since k(t) = 1 for t > maxe∈E(G) ξe,

if G is connected. Avram and Bertsimas [1] first related the length of the MST to the

number of components and in [16, 23], a similar relation was used for graphs with edge

weights uniformly distributed on (0, 1).

Next we follow the approach of Steele [23] and connect k(t) to the Tutte polynomial

of the graph G. In Section 3, we need to go the opposite way. Note that the moment
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generating function of k(t) is

φ(s) = E exp(sk(t)) =
∑

A⊆E(G)

(F(t))|A| · (1 − F(t))N−|A| · esk(A).

Hence, using (2.2), we can rewrite φ(s) in terms of the Tutte polynomial as

φ(s) = es(1 − F(t))N+1−n(F(t))n−1 · T
(
G; 1 +

es(1 − F(t))

F(t)
,

1

1 − F(t)

)
.

Taking the derivative with respect to s, we have

φ′(s) = φ(s)

{
1 +

es(1 − F(t))

F(t)

Tx(G; xs, y)

T (G; xs, y)

}
,

where y = 1/(1 − F(t)) and xs = 1 + es(1 − F(t))/F(t). Setting s = 0, we obtain x = 1/F(t),

and

Ek(t) = 1 +
1 − F(t)

F(t)

Tx(G; x, y)

T (G; x, y)
, (2.3)

which finishes the proof of the general formula (1.2). To derive formula (1.3), we have for

F(t) = 1 − e−t,

ELe
MST(G) =

∫ ∞

0

1

et − 1

Tx(G; et/(et − 1), et)

T (G; et/(et − 1), et)
dt.

A simple change of variable ends the proof of Theorem 1.1.

3. Proof of Theorem 1.2

From (1.3) and Steele’s formula (1.1), we easily see that

ELe
MST(Gn) − ELu

MST(Gn) =

∫ 1

0

f(t) dt > 0,

where

f(t) =
Tx(G; 1/t, 1/(1 − t))

T (G; 1/t, 1/(1 − t))
=

∑
A⊆E(G)

(kA − 1)t|A|+1(1 − t)N−|A|−1, (3.1)

by the definition of the Tutte polynomial in (2.1).

For the complete graph Kn, a key observation is that we can substitute the difference

above into an integral related to the expected number of components of random graph

Gn(t) associated with the uniform case, 0 � t � 1. To be more precise, by (2.3), we have

Qn := ELe
MST(Kn) − ELu

MST(Kn) =

∫ 1

0

t

1 − t
(Ek(t) − 1)) dt.

Note that as n → ∞,

ELu
MST(Kn) =

∫ 1

0

E(k(t) − 1) dt → ζ(3). (3.2)

In the following, we modify the arguments showing (3.2) in Janson [16], and prove that

Qn = ζ(3)n−1 + O(n−2 log2 n). The starting point is a decomposition of the number of
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components of a random graph Gn(t) as follows:

k(t) =

n∑
k=1

Xkn(t) +

n∑
k=3

Ykn(t) + Zn(t),

where Xkn(t) is the number of tree component of order k in Gn(t), Ykn(t) is the number

of unicyclic components of order k, and Zn(t) is the number of components with more

than one cycle (complex components). Theorem 1.2 then follows from the next three

lemmas, which treat the expected numbers of tree, unicyclic and complex components

separately. As similar estimates appeared in Janson [16], we omit details and only outline

the differences. In the crucial case of the complex component (see Lemma 3.3 below),

full details are given, since direct and somewhat atypical estimates are used for random

graphs with large edge probability.

For the rest of this section, we use C to denote a positive absolute constant whose value

is not important and may change from line to line, and (n)k = n(n − 1) · · · (n − k + 1) to

denote the decreasing factorial.

Lemma 3.1 (Asymptotic for the tree components).

n∑
k=1

∫ 1

0

t

1 − t
EXkn(t) dt =

ζ(3)

n
+ O(n−2).

Proof. By Cayley’s theorem [7], there are kk−2 spanning trees on k vertices with k − 1

edges. In order to appear as a component in the graph Gn(t),
(
k
2

)
− k + k(n − k) + 1 edges

can not be selected. Thus, the expectation of the number of tree components in Gn(t) can

be expressed as

EXkn(t) =

(
n

k

)
kk−2tk−1(1 − t)nk−k2/2−3k/2+1.

Therefore,

Ukn :=

∫ 1

0

t

1 − t
EXkn(t) dt = kk−2 (n)k

(nk − k2/2 − k/2 + 1)k+1
. (3.3)

Now we are left to estimate
∑n

k=1 Ukn, where the simple bound

(n)k � C(n − k/2 − 3/2)k, for 1 � k � n, n � 4, (3.4)

given in Janson [16], is useful and follows from the concavity of the logarithm.

For 1 � k � √
n, it follows easily from Stirling’s formula that

log(n)k = k log n − k(k − 1)

2n
+ O

(
k3n−2

)
,

log

(
nk − k2

2
− k

2
+ 1

)
k+1

= (k + 1) log(nk) − (k + 1)(k2 + 2k − 2)

2nk
+ O

(
k3n−2

)
.
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Thus,

Ukn =
k−3

n
+ O

(
k−2n−2

)
, for 1 � k �

√
n. (3.5)

For
√
n < k � n, we have by (3.4),

Ukn � Ckk−2 (n − k/2 − 3/2)k

(nk − k2/2 − 3k/2)k+1
� C

k−3

n
. (3.6)

Combining (3.5) and (3.6), we obtain

∣∣∣∣
n∑

k=1

Ukn − 1

n

∞∑
k=1

k−3

∣∣∣∣ �
∑

1�k�√
n

∣∣∣∣Ukn − k−3

n

∣∣∣∣ + C
∑
k>

√
n

k−3

n

� C

∞∑
k=1

k−2

n2
+ C

∑
k>

√
n

k−3

n
= O(n−2),

which finishes the proof of Lemma 3.1.

Lemma 3.2 (Upper bound for the unicyclic components).

n∑
k=3

∫ 1

0

t

1 − t
EYkn(t) dt = O(n−2).

Proof. Let m(k) be the number of connected labelled graphs with k edges on k vertices.

Then

EYkn(t) =

(
n

k

)
m(k)tk(1 − t)nk−k2+(k2)−k.

Using (3.4) and the bound m(k) � Ckk−1/2 given in Bollobás [5, Theorem 18], we have

∫ 1

0

t

1 − t
EYkn(t) dt = m(k)(k + 1)

(n)k
(nk − k2/2 − k/2 + 1)k+2

� Ckk− 1
2 (k + 1)

(n − k/2 − 3/2)k

(nk − k2/2 − 3k/2)k+2

� C
k−3/2

n2
,

which finishes the proof of Lemma 3.2.

Lemma 3.3 (Upper bound for the complex components).

∫ 1

0

t

1 − t
E(Zn(t) − 1) dt = O

(
n−2 log2 n

)
.

Proof. We first consider the integral over [0, 3 log n/n]. Let Z̃n be the number of times

during the evolution of Gn(t) that a new complex component is formed; then Zn(t) < Z̃n
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for every t. Hence, using EZ̃n = O(1) from Janson [15], we obtain∫ 3 log n/n

0

t

1 − t
E(Zn(t) − 1) dt �

∫ 3 log n/n

0

t

1 − t
E(Z̃n + 1) dt

� C

∫ 3 log n/n

0

t dt = O
(
n−2 log2 n

)
.

For the integral over [3 log n/n, 1], we have

E(Zn(t) − 1) � nP (Zn(t) > 1) � nP (Gn(t) is not connected),

since |Zn(t) − 1| � n. To estimate the probability, we use the union bound

P (Gn(t) is not connected) �
n/2∑
s=1

(
n

s

)
(1 − t)s(n−s),

since Gn(t) must contain a subset of vertices of size less than n/2, which does not connect

to any of the remaining vertices. Therefore,

∫ 1

3 log n/n

t

1 − t
E(Zn(t) − 1) dt � n

n/2∑
s=1

(
n

s

) ∫ 1

3 log n/n

t(1 − t)s(n−s)−1 dt

� n

n/2∑
s=1

(
n

s

) ∫ 1

3 log n/n

(1 − t)s(n−s)−1 dt

= n

n/2∑
s=1

(
n

s

)
1

s(n − s)

(
1 − 3 log n

n

)s(n−s)

� n

n/2∑
s=1

(
e

s

)s
1

s(n − s)
n− s(2n−3s)

n (3.7)

=
en

n − 1
n

3
n

−2 + n

n/2∑
s=2

(
e

s

)s
1

s(n − s)
n− s(2n−3s)

n ,

where the last inequality (3.7) follows from standard inequalities(
n

s

)
�

(
ne

s

)s

and 1 − x � e−x.

For 2 � s � n/2, we have −s(2n − 3s) � −2(2n − 6). Therefore, the whole sum is majorized

by n/2 times the first term. This shows that∫ 1

3 log n/n

t

1 − t
E(Zn(t) − 1) dt � en

n − 1
n

3
n

−2 + C
n2

n − 2
n−4+ 12

n = O(n−2),

which finishes the proof of Lemma 3.3.

4. The wheel graph and its Tutte polynomial

The wheel graph Wn = K1 + Cn is defined as a join of K1 and Cn, where K1 is the (trivial)

complete graph with 1 vertex and Cn is the cycle with n vertices. The wheel graph is an



On the Difference of Expected Lengths of MSTs 431

important class of planar graphs in both theory and applications, with nice properties

such as self-duality; see [21, 24]. Benedict used wheel graph theory to study self-dual

electric networks [2]. Note that a wheel graph Wn has n + 1 vertices and 2n edges. The

number of spanning trees of Wn is given by L2n − 2, where Ln is the Lucas number defined

by the recursive relation

Ln = Ln−1 + Ln−2, and L1 = 1, L2 = 3.

See [3, 18, 20] for more details about Wn. Our main result in this section is the following

explicit expression for the Tutte polynomial of Wn, which seems new as far as we know.

The basic idea is to use the rules that define the Tutte polynomial to obtain recursive

relations among the Tutte polynomials of Wn and some of its subgraphs, and then apply

the generating function techniques.

Theorem 4.1. For the wheel graph Wn, n � 3, the Tutte polynomial is given by

T (Wn; x, y) = −(x + y − xy + 1) + αn + βn,

where α, β = 1
2
(1 + x + y ±

√
(1 + x + y)2 − 4xy). In particular,

T (Wn; 1/t, 1/(1 − t)) =
1

tn(1 − t)n
, 0 < t < 1.

As an application, the expected lengths for exponential distribution with rate one, and

the uniform distribution on (0, 1), can be found by an integration, using (1.3) and Steele’s

formula (1.1).

Corollary 4.2. For n � 3,

ELu
MST(Wn) =

(n!)2

(2n + 1)!
+ n ·

∫ 1

0

tn+1(1 − t)n+1

1 − t(1 − t)
dt +

(
3

2
− 2

√
3

9
π

)
n,

and

ELe
MST(Wn) =

n!(n − 1)!

(2n)!
+ n ·

∫ 1

0

tn+1(1 − t)n

1 − t(1 − t)
dt +

(
1 −

√
3

9
π

)
n.

In particular, both ELu
MST(Wn) and ELe

MST(Wn) are monotone increasing with respect to n,

and as n → ∞
1

n

(
ELe

MST(Wn) − ELu
MST(Wn)

)
→

√
3

9
π − 1

2
.

Proof of Theorem 4.1. Using a systematic application of the deletion–contraction

property of the Tutte polynomial, we find a recursive relation between the wheel graph

Wn+1 and some of the intermediate graphs obtained from deletion and contraction

operations.

To define these intermediate graphs, we first label all the vertices of Wn = K1 + Cn. The

single vertex of K1 is labelled with v0. Starting with any vertex of Cn, we label it v1. Then,

in the clockwise direction, we label the other vertices of Cn as v2, v3, . . . , vn sequentially.
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Figure 1. Wheel graph Wn and intermediate graphs Xn, Yn, Zn

Define Xn as the subgraph of Wn obtained by removing the edge (vn, v1) from the wheel

Wn. Yn is obtained by contracting the edge (v0, vn) in Xn, and Zn is obtained by contracting

the edge (v0, v1) in Yn and attaching a loop at vertex v0. The definition is illustrated in

Figure 1.

With a slight abuse of notation, we let Wn, Xn, Yn and Zn represent the Tutte polynomial

of the graphs Wn, Xn, Yn and Zn, respectively. From the rules in Section 2 that define

the Tutte polynomial and the special structure of wheel graphs, we have the following

recursive relations, for n � 3,

Wn+1 = (x + 1)Xn + 2yYn + yZn + Wn,

Xn+1 = (x + 1)Xn + yYn,

Yn+1 = Xn + yYn,

Zn+1 = yYn + yZn.

If associated generating functions are formed as

F(t) =
∑
n�3

Xnt
n, G(t) =

∑
n�3

Ynt
n, P (t) =

∑
n�3

Znt
n, Q(t) =

∑
n�3

Wnt
n,

then by basic algebra manipulation we obtain four interrelated equations,

W3t
3 = (1 − t)Q(t) − ytP (t) − 2ytG(t) − (x + 1)tF(t), (4.1)

X3t
3 = (1 − xt − t)F(t) − ytG(t), (4.2)

Y3t
3 = −tF(t) + (1 − yt)G(t), (4.3)

Z3t
3 = (1 − yt)P (t) − ytG(t), (4.4)

where W3, X3, Y3 and Z3 are the Tutte polynomials for small graphs, which can be

calculated directly as follows:

W3 = x3 + y3 + 3x2 + 4xy + 3y2 + 2x + 2y,

X3 = x3 + 2x2 + 2xy + x + y + y2,

Y3 = x2 + x + y + xy + y2,

Z3 = y(x + y + y2).
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By solving equations (4.1)–(4.4) with the initial conditions above, we find

Q(t) = −(x2 + y2 + xy + x + y)t2 − xyt − (1 + xy − x − y)

− 1 + x + y − xy

1 − t
+

2 − t(1 + x + y)

1 − (t(1 + x + y) − xyt2)
.

To obtain the coefficient of tn in Q(t), we factorize the denominator of the second fraction

as

1

1 − t(1 + x + y) + xyt2
=

a

1 − αt
+

b

1 − βt
,

where

α, β =
1

2

(
1 + x + y ±

√
(1 + x + y)2 − 4xy

)
, a =

α

α − β
, b =

−β

α − β
.

Finally, one can expand the two fractions by power series to obtain

Q(t) = −(x2 + y2 + xy + x + y)t2 − xyt − (1 + xy − x − y)

− (1 + x + y − xy)

∞∑
n=0

tn + (2 − t(1 + x + y))

∞∑
n=0

(aαn + bβn)tn.

The Tutte polynomial of Wn is then the coefficient of tn in Q(t), i.e.,

T (Wn; x, y) = −(1 + x + y − xy)

+
αn

α − β
(2α − (1 + x + y)) − βn

α − β
(2β − (1 + x + y))

= −(x + y − xy + 1) + αn + βn.

This finishes the proof of Theorem 4.1. Corollary 4.2 is easy to verify and details are

omitted.
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