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a b s t r a c t

Given any randomvariableX ∈ [0,M]withE X = m1 andE X2 = m2 fixed, various bounds
are derived on themean and variance of the truncated random variablemax(0, X−K)with
K > 0 given. The results aremotivated by questions associatedwith European call options.
The techniques are based on domination by quadratic functions and change of measures in
the unimodal distribution case.
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1. Introduction

Bounds involving moments of random variables arise naturally in many areas of probability, statistics, economics,
and operations research. There is also a long history of studying them, that goes back to the work of Chebyshev;
see Shohat and Tamarkin (1943) for early history and developments. Various explicit and simpler bounds have been
developed over the years by using the duality theory, in particular for the unimodal distribution; see Karlin and
Studden (1966) and Dharmadhikari and Joag-Dev (1988). Recently, (Bertsimas and Popescu, 2005; Vandenberghe et al.,
2007) presented nonlinear convex optimization, and in particular semidefinite programming approaches to generalized
Chebyshev inequalities and related moment problems.
In this paper we are interested in the truncated random variable max(0, X − K) motivated by works on European call

options, where X is the stock price and K is a fixed strike price. For example, given the mean E X = m1 and E X2 = m2 of
the stock price X ≥ 0, the optimal upper bound on an option with strike K is given by:

E max(0, X − K) ≤

{
2−1

(
m1 − K +

√
m2 − 2m1K + K 2

)
if K ≥ m2/2m1,

m1 − Km21/m2 if K ≤ m2/2m1.
(1.1)

This bound is due to Scarf (1958) in the context of an inventory control problem. Lo (1987) observed the direct application of
Scarf’s result to option pricing. Various extensions based on optimization techniques can be found in Bertsimas and Popescu
(2002) and Popescu (2005).
The goal of this paper is twofold. First, we improve the bound in (1.1) under the additional condition that X is bounded

byM or the condition that X has a unimodal distribution, or both. These are given in Proposition 2 and Theorem 1. Second,
we provide a sharper bound on variance than the well-known estimate Varmax(0, X − K) ≤ Var (X) = m2 − m21 when
X ∈ [0,M]. This is given in Theorem 2. The techniques are based on domination by quadratic functions and change of
measures in the unimodal distribution case. Themain difficulty in the proof of Theorem 2 is the construction of a majorizing
quadratic function in two variables.
The rest of this paper is organized as follows. As a warmup, we present some explicit bounds in Section 2. The statements

of our main results, Theorems 1 and 2, are given in Section 3 together with their proofs.
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2. Preliminaries

Before examining new inequalities in the next section, we begin with the following more or less known inequalities,
which allow us to define terminology and illustrate our approach.

Proposition 1. Given a non-constant random variable X ∈ [0,M] with E X = m1 and E X2 = m2 fixed.

(i) If 0 ≤ t ≤ (Mm1 −m2)/(M −m1), then

P(X ≤ t) ≤
m2 −m21

m2 − 2m1t + t2

and the equality holds if X takes only two values, t and (m2−m1t)/(m1−t), withP(X = t) = (m2−m21)/(m2−2m1t+t
2).

(ii) If (Mm1 −m2)/(M −m1) ≤ t ≤ m2/m1, then

P(X ≤ t) ≤ 1−
m2 −m1t
M(M − t)

and the equality holds if X takes only three values, 0, t and M, with P(X = 0) = ((M − m1)t − (Mm1 − m2))/Mt,
P(X = t) = (Mm1 −m2)/(M − t)t.

(iii) If m2/m1 ≤ t ≤ M, then P(X ≤ t) = 1 for two point distribution at 0 and m2/m1, with P(X = m2/m1) = m21/m2.

Proof. Since part (iii) is trivial, we only show part (i) and (ii). There are at least two ways to prove part (i). One is based
on the general principle given below in the proof of part (ii), so we omit it here. The other is based on the so-called shift
Chebyshev inequality, a somewhat special technique. Namely, for any λ > t , we have by the Chebyshev inequality

P(X ≤ t) = P(λ− X ≥ λ− t) ≤
E (λ− X)2

(λ− t)2
=
λ2 − 2λm1 +m2

(λ− t)2
.

Hence

P(X ≤ t) ≤ inf
λ>t

λ2 − 2λm1 +m2
(λ− t)2

=
m2 −m21

m2 − 2m1t + t2
,

where the infimum is achieved at

λ = λ0 =
m2 −m1t
m1 − t

> t for t <
Mm1 −m2
M −m1

by simple calculus.
To prove (ii), we follow a general principle of dominating indicator function by the ‘‘best’’ quadratic function. To be more

precise, consider quadratic functions Q (x) = α + βx+ γ x2 such that indicator function 1(x ≤ t) ≤ Q (x). Then

P(X ≤ t) = E 1(X≤t) ≤ min
Q

EQ (X) = min
α,β,γ

(α + βm1 + γm2).

To find the minimum, one can consider two cases, γ ≥ 0 and γ < 0. Simple calculation and comparison imply that the best
Q is given by

Q (x) = Q0(x) = 1−
x2 − tx
M(M − t)

.

Hence (ii) follows from P(X ≤ t) ≤ EQ0(X) and we finish the proof of Proposition 1. �

The sharp upper and lower bounds for E max(0, X − K)will be given in the following two propositions.

Proposition 2. Given a non-constant random variable X ∈ [0,M] with E X = m1, E X2 = m2 and a fixed constant K ≥ 0.

(i) If 0 ≤ K ≤ m2/2m1, then

E max(0, X − K) ≤ m1 − Km21/m2 (2.2)

and the equality holds if X takes only two values, 0 and m2/m1, with P(X = 0) = 1−m21/m2.
(ii) If m2/2m1 ≤ K < (M2 −m2)/2(M −m1), then

E max(0, X − K) ≤
1
2
(m1 − K + L) (2.3)

where L = (K 2 − 2m1K + m2)1/2. The equality holds if X takes only two values, K − L and K + L, with P(X = K − L) =
(m2 −m21)/2(L

2
− KL+m1L).
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(iii) If (M2 −m2)/2(M −m1) ≤ K ≤ M, then

E max(0, X − K) ≤
(M − K)(m2 −m21)
M2 − 2Mm1 +m2

(2.4)

and the equality holds if X takes only two values, (Mm1 − m2)/(M − m1) and M, with P(X = M) = (m2 − m21)/(M
2
−

2Mm1 +m2).

Proof. We first prove part (iii). The basic idea is finding quadratic functions Q (x) = α+βx+γ x2 such thatmax(0, x−K) ≤
Q (x). Then

E max(0, X − K) ≤ min
Q

EQ (X) = min
α,β,γ

(α + βm1 + γm2).

By simple calculations, the minimum is achieved at the quadratic function

Q3(x) =
(M − K)(Mm1 −m2 − (M −m1)x)2

(M2 − 2Mm1 +m2)2
.

Hence (2.4) follows from E max(0, X − K) ≤ EQ3(X). Similarly, we can check easily that minQ EQ (X) is achieved at the
quadratic function

Q1(x) =
(
1−

2Km1
m2

)
x+

Km21
m22
x2

in the case of (i) and at the quadratic function

Q2(x) = (x− K + L)2/4L

in the case of (ii). This finishes the proof of Proposition 2. �

Proposition 3. Given a non-constant random variable X ∈ [0,M] with E X = m1, E X2 = m2 and a fixed constant K ≥ 0.
(i) If 0 ≤ K ≤ (Mm1 −m2)/(M −m1), then trivially E max(0, X − K) ≥ m1 − K and the equality holds if X takes only two
values, (Mm1 −m2)/(M −m1) and M, with P(X = M) = (m2 −m21)/(M

2
− 2Mm1 +m2).

(ii) If (Mm1 −m2)/(M −m1) ≤ K < m2/m1, then

E max(0, X − K) ≥ (m2 −m1K)/M

and the equality holds if X takes only three values, 0, K and M, with P(X = K) = (Mm1 − m2)/K(M − K), and
P(X = M) = (m2 −m1K)/M(M − K).

(iii) If m2/m1 ≤ K ≤ M, then trivially E max(0, X − K) ≥ 0 and the equality holds if X takes only two values, m2/m1 and 0,
with P(X = m2/m1) = m21/m2.

Proof. We only need to show part (ii). The idea is similar to the proof of Proposition 2. One can easily check that in part (ii)

max(0, x− K) ≥ x(x− K)/M

and hence, the result follows. �

Note that the lower bound in part (ii), (m2 −m1K)/M improves the trivial estimates max(0,m1 − K) in part (i) and (iii).

3. Main results and proofs

The main results of this paper are the following estimates on the mean (under unimodal distribution) and the variance
of European call option max(0, X − K) given the first and second moments of X supported on [0,M].
Let us first recall the definition of a unimodal distribution in order to study its moment bounds. A distribution function

F(x) is called a unimodal distribution with mode m if there exists a smallest m such that F(x) is convex on (−∞,m) and
concave on (m,+∞). Note that if F(x) has a density function ϕ(x), then ϕ(x) is nondecreasing for x < m and nonincreasing
for x > m.

Theorem 1. Given a non-constant random variable X ∈ [0,M]with E X = m1, E X2 = m2 and a fixed constant K ≥ 0. Assume
X is unimodal distributed with mode m.
(i) If 0 ≤ K ≤ m, then

E max(0, X − K) ≤
M(m− K)2 + (2m1 −m)(Mm− K 2)

2Mm
.

(ii) If m < K ≤ 2m1 −m, then

E max(0, X − K) ≤
K 2 − 2(2m1 −m)K + 3m2 − 2m1m

2(K −m)
.
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(iii) If max(m, 2m1 −m) < K ≤ M, then

E max(0, X − K) ≤
3m2 − 2m1m− (2m1 −m)2

2(K −m)
.

Proof. The basic idea, as had been used in Karlin and Studden (1966), is considering a new ‘‘modified’’ probability measure
defined by

dH(x) = (m− x)d
(
dF(x)
dx

)
.

Using integration by parts for Stieltjes integral, it follows that∫ M

0
dH(x) =

∫ M

0
dF(x) = 1,∫ M

0
xdH(x) =

∫ M

0
(2x−m)dF(x) = 2m1 −m,∫ M

0
x2dH(x) =

∫ M

0
(3x2 − 2mx)dF(x) = 3m2 − 2m1m.

Next, we rewrite

E max(0, X − K) =
∫ M

K
(x− K)dF(x) =

∫ M

0
ψ(x)dH(x),

where in the case 0 ≤ K ≤ m,

ψ(x) =
{
(m− K)2/2(m− x) if 0 ≤ x ≤ K ,
(m+ x− 2K)/2 if K ≤ x ≤ M; (3.5)

and in the casem < K ≤ M ,

ψ(x) =
{
0 if 0 ≤ x < K ,
(x− K)2/2(x−m) if K ≤ x ≤ M. (3.6)

The above can be easily checked by the integration by parts. For example, in the case of 0 ≤ K ≤ m,∫ M

0
ψ(x)dH(x) =

∫ K

0

(m− K)2

2
d
(
dF(x)
dx

)
+

∫ M

K

(m+ x− 2K)(m− x)
2

d
(
dF(x)
dx

)
=

∫ M

K
(x− K)dF(x) = E max(0, X − K).

Next one needs to find a quadratic function Q (x) = α + βx+ γ x2 such that ψ(x) ≤ Q (x). Then

E max(0, X − K) =
∫ M

0
ψ(x)dH(x)

≤ min
Q

∫ M

0
Q (x)dH(x)

= min
α,β,γ

(α + β(2m1 −m)+ γ (3m2 − 2m1m)).

In the case (i), 0 ≤ K ≤ m, we take a special quadratic (linear here) function

Q1(x) = (M(m− K)2 + (Mm− K 2)x)/2Mm ≥ ψ(x)

where ψ(x) is defined in (3.5). To see the domination, we observe that ψ(0) = Q1(0), ψ(K) ≤ Q1(K), ψ(M) = Q1(M), and
ψ(x) is increasing and convex in 0 ≤ x ≤ K . Thus

E max(0, X − K) ≤
∫ M

0
Q1(x)dH(x)

= (M(m− K)2 + (2m1 −m)(Mm− K 2))/2Mm.

which finishes the proof of (i).
In the casem < K ≤ M , we take a special family of quadratic functions

Q (x, s) = (x− s)2/2(K −m)
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for s ≤ K . Then one can easily check ψ(x) ≤ Q (x, s), where ψ(x) is defined in (3.6). Hence

E max(0, X − K) ≤ min
s≤K

∫ M

0
Q (x, s)dH(x)

= min
s≤K

s2 − 2(2m1 −m)s+ 3m2 − 2m1m
2(K −m)

.

Noting that the symmetric axis of quadratic function s2 − 2(2m1 −m)s+ 3m2 − 2m1m is 2m1 −m, and s ≤ K , hence in the
case (ii), we take s = K ; in the case (iii), we take s = 2m1 −m. This ends the proof of Theorem 1. �

Next we investigate the variance estimate for max(0, X − K) given E X = m1 and E X2 = m2. It is well known that
Varmax(0, X − K) ≤ VarX = m2 −m21. The following theorem provides a refinement for K in the given range.

Theorem 2. Given a non-constant random variable X ∈ [0,M] with E X = m1, E X2 = m2 and a fixed constant K ∈
((Mm1 −m2)/(M −m1),m2/m1), then

Varmax(0, X − K) ≤ m2 −m21 −
(m2 −m1K)(2M − K)(K(M −m1)− (Mm1 −m2))

2M2(M − K)
.

Proof. After representing the variance with an independent copy, the key idea is finding good quadratic functions Q (x, y)
such that

(max(x, K)−max(y, K))2 ≤ Q (x, y) = α(y)+ β(y)x+ γ (y)x2, (3.7)

where α(y), β(y) and γ (y) are also quadratic functions. Then

Varmax(0, X − K) =
1
2

E (max(X, K)−max(Y , K))2

≤ min
Q

1
2

EQ (X, Y ),

where X and Y are i.i.d. random variables. In our setting, we construct a special quadratic function

Q0(x, y) = (x− y)2 −
(x− K)(x−M)y(y− K)(2M − K)

M2(M − K)
. (3.8)

Note this is the hardest part of this proof. To check Q0 in (3.8) satisfying (3.7), we divide the region 0 ≤ x, y ≤ M into four
parts. In the regions 0 ≤ x, y ≤ K and K ≤ x, y ≤ M , (3.7) clearly holds.
Let

ψ(x, y) = (max(x, K)−max(y, K))2 and G(x, y) = Q0(x, y)− ψ(x, y).

In the region K ≤ x ≤ M, 0 ≤ y ≤ K , we fix y and rewrite G(x, y) as a quadratic function of x,

G(x, y) = (r(y)− 1)x2 − ((r(y)− 1)(K +M)+ 2(y− K))x+ (r(y)− 1)KM + y2 − K 2

where r(y)− 1 = y(K − y)(2M − K)/M2(M − K) ≥ 0. To check (3.7), we observe by simple calculation that the symmetric
axis of G(x, y) in x is smaller than K , and hence

G(x, y) ≥ G(K , y) = (K − y)2 ≥ 0.

In the region 0 ≤ x ≤ K , K ≤ y ≤ M , we fix x and rewrite G(x, y) = Q0(x, y)− ψ(x, y) as a quadratic function of y,

G(x, y) = (−h(x))y2 − (−h(x)K + 2x− 2K)y+ x2 − K 2, (3.9)

where h(x) = (M−x)(K−x)(2M−K)/M2(M−K) ≥ 0. To check (3.7), we observe that G(x, y) is concave in y as a quadratic
function of y. Hence for x ∈ [0, K ] fixed and K ≤ y ≤ M ,

G(x, y) ≥ min(G(x, K),G(x,M))
= min((x− K)2, (K − x)x(M − K)/M) ≥ 0.

Putting things together, we obtain

Varmax(0, X − K) ≤
1
2

EQ0(X, Y )

=
1
2

E (X − Y )2 −
1
2

E
(X − K)(X −M)Y (Y − K)(2M − K)

M2(M − K)

= m2 −m21 −
(m2 −m1K)(2M − K)(K(M −m1)− (Mm1 −m2))

2M2(M − K)
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which finishes the proof. Note that for K in the range ((Mm1 − m2)/(M − m1),m2/m1), the last line is smaller than the
standard boundm2 −m21. �
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