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Abstract

In this paper we prove exact forms of large deviations for local times and
intersection local times of fractional Brownian motions and Riemann-Liouville
processes. We also show that a fractional Brownian motion and the related
Riemann—Liouville process behave like constant multiples of each other with re-
gard to large deviations for their local and intersection local times. As a conse-
quence of our large deviation estimates, we derive laws of iterated logarithm for
the corresponding local times. The key points of our methods: (1) logarithmic
superadditivity of a normalized sequence of moments of exponentially random-
ized local time of a fractional Brownian motion; (2) logarithmic subadditivity of
a normalized sequence of moments of exponentially randomized intersection lo-
cal time of Riemann-Liouville processes; (3) comparison of local and intersection
local times based on embedding of a part of a fractional Brownian motion into
the reproducing kernel Hilbert space of the Riemann—Liouville process.
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1 Introduction

Let BH(t), t > 0 be a standard d-dimensional fractional Brownian motion with index
H € (0,1). That is, B (t) is a zero-mean Gaussian process with stationary increments
and covariance function

E [BY(t)B"(s)7] = % {1+ s — |t — s} 1,

where I, is the identity matrix of size d. Bf(t) is also a self-similar process with index
H. The local time L¥(B) of BH(t) at * € R? is defined heuristically as

L*(BY) = /Ot 5. (B"(s)) ds, t>0.

It is know that L#(BH) exists and is jointly continuous in (¢,z) as long as Hd < 1.
By the self-similarity of a fractional Brownian motion, L2(BH) £ tl_HdLgf/tH (BH). In

particular,

LO(BYy L y-Hpo(pH). (1.1)



Our first goal is to investigate large deviations associated with tail probabilities of
LY(Bf). By the scaling given above, we may consider only ¢t = 1. In the classical case,
when H = 1/2 and d = 1, it is well known, see the book of Revuz and Yor [38], p240,
that LO(BY?) £ |U| with U ~ N(0,1). Consequently,
1
lim a2 logIP’{L?(Bl/z) >a} =—=.

a—00 2

In Theorem 2.I] we prove that for a fractional Brownian motion a nontrivial limit

lim o V" log P{LY(B") > a}

a—00

exists and we give bounds for this limit.

Closely related to the fractional Brownian motion is the Riemann-Liouville process
WH(t) with index H > 0 which is defined as a stochastic convolution

WH(t) = /Ot(t— $\YH12dB(s), t>0, (1.2)

where B(t) is a d-dimensional standard Brownian motion. {W#(#)},5 is a self-similar
zero-mean Gaussian process with index H, as is BY(t), but W¥#(t) does not have
stationary increments and there is no upper bound restriction on index H > 0. If
LY(WH) denotes the local time of W#(t) at 0, then by the self-similarity we also have

LOWHY L g=Hapo iy (1.3)

The relation between W (t) and B (t) becomes transparent when we write a moving
average representation of B (t), t € R, in the form

B = [ [(6= 5" = (o7 ), (1.4)
where
cn =V2H2"B(1—H,H+1/2)""* (1.5)

Here B(-,-) denotes the beta function, and B(t), ¢t € R is a standard d-dimensional
Brownian motion (see Lemma [A]] for the analytic derivation of cg.) Then we have a

decomposition
gt BE(t) = WH(t) + 28 (1), (1.6)

where o

ZH(t) = /_ [(t = s)H=1/2 — (=5)H-1/2] dB(s) (1.7)

[e.e]



is a process independent of W (t).

This moving average representation for fractional Brownian motion was introduced in
the pioneering work of Mandelbrot and Van Ness [34] and used extensively by many
authors, sometimes with different normalizing constant cy in (L3) (e.g., Li and Linde
[30] uses I'(H + 1/2)~* for cy).

We will show that paths of Z%(t), away from ¢ = 0, can be matched with functions
in the reproducing kernel Hilbert space of W (t) (Proposition B.5] Section B.2]). This
and the independence of Z(¢) from W (t) will allow us to show that large deviation
constants of tail probabilities of LY(WH) and of LY(c;;'B?) = ¢4 LY(BH) are the
same (Theorem [22)). In this context we also want to mention Theorem 3.22 of Xiao,
[44], who established bounds for tail probabilities of the local time L of the general
Gaussian processes in the form

1 1
—log{L’ > a} < limsup — log{L? > a} < —C
¢(a) g{ 1= } = a—>oop ¢(a) g{ 1= } = 2

and raised a question on the existence of the limit (Question 3.25, [44]).

—C; < liminf
a—0o0

Next we will consider p independent copies B (t), ..., B¥(t) of a standard d-dimensional
fractional Brownian motion B (t). Throughout this paper

p =p/lp—1)

will stand for the conjugate to p > 1. Our next and main goal is to investigate large
deviations for intersection local time o' (-) of B{'(t),---, BI(t), which is a random
measure on (R™)? given heuristically by

p—1
aH(A):/ [ 00(B (sj) = Bt (sj+1)) dsi -+ -ds,, A cC (RY).

Quantities measuring the amount of self-intersection of a random walk, or of mutual
intersection of several independent random walks, have been studied intensively for
more than twenty years, see e.g. [I5], [28], [27], [35], [21], [8], [9]. This research is
motivated by the role these quantities play in quantum field theory, see e.g. [16], in
our understanding of self-avoiding walks and polymer models, see e.g.[33], [23], or in
the analysis of stochastic processes in random environments, see e.g. |22] [18], [2], [17].
In the latter models dependence between a moving particle and a random environment
frequently comes from the particle’s ability to revisit sites with an attractive (in some
sense) environment. Consequently, measures of self-intersection quantify the degree of
dependence between movement and environment. Typically, in high dimensions, this
dependence gets weaker, as the movements become more transient and self-intersections
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less likely. Investigation of large deviations for intersection local times is closely related
to asymptotics of the partition functions in above models.

There are two equivalent ways to construct o (A) rigorously. In the first way, o (A)
is defined as the local time at zero of the multi-parameter process

X(tr,--- 1) = (Bi'(t1) = By (ta),- -, ByLi(ty1) = Byl (1)) (tr,---,t,) € (RT)?
(1.8)

More precisely, consider the occupation measure
pua(B) = / 1z (BlH(sl)—Bf(SQ), e ,Bf_l(sp_l)—Bf(sp)) dsy---ds,, BC RAP—1)
A

By Theorem [T.1], as Hd < p*, there is a density function af’(A4, -) of u4(-) such that
if A=[0,¢] x - x[0,t,], then of([0,¢] x --- x [0,¢,),z) is jointly continuous in
(t1, ,tp, x). We define o (A) := a(A, 0).

For the second way of constructing o (A), write for any € > 0

p
a(A) = / / Hpe(BJH(sj) — ) dsy -+ -dsp dz, (1.9)
RYJA G
where p. are probability densities approximating d, as € — 0. Notice that
a; (A) = /Ahe(Bf{(sl) = By'(s2), -, ByLi(sp-1) = B,/ (sp)) ds1 -+ - ds,,

= / he(z)a" (A, x)dx
Rd(p—1)
where

he(zy,-- -, xp-1) = /deﬁ(_x)ﬁm(ixk —x)

is an probability density on R¥?~1) approaching &y(x1, - - - ,Tp_1) as € — 0T,

H
€

Lemma B to the Gaussian field given in (L8], the convergence is also in £™ for

By the continuity of o®(A,z), lim_ o+ a#(A) = af’(A) almost surely. Applying

all positive m. This way of constructing o’ (A) justifies the symbolic notation
p
o (A) = / / Héo(BJH(sj) —x)dsy -+ ds,dz.
RdJA
j=1

In the special case p = 2 and Hd < 2, Nualart and Ortiz-Latorre [36] proved that
o ([0, 1] x [0,25]) converges in £2 as e — 0T, with

pe(x) = (267r)_d/2 exp{—|z|*/2¢}. (1.10)
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For the Riemann-Liouville process W (t) an analogous construction of the intersection
local time

/ H 50 s5) M/;{Ii-l(sj-f—l)) dsy---ds,
/ / Hég "(sj) —x)dsy---ds,dz, AC (R
R4

can be done under the same condition Hd < p*.

By the self-similarity of B (t) and W (t), for any t > 0
([0, 4)P) L = Hd=Da ([0, 1]7) (1.11)

and
~H([O’t]p) pp—Hd(p—1) 5 7 (0,1]7). (1.12)

Finally, we would like to discuss this research in a more general context of Markovian
versus non-Markovian structures. Naturally, most of the existing results on large de-
viation for (intersection) local time have been obtained for Markov processes such as
Brownian motions, Lévy stable processes, general Lévy processes, and random walks.
The underlying Markovian structure has been essential for the methods in these studies;
see Chen [9] for references and a systematical account of such works. Departures from
Markovian models are often driven by the underlying physics to match the required
level of dependence (memory) and smoothness/roughness of sample paths. Fractional
Brownian motion and Riemann-Liouville processes are the most natural candidates
as extensions of Brownian motion into the non-Markovian world. They offer the ex-
istence of the intersection local time for any number p of processes in any dimension
d as long as H is sufficiently small. Therefore, they may help scientists to build more
realistic and robust models while posing serious challenge to mathematicians due to
the non-Markovian nature.

In this paper, we mainly use Gaussian techniques motivated from the study of conti-
nuity properties of local time, and more generally, from theory of Gaussian processes.
It is also helpful to see connections between small ball probability estimates and tail
behavior of the local time. Indeed, large value of the local time at zero means that
the process stayed for a long time in a small neighborhood of zero. By this analogy,
Propositions 3.1l and 3.2 can be motivated by the corresponding results for small balls
(see comments preceding these propositions in Section B.I).



2 Main results

Theorem 2.1 Let BH(t) be a standard d-dimensional fractional Brownian motion with
index H such that Hd < 1. Then the limit

lim o Y H#) 1ogP{LI(B¥) > a} = —0(H, d) (2.1)
exists and O(H,d) satisfies the following bounds
(e /H)Y D 9o (Hd) < 6(H, d) < (27)06,(Hd), (2.2)

where cy s given by (L3) and
B (1- K)l—n 1/k

Notice that in the classical case of one-dimensional Brownian motion, (2.2 becomes

the equality. The fact that the lower bound is less than or equal to the upper bound

in ([2.2)) is equivalent to c% < 2H, which can also be seen directly. Indeed, from (3.16)
2,

2H
The equality only holds for a Brownian motion, i.e., H = 1/2.

= Var(B¥(1)|B"(s),s < 0) < Var(B¥(1)) = 1. (2.4)

Theorem 2.2 Let WH(t) be a d-dimensional Riemann—Liouville process as in (L2)
such that Hd < 1. Then the limit

lim o Y HD 1og P{LY(WH) > a} = —0(H, d), (2.5)
exists with

B(H, d) = (car) ™" 0(H, ), 2.6)
where 0(H,d) is as in Theorem 21l and cy is given by (I.J).

Theorem 2.3 Let & () be the intersection local time of p-independent d-dimensional
Riemann—Liouville process W (t),--- W (t), where Hd < p*. Then the limit

lim o 7"/ (Hp) logP{a (O 1] ) > a} = —K H,d,p) (2.7)
exists and K (H,d, p) satisfies the following bounds
H Hd\'~Fa (7 \ 2 _ " Hd\~#a _ ~
P d(1 . d) e (1)%’]9—2 pr<1 . d) " < K(H.d,p) (2.8)

1 p*
Hd Hd\'-%4 [ 2 2H o - T Hd
< pd(y - Hdy ( ”) ( [ e d/%—tdt)
p* p* CHp 0

where cy is given by (LJ7).




There is a direct way to show that the lower bound is less than or equal to the upper
bound in (2.8]). Observe that by Holder inequality,

1+t2H Z pl/p(p*)l/p*t2H/p*
which leads to

/ (1 + £21) e tar < p= /0 (1)~ @ID(1 — Ha/p").
0

After cancellation on both sides of (2.8]), the problem is then reduced to examining the
relation ¢ < 2H, which is given in (2.4).

Theorem 2.4 Let o™ (-) be the intersection local time of p-independent standard d-

dimensional fractional Brownian motions B{'(t),--- , Bl (t), where Hd < p*. Then the
limat
lim o "/ Jog P{a ([0,1) > a} = —K(H,d, p) (2.9)

exists with

K(H,d,p) = c)" K(H,d,p). (2.10)

Our results seem to be closely related to the large deviations of the self-intersection
local times heuristically written as

ﬁ ([0 t / H 50 ] H(Sj+1))d81 cee dSp

where
0,82 = {(s1,-+,8p) €[0,]"; 51 <+ <sp}.

In the case when Hd < 1, we can rewrite

B (0, 42) = - /R LB

pl

To see the connection between ol and 37, notice that by Holder inequality and arith-
metic and geometric mean inequality,

P 1/p P
H P 1/1’_ T H T 1
(0" = ([ Tsrceier) <23 (



Thus, for any 6 > 0

E exp {Qa% (aH([O, 1]p)>1/p} <

S _td 1/py 17
E exp {Qp_la Hdp (/d [LT(BH)}pdx) } .
R
On the other hand, by Theorem 2.4] and Varadhan’s integral lemma,

* P** 1/p
lim o P"/(H%) 1og E exp {Qp_la o <aH([0, 1]”)) }

= sup{fp'\"? — K(H, d,p)A”*/Hdp}
A>0

= (Hd/(p"K(H,d,p)))" "= — Hd/p*)(8/p)" /1.
Consequently,

lim inf 7 7"/H%) Jog F exp

(st ([ ponra)”) e

> p Y(Hd/(p*K(H,d,p))) O =H)(1 — [Hd/p*)(6/p)r"/ @ —HD.
for any A > 0,

1/p
lim o #"/(Hd) 1og19>{ ( / [LT(BH)}pd:)s) > )\al/p}
a— 00 Rd

= —sup

_Hd_ . p*
. {M —p (Hd) (p" K (H.d,p))) ™7 (1 = Hd/p")(9/p) }
>

= —p 'K (H,d,p)\"/HD

If this can be strengthened into equality with limits, then by Gartner-Ellis theorem,

In particular,

lim o P"/HW) 1og P

R { /R [L7(B™)] do 2 a} = —p'K(H,d,p).

The conjecture (2.12)) is partially supported by a recent result of Hu, Nualart and Song
(Theorem 1, [25]) which states that when Hd < 1 and p =2

IE{ /Rd [LT(BH)}Qd:):}n <Crn))H p=1,2

s gt

(2.12)

for some C' > 0. Indeed, a standard application of Chebyshev inequality and Stirling
formula leads to the upper bound of the form

lim sup a~ Y9 Jog IP{ / [L3(B™)]*de > Aa} < -1
a—00 R4

)
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where [ is a positive constant. This rate of decay of tail probabilities is sharp by
comparing it with ([2.11]) for p = 2.

In the case Hd > 1, ﬂH([O, t]’;) can not be properly defined. On the other hand, this
problem can be fixed in some cases by renormalization. For simplicity we consider the
case p = 2. Hu and Nualart prove (Theorem 1, [24]) that for 1 < Hd < 3/2, the
renormalized self-intersection local time formally given as

’YH([O’ t]i) N //{0<r<s<t} g (BH(T) - BH(S)> drds

—E / /{ errcn So(B"(r) — B"(s)) drds

exists with the scaling property

y7([0,42) £ 2747 ([0,1)2) (2.13)
We also point that an earlier work by Rosen ([39]) in the special case d = 2.
Based on a similar but more heuristic reasoning, it seems plausible to expect that

lim o~ Y/(74) logP{'yH([O, 12) > a} = WD LR (f] g 9) (2.14)

We refer the interested reader to Theorem 4, [25] for some exponential integrabilities
established by Hu, Nualart and Song based on Clark-Ocone’s formula.

We leave these problems to the future investigation.

Our large deviations estimates can be applied to obtain the law of the iterated loga-
rithm.

Theorem 2.5 When Hd < 1,
limsup t~ 7D (loglogt) " #4LY(BH) = 9(H,d)"?  a.s. (2.15)

t—o0

When Hd < p*,
lim sup t P4~ H4/P") (Jog log t)_Hd(p_l)aH([O, t]P) = K(H, d,p)~ =1 g5 (2.16)

t—o0

lim sup t_p(l_Hd/p*)(loglogt)_Hd(p_l)&H([O,t]p) = l?(H, d,p)~HiP=D g5 (2.17)

t—o0

Theorem will be proved in section [6l The proof of the lower bound appears to be
highly non-trivial due to long-range dependency of the model. The approach relies on
a quantified use of Cameron-Martin formula.

Since all main theorems stated in this section have been known in the classic case
H =1/2 (see, e.g., |[8] and [L1]), we assume H # 1/2 in the remaining of the paper.
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3 Basic Tools

In this section we provide some basic results that will be used in our proofs. We state
them separately for a convenient reference.

3.1 Comparison of local times

We will give general comparison results for local times for Gaussian processes. They
are based on the standard Fourier analytic approach but go far beyond, motivated
mainly by similar small deviation estimates. We start with an outline of the analytic
method typically used in the study of local times for Gaussian processes, in particular
on its the moments, see Berman [6] and Xiao [44].

For a fixed sample function and fixed time ¢ > 0, the Fourier transform on space
variable z € R? is the function of \ € R,

t
/ei’\'””L(t,x)d:E:/ e X s,
Rd 0

Thus the local time L(t, ) can be expressed as the inverse Fourier transform:

t
L(t,z) = ! / e~ / M) dsd),
(2m)? Jpa 0

The m-th power of L(t,x) is

1 m -
L(t.x)™ = —— —”'Zk—ﬂk/ E M- X dsy - ds,dAy -+ dA,.
(t,2) (27)md /Rmd ‘ [0,6]™ o (Z k=1 ' (Sk)) o ’ 1

Take the expected value under the sign of integration: the second exponential in the
above integral is replaced by the joint characteristic function of X (s1),- -, X(s,,). In
the Gaussian case, we obtain

EL(t,z)™
— ; / e—ix'z;cn:1 Ak / exp < _ lVar( f: )\k . X(Sk))) dSl R dsmd)\l R d)\m
(27T)md Rmd [07t}m 2 =1

Interchanging integration and applying the characteristic function inversion formula,
we can get more explicit (but somewhat less useful) expression in terms of integration
associated with det(EX (s;) X (s;))~1/2. Estimates of the moments of local time L(t,z)
thus depend on the rate of decrease to 0 of det(EX(s;)X(s;)) as s; — sj_1 — 0 for
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some j. Here in our approach, we have to make proper adjustment by approximating
L(t, ).

Consider now a random fields X (t) taking values in R?, where t = (¢,...,t,) € (RT)P.
For a fixed Borel set A C (RT)P, recall that the local time formally given as

Ly(Az) = /A 5. (X(s)) ds (3.1)

is defined as the density of the occupation measure
j1a(B) = / 15(X(s))ds B CR
A

if 114(-) is absolutely continuous with respect to the Lebesgue measure on R,

Given a non-degenerate Gaussian probability density i(z) on R? and € > 0, the function
he(z) = e ¥2h(e7'/%1) is also a probability density. Define the smoothed local time

Lx(A z,e) = /AhE(X(s) — ) ds. (3.2)

Our first proposition provides moment comparison (B.6)) which can be viewed as analogy
of Anderson’s inequality in the small ball analog: For independent Gaussian vectors
X, Y, X symmetric,

PIX + Y| <e) <P(|IX] < e).

See Li and Shao [32] for various application of this useful inequality.

Proposition 3.1 Let A C (RT)? be a fized bounded Borel set. Let X (t) (t = (t1,...,t,) €
(RT)?) be a zero-mean R%-valued Gaussian random field with the local time Lx (A, x)

continuous in x € R%. Assume that for everym =1,2, ...

1 m
/m ds, - - dsy, /(Rd)m Ay - - do, eXp{ — 5 Var <Z>\k : X(sk)>} <o, (3.3)

k=1

Then L(A,0) € L™ (i.e., finite m-th moment), with

m 1
ELx(4,0)" = 5 / dsy e dsy, /(Rd)m A1+ A, (3.4)
1 m
X exp{ — §Var (Z)\k . X(sk)>}
k=1
and
lin, E|Lx(A,0,¢e) — Lx(A,0)|" =0. (3.5)
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IfY(t) (t = (t1,...,t,) € (RT)P) is another zero-mean R%-valued Gaussian random
field independent of X (t) such that the local time Lx.y(A,x) of X(t) 4+ Y (t) is con-
tinuous in x, then

E[Lxy (A, 0)"] < E[Lx(A,0)"]. (3.6)

Proof: By Fourier inversion, we have from (3.2])

1 .
Lx(A,0,¢) = 2n)d /]Rd dAexp{ - %()\ . FA)} /Ae—mX(s)ds

where I' is the covariance matrix of Gaussian density h(x). Using Fubini theorem,

1
ELX(Aa())E)m — / dsl--dsm/d d)\l..d)\m
m (R )m

(QW)md
xexp{——Z)\k F)\k}Eexp{—zZ)\k )} (3.7)
k=1
1

= (27T>md/mds1~-~dsm/(Rd) dAy - dAy,

€ 1 "
XeXp{—§ZAk-F)\k}eXp{—§Var(Z)\k-X(sk)>}.

k=1 k=1

By monotonic convergence theorem, the right hand side converges to the right hand
side of (3.4]) as € — 07. In particular, the family

ELx(A,0,6)™ (e > 0)

is bounded for m = 1,2,---. Consequently, this family is uniformly integrable for
m =1,2,---. Therefore, (3.4) and (3.5) follow from the fact that Lx (A, 0, ¢) converges
to Lx(A,0), which is led by the continuity of Lx(A,x).

Finally, (3.6) follows from the comparison

ds; - - -dsm/ dAy -+ -dN,, exp { - —Var A (X (sg) +Y(sk) }
/m (Rd)m <Zl )
< e e _Z E )

< /m ds; -+ -ds, /(Rd)m d\ - - - d\,, exp { 2Var ( 2 A X(Sk)> }

O

In certain situations we can also reverse bound in (B3.6]) as a result of the Cameron-
Martin Formula. In small ball setting, this is motivated by the Chen-Li’s inequality [L0]
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which can be used to estimate small ball probabilities under any norm via a relatively
easier Lo-norm estimate. See also the survey of Li and Shao [32]. Let X and Y be any
two centered Gaussian random vectors in a separable Banach space B with norm || - ||.
We use | - |,(x) to denote the inner product norm induced on H, by u = £(X). Then
for any A > 0 and € > 0,

P(IX + Y] < ) 2 B(IX| < Ae) - Bexp{~27 NV 2y}
Next we provide the local time counterpart of this inequality, which is crucial in our
estimates. Suppose that the process X (t), t € [0, T], where T = (T3,...,T,) € (R;)?,
can be viewed as a Gaussian random vector in a separable Banach space B such that
the evaluations x — z(t) are measurable (say B = C([0, T]; R?), for concreteness). Let
H(X) denote the reproducing kernel Hilbert space (RKHS) of X (t), t € [0, T] equipped

with the norm |[|-||. Now we will make a crucial assumption that the independent process
Y (t), t € [0, T] has almost all paths in H(X).

Proposition 3.2 In the above setting, under the assumptions of Proposition [31], we
have
E[Lxsy(4,0)"] > Ee 2B [Ly(A,00"], (3.8)

for every A C [0, T] and m € N.
Proof: Applying Lemma B.6(ii), for g(z) = [[,—, he(z(sk)), © € B, we get

E[Lxiy(A,0,6)™"] = /m dsy - -dsy, B ] he(X(st) + Y (s1))

>Ee 21V / dsy -+ ds, E [ [ he (X (s0)))
" k=1

=Ee IR [Ly(A,0,¢)™].

Applying (B3) for both processes, X and X + Y, we get (B.8). O

3.2 The remainder in the decomposition of B (t)

Assume that H € (0,1/2) U (1/2,1) and recall the decomposition (L.6]),
i BTty =WH"@#)+Z" (), t>0

where the remainder process Z(t) can be written as
20 = [ {49 = ST dB(s), (3.9)
0
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with B(s) := B(—s), s > 0. Clearly, Z¥(t) is a self-similar process with index H and
the processes W (t) and Z# (t) are independent. With the aim to use bound (B.8), we
examine whether paths of Z#(t) are in the RKHS of W#(t), considered as a Gaussian
random vector in C'([0,T]; R?).

Proposition 3.3 Process {ZH(t)} has C*-sample paths. Moreover,

t>0
ZH(t) = 1[ZH Py H (1, (3.10)

where I¢, is defined in (A6) and VH(t) is a (—%)—self—similar Gaussian process given
by

o —1 Oot%_HsH_% _
VH () = B, (3.11)

O 1 2n — 1
5l (t)—(H—§)"'(H— 5

) /Ooo(t + 5)H=Cn D2 4B (s)

is well defined n'-derivative process with continuous paths on (0, 00).
For the second part of the proposition, put
—t%_HsH_%

P —H)(t+s)

K(t,s) =

t.s>0. (3.12)

Notice that for every ¢ >0, [;° K (t,s)*ds < oo and that for every s > 0
I )] (8) = (4 )72 = 172

Interchanging the order of stochastic and deterministic integrations we get (3.10). The
self-similarity of order (—3) follows directly from (BII). O

Lemma 3.4 Almost surely {VH(t)}te(o 1 ¢ Lo[0,T), for every T > 0. Therefore,

almost surely, sample paths of {ZH(t)} are not in the RKHS of {WH(t)}

te[0,7 tel0,7]"

Proof: Since
T ) T
/fﬂWﬂm}ﬁzc/t*ﬁzw
0 0

the lemma follows by the integrability a Gaussian seminorm and the zero-one law. [

The next proposition is fundamental to our technique relating the local times of B (t)
and WH(t).
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Proposition 3.5 For any a > 0 there is a Gaussian process {Zf(t)}t>0 such that

(i) ZE(t) = ZH(t) for allt > a;

(it) Almost all sample paths of {ZH(t)}
for any T > 0.

| belong to the RKHS of {WH(t)}

te(0,T te[0,T]

Proof: First consider H € (0, 1), so that m = [H + 1/2] = 1. Define

L7H(a), 0<t<a
ZIt) =492,
Z9(t), t>a.

By Corollary[A4lit is enough to verify that Z(¢) has paths in AC}[0, 7] and Z(0) = 0.
But this is obvious by Proposition B3l

Now we consider H € (1, 1), so that m = [H + 1/2] = 2. Define
(32" (a) — aZ"(a))(t/a)? + (—2Z"(a) + aZ"(a))(t/a)?, 0<t<a

Z(t) =
ZH(t)> t>a

where ZH(t) := %ZH(t) . By Corollary [Ad]it is enough to verify that Z(¢) has paths

in AC2[0,T], Z¥(0) = 0 and Z7(0) = 0. The continuity of Z¥(t) and Z(t) at t = a
follows by a direct verification and the rest of the claim by Proposition 3.3l [

3.3 Technical lemmas

The following auxiliary results and formulas are used in the proofs of main theorems.
They are given here for a convenient reference.

Lemma 3.6 Let i be a centered Gaussian measure in a separable Banach space B.
Let g : B — R, be a measurable function. Then

(i) if {z € B : g(x) > t} is symmetric and convex for every t > 0, then for every
yeB

/B g+ ) ) < [ gle) (o)

B

(it) if g is symmetric (g(—x) = g(z), x € B), then for every y in the RKHS H,, of j1

[ ot +wutan) = e {5z} [ ot utan)

where ||y||,, denotes the norm in H,,.
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Proof: Part (i) follows from Anderson’s inequality

/ g9(z +y) p(dz) =/ p{z € B glz+y) >thdt
B 0
<[ wlweB: gz thde= [ gla)n(de)
0 B
Part (ii) uses Cameron-Martin formula and the convexity of exponential function
1
[ st i) = [ ataesn { = 3ol | ata
B B
1 1,
=5 [ 9@ e oy —3llyllp nlde)
B
1 1,
+5 | g(@)exp )~ ) = Slyll ¢ ulde)
B

>esp {3} [ gt utan)

The next lemma is well-known and goes back at least to 1950s in equivalent forms,
see Anderson [I], p42, Berman [5], p293, [6], p71. The basic fact is that conditional
distribution of X given all the X;,1 <+ < k is a univariate Gaussian distribution with

O

(conditional) mean E(X| X7, ..., X;_1) and (conditional) variance
det(Cov(Xy,..., X))/ det(Cov(Xy,. .., Xk-1))

for 1 <k < m. For the completeness we provide an equivalent geometric argument for
the validity of this lemma, see Appendix, Lemma [A5]

Lemma 3.7 Let (Xy,...,X,,) be a mean-zero Gaussian random vector. Then

det(Cov(Xy,..., X)) = Var(X;)Var(Xsy | Xy) - - - Var(X,, | Xoe1, -+ -, X1)-

Let BH(t) be given by its moving average representation (LZ). By the deconvolution
formula of Pipiras and Taqqu [37] we also have

By =y [ (-9 - o) an), (3.13)

where ¢t = {cyg'(H 4+ 1/2)T'(3/2 — H)} " and the integral with respect to B (t) is
well-defined in the L*-sense. It follows from (L4) and ([BI3) that for every ¢t € R

Fii=0{B%(s); —c0<s<t}=0{B(s); —oo<s<t}, (3.14)
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where the second equality holds modulo sets of probability zero. Then for every s <t

s

E(B" (1) | F.) = ex /

—00

_1
((t — )3 — () ) dB(u). (3.15)
If d =1, then for every s <t

Var (B (t)| F,)

E{ [BH(t) _E(B"(1)] ]—"s)]2 | ]—“s}

IE{ /:(t—u)H—% dB(u) |]—"s}

2

t
_ C
=a fumopras ghowr s

For the reader’s convenience we also quote the following lemma due to Konig and
Morters, |26, Lemma2.3|.

Lemma 3.8 Let Y > 0 be a random variable and let v > 0. If

: 1 m
nlbl—IgoElOg (m!)vEY =K (3.17)
for some k € R, then
: 1 -
yh_}n;lo S logP{Y > y} = —ye "/, (3.18)

4 Large deviations for local times

4.1 Proof of Theorem [2.1] — superadditivity argument

In the light of Lemma B.8 it is enough to show that the limit in (B.I7) exists for
Y = LY(B) and for v = Hd. We will prove it by a superadditivity argument. Let 7
be an exponential time independent of B (¢). We will first show that for any integer
m,n > 1,

m-+n

E[LB(BH)"”"] 2( N )E[LS(BH)W]E[LS(BH)"} (4.1)

Let t > 0 be fixed. Notice that by Theorem [IT], the Gaussian process B (t) satisfies

18



the condition (8.2]) posted in Lemma B.1l By (B.4]), therefore,
E|L0(B")"]

1 1 “ H
— (2W)mdA]’t]mdsl---dsm/(Rd)md)\l---d)\mexp{—5 ar (N B )}

m

1 d
:W/ dsl~-~dsm[/ d)\1-~-d)\mexp{——\/ar<§ n.BH sk>H
0,4 m

where BE (t) is 1-dimensional fractional Brownian motion.

By integration with respect to Gaussian measures

/ )y - - A exp { . %Var (,é AkBgf(sk))}

= (2m)™/? det {Cov <B§I(sl)’ . ,Bg(sm» }‘1/2
Therefore,
E|L0(B")"]
= W/[OW ds; - - ds,, det {Cov <B§’(31)’ . ,Bg(sm))}—dﬂ (12)

m! —d/2
= W/ dsl---dsmdet{Cov (Bé{(sl),--- ,Bgf(sm))} :
[0,¢]2

In (£.2) and elsewhere, for any A C R* and an integer m > 1, we define
—{sl, ,Sm) € A™; 51<~-~<sm}.
Put
Alsr, o) = o{ Bl (s1). - Bl (o) ), k=10 ,m,
and A(s1, -+, s,) = {0,Q} when & = 0. By Lemma [3.7]

E [Lg(BH)m} (4.3)

m!
= 7(27r)md/2 /[O,t]m cedsp, HVar( (s1)|BE (1), - 73(?(8;%_1))

We are ready to establish (4.1). Put

—d/2

st ) = [ Var (BE (o)l BE (s1), -+ B (s4-1) ) ™"

k=1
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and let m,n > 1 be integers. Then, for any s; < --- < sp1p and n+1 < k <n+m,
Var (B (s)| B (s1), -+ B! (s11))

= Var (B! (si) = BE (su)| BE (1), B (s1.1) )

= Var (B! (s1) = BY (su)| B (1), Bl (50), B! (5u11) = B (52,
Bl (k1) = Bil(s1))

< Var (B! (si) = BE (s0)| BE (sn1) = B (su), -+ B (s11) = BE (s)

= Var (BY! (55— s0)| B! (5001 = 50+, Bl (s11 = s0)).
where the last step follows from the stationarity of increments. Thus

Qpn—l-m(sla T aSn—l—m) 2 Son(sla T asn)som(sn-l—l — Snyt 3 Sn4m — Sn)~
Notice that from (£.2)

" m!
E[L?(BH) ] = WE/[O . dSl"'dSmSOm(Sla"' 78m)
Tl

m!
= WE /81<m<sm 15m<7—d81 s dSm me(31, e ,Sm)

m)! /
= T8 N/ dSl"'dSm(pm(Sl’... 78m>€_5m. (44)
(27T)md/2 R
Consequently,
(n+m)
E[LO BH n+m:|_ / dn m Pntm ntm —Sn4m
7'( ) 27T (n+m d/2 (R+ 7L+m S -+ (p + (81’ 78 + )6
(n+m)! .
27T (TL—‘,—m d/2 /]R+ n+m d8n+m Spn(SI’ ’ Sn>€
x SOm(Sn_H Sny s Sntm T Sn)e_(s"er_s”)
(n+m)
dsn n\S1, *,8n e 5n
(2n)rmif2 a7 /( - on(s1 )

/ dty - dty om(ty, -+ tm)e ™
R+)™

_ (” ;m) E|L9(B")"|E[12(B")"|.

1
We proved relation (L) that says that the sequence m — log —E [L?(BH)’”} is
m!
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super-additive. By Fekete’s lemma the limit

11 11
lim —log—E[LO(BH) ]—sup—log—E[Lo(BH) ] logL,  (4.5)

m—0o0 1M m>1 1M
exists, possibly as an extended number.

By the scaling property (L)),
E|L2(B")"| = E[r0-#0m | B|L3(B™)" |
—T(1+(1- Hd)m) E[L?(BH)m] .
From (4.5) and Stirling’s formula we get

1
lim — log
e 8 ()

E[LO(BH) } log {(1 - Hd)—<1—Hd>L}. (4.6)

Applying Lemma [3.8 we establish (2.1I) with

0(H,d) = Hd(1 — Hd)~‘*/Hd-1/Hd (4.7)

To obtain (2.2]) and complete the proof it is enough to show that

(2r)~’T(1 — Hd) < L < <H‘17rc§{>_d/ “T(1 - Hd). (4.8)

By (4.I)

L[] M) - (o )

where the equality comes from (£4) (for m = 1). This proves the lower bound in (4.8]).
To prove the upper bound, we first notice that

Var (Bgf (si) | BE(s1),- - ,BH(sk_1)> > Var (Bgf (s1)] Bo(s), s < sk_1> (4.9)

02 2H
2H( k— Sk— 1)

Y

where we used (B.I6). Hence the function ¢ defined above satisfies

Om(s1, -y om) < (2H/ )™ | [T

k=1
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and by (4.4),

E[LQ(BH)*”} < (2H/%)™* m) /

RH)Z

dsy---ds,, H(sk — sp_y) Hdemom (4.10)
k=1

:(zﬂ/cg)mdﬂm!{ / t‘Hde‘tdt} — (2H/)"™ miT (1 — Hd)" .
0

This establishes (A.8) and completes the proof. [

4.2 Proof of Theorem — comparison argument
First we note that
L} (¢'B") = ¢, L] (B"). (4.11)
Thus, from the decomposition (L6 and (3.6) for every m € N,
cH'E (L (BM)™] < E[L) (WH)™] . (4.12)
To prove a reverse inequality (up to a multiplicative constant) we use notation (B.1I).

Fix a € (0,1) and let let ZX(t), t > 0 be the process specified in Proposition B3 that
is also independent of W (¢), t > 0. We have

Ly (B") = Loapn ((0,1],0) = L1 i ([a,1],0) = Ly y 721 ([a, 1], 0).
Thus, by (B.8) we get
cHE [LY (B™)"] >E [Lyn, zu([a,1],0)"] > K.E [Lyx([a, 1],0)™]
=KE [(LiWT) = Lyw™)™]
> K, {E [L5wW )]~ [Lw )y )
=K, (1—a" ") E [LYW")"]

where the last equality uses self-similarity (I3) and K, = Eexp {—1|ZZ|*} . Here
|Z7]] < oo a.s. is the RKHS norm associated with {W*(t)},ep0,1) and computed for
paths of {ZX (t)}1e0,1) - This together with (LI2) yields

B [LY (BT <E[LY (W)™ < KM (1 — o))" ¢pE [LY (BT)™] .
Applying the limit as in (Z.8) to both sides and then passing a — 0 gives

1 1 m (-

Therefore, by Lemma 3.8 the limit in (23) exists and §(H, d) = cl}l/HG(H, d) by (&1).
U
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5 Large deviations for intersection local times

5.1 Proof of Theorem — subadditivity argument

Let af(A) be defined analogously to (L9) by

all(A) —/ /I_IpE (W/(s;) — x) dsy - - - dsy d,

where p, is as in (LI0). We will first prove the subadditivity property: for every
m,n € N,

E[al([0,7) % -+ x [0,5))"""] (5.1)
p
g(m; ”) E[al([0,7) % - x [0,5)) " | E[a (10,7] x - x [0,7])"]
where 7, ..., 7, are iid exponential random variables with mean 1 and independent of

Wi (t),...,W}r(t). Indeed, since
al ([0,t4] x - x [0, 8,))" :/ - day, HH/ pe(W[ (sj0) — &) dsjn,
(Rd)m J=1 k=1

we can write
E [df([(),ﬁ] X e X [O,Tp])m+n] :/ dry - dTman E(T1, o X))y (5.2)
(Rd)ern

where

m-+n

5(1’1, s 7xm+n) = / dt e_t / d81 e dsm—l—nE H De (WH(Sk) - xk)
0 [0,¢]m+n

k=1

Let
D, = {(sl, oty Sman) € 10,8]™F": min{sy, ..., 8} < min{s,q1,-. -, sm+n}} )

There are exactly (™) permutations o; of {1,...,m + n} such that |J,0;'D; =
[0,2]™*" and o; ' D; are disjoint modulo sets of measure zero (here, (s, ..., Spmin) =
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(86(1), - - - » Sa(m+n)))- Therefore,

m+n
/ d81 te dSm—l—nE H De (WH(Sk) - xk)
[0,¢]m+m k=1

m—+n
= Z/ dSl cee d8m+n E H De (WH(Sk> o Ik)
: O’-ﬁlDt

m-+n

= Z/ dSl d$m+nE H pe - xo’i(k))’

which gives by Holder inequality

[e8) m—+n p
5(1'1, s >$m+n)p = {Z/ dt e_t/ dsl o dsm—i—nE H Pe (WH(Sk) - l’ol(k))}

k=1

m-+n P
< <m+”) {/ dte‘t/ dsy - dsm+nEpr Hsk) _%l(’“))} '
Dy

Substituting into (5.2) yields

~H m+n m+n Pl /
[e%¢) m-+n p
X {/ dt e_t/ d81 B 'd8m+nE H pE(WH(Sk) — S(,’Jz(k))}
0 Dy

k=1
m-n P . m+n p
:( ) / day - A / dte—t/ ds1 -+ dsmen B [ [ pe(W" (1) — ) ¢ -
m (Rd)ym+n 0 Dy el

Since the last integrand can be written as

(o) m—4n p
/ dt e_t/ d81 e dsm—l—n E H Pe (WH(Sk) — .C(Zk) = / dtl . dtpe_(t1+"'+tp)
’ D (&)

k=1
p m+n p
X / (HdeJ d$]m+n)E H Hpe Sjk) —l’k),
Dy XX Dy j=1 k=1 j=1
after integrating with respect to xy, ..., Ty, we get
p
E[&f([O,Tl] X oo X [O’Tp])m—i-n] < <m+n) / d dt e~ (t14-+tp) (53)
m (R+)?

p m+n
X / (H dsjq-- -dsj,ern) E H ge(W{ (1) - WPH(sp,k)),
Dy x-+x Dy k=1
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where

ey, Yp) -—/ Hpe - (5.4)

= (2me) /2 / e~ (2P =22g+p™" S0, lwil)p/ (2€)
R4

= (2me) 4P D22 oxp { ——Zly;—yl 1,

and 7 :=p~ ' >F  y; for y1,...,y, € RL Moreover,

p m4+n
/D ) (Haz%1 . -dsj,mn) ETT ge (W (51, W/ (5,0)) (5.5)

=1 k=1
/Ot]m<HdsJ1 dsj,m) /[Ot S]H(Hdsjmﬂ ds]mﬁn)
m—+n
X EHgE(WfI(st),...,WH Spik)) H ge(W (87 + s18),- ,WPH(S;+SP,;€)),
k=1 k=m-+1
where

t:(t1>""tp)> S*:(ST>""S;)>
and
si =max{s;;: 1 <k <m}.

Assuming that W/ (t) are given by (L2) with independent Brownian motions Bj(t),
define Fy« = U{Bj(Uj) ru; <k j=1,... ,p}. Put also

s;—i-s 1 8;
Y;(s5,s) :/ (sj—+s—u)H_5dBj(u) and Z(s7, s) :/ (sj——l—s—u)H_%dBj(u),
s* 0

J

so that W;(s; + s) = Yj(s}, s) + Z;(s}, 5). The last expectation can be written as

{ng (W (s1), s W (k)

m+n

X E[ H 9e (Y1 (s, s10) + Z11 (S5, s10), - -+ ,YpH(s;, Spk) + Zf(s;, Spk)) ‘fs*} }
k=m+1
m m—+n
< E[ng(WlH(sl,k), . spk }E[ H gE 51,31 k), ,Y;)H(s;, spk))]
k=1 k=m+1
m m—+n
_E [ [To- (W (s10)s - WPH(sp,k))}E[ IT (W (s10), - ,WPH(sp,k))} |
k=1 k=m+1
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where the inequality follows from Lemma [B.6](i) (see the evaluation of g, in (5.4) and
the positive quadratic form associated with it) and the last equality from that

(Vi3 s18)s -y Yoty spr)) = (Wi (s14), ., W (s,0)).

Combining the above bound with (5.5]) and then with (5.3) we obtain

p
E[df([o,ﬂ] X e X [O,Tp])mm} < (m+n) / dty - - - dt,e” ot
RF)P

m
p
/[Ot H 51 ds]m>EHgE ($16) - W (5pk))
P m—+n
/ H dsj,m—i-l ds] m+n>E H ge (51 k) ) WpH(Sp,k))
[0,t—s*]™ j=1 k=m+1

(m + n) (H ds;1 - dgjm)IEi[lgE(WlH(SLk), W ()

o o—(sitay) / iy - - - o 1= sy
5 ool

o A0 CERE B | QORI
_ (m;: n) E[df([O,ﬁ] NP, [O’Tp])m] E[&f([o,ﬁ] X oo X [O,Tp])n],

where in the last equality we use

6_(8T+"'+5;) = / 6_(t1+m+t”) H 1[s*,t](51,k> RN Sp,k) dtq -+ 'dtp
R4) k=1

and the definition of ¢, in (5.4). The subadditivity (5.I)) is thus proved for any e > 0.
Now we would like to take e — 0 on the both sides of (5.I) in an attempt to establish

Ea ([0,7] x --- x [0,7,)""" (5.6)

< (m:n) EdH([O,ﬁ] N, [O,Tp])mEdH([O,Tl] Y. [O’Tp])n‘

To this end we need to show that for any m > 1, @ ([0, 7] x - -- x [0,7,]) is indeed in
L£m(Q, A, P) and

lim E[ H(0,7] x -+ % [o,Tp])m} :E[dH([O,Tl] X X [O,Tp])m]. (5.7)

e—0t
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Indeed, using (B.]) repeatedly we have that
E[al([0.7] % -+ x [0.5))"| < (miyE|a (10,7] x - x [0,7,])]
Notice that

E[&f([o,ﬁ] XX [O,Tp])] - /R UOOO e~Ep, (W (t) —x)dt]p

/Rd U / pely = x)pee )dyrdx

where t* = (2H) 't*7 and the last step follows from the easy-to-check fact that
WH(t) ~ N(0,(2H)"1t?1;). By Jensen inequality, the right hand side is less than
or equal to

[ee) P [ele} p
[ pe<y—x>[ o pt*(y)dy] i = | [ [ pt*<y>dy] dy
R2 JR4 0 R R4 0 R4
[e'e) 00 p
:/ / dtl---dtpe_(t1+"'+t”)/ Hpﬁ(a:)dx
0 0 RIS

— d(p 1/2/ / o=+ +tp Z H tiH> d/2 dty - - dt,

j=1 1<k#;5<p
where the last step follows from a routine Gaussian integration.

By arithmetic-geometric mean inequality,

_Z H t2H>H H 2H/p HtZH(p D/p.

] 1 1<k#j<p 7=11<k#;<p j=1

So we have

- 0 »
E[&;H([O’Tl] XKoo X [Ova])] < (Hﬂr)d(p 1)/2P_d/2</ t—Hd(p—l)/pe—tdt)
0

d(p—1)/2
- <H/7r> p=2D(1 — Hd/p")P.

Summarizing our computation, we obtain

oty B [af 0.m] - x 0.5))"] < (i) erna - )
(5.8)
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By Theorem [7.1], the process
Xty ty) = <W1H(t1) = Wyl(ta), -+ WyLi(tp1) — WpH(tp)>

satisfies the condition (3.2) with A = [0,t] = [0,¢] x ---[0,¢,] for any t;,--- ,t, > 0

and
al ([0,71] x --- x [0,7,)])

= [ h(W(s1) = WH(s5), -+ W (5,1) — W/ (s,))ds, - - ds,
[0,t]

h(zy, - 2p1) :/ pl(—l‘)lﬁpl(pz_ixk —x)dx
Rd pay

=1

o

where

is a non-degenerate normal density on R*»~Y. By Lemma[B.I} & ([0, #1]x- - -x[0,,]) €
£m(Q, A, P) and

lim E[df([o,tl] XX [o,t,,])m} - E[dH([O,tl] XX [o,tp])m} . (5.9)

e—0+
In addition, by the representation (3.7]) one can see that for any € < e,
E[df([o,tl] X oo X [o,tp])m] < E[df([O,tl] X +ee X [o,tp])m] :
Thus, (5.1) follows from monotonic convergence theorem and the identities
al ([0,m] x -+ x [0,7)) (5.10)

:/ e_(t1+"'+t1’)E[5zf([0,t1] X o X [o,tp])’”}dtlmdtp
(R+)P

and
am ([0, 7] x -+ x [0,7,]) (5.11)

:/ e_(t”"'“”)E[&H([O,tl] X o X [o,tp])’”}dt1~-dtp.
(R*)P
Further, by (5.8) we obtain the bound

(m!)~PE [aH([o,ﬁ] X e X [o,Tp])m} < ((H/ﬂ)

d(p—1)/2 m
' p—d/2r<1—Hd/p*>p) |

(5.12)
The inequality (5.6)) implies that the sequence m — log(m!)PE&" ([0, 7] x- - -x[0, 7,])™
is sub-additive. Hence the limit

lim — log(m!) "Ea” ([0, 7] x - - x [0,7,))" = e(d, H, p) (5.13)

m—oo M,

28



exists, possibly as an extended number. Further, by (5.12))
d(p—1)/2
c(d, H,p) < log { (H/W) T - Hd/p*)p} :

Now we will deduce the moments behavior of & ([0, 1]7).

Notice that 7, = min{7,---,7,} is an exponential time with parameter p.

Ea” ([0,71] x -+ x [0,7])" > Ea" ([0,7.]")"
= ETﬁp_Hd(p_l))mEdH([O, 1]p)m
= p W Hde=DImD (1 4 (p — Hd(p — 1))m)Ea" ([0, 1]*)"
By Stirling’s formula,
lim sup % log {(m!)_Hd(p_l)EdH([O, 1]p)m}

<c(d,H,p)+ (p— Hd(p—1))log(l — Hd/p").

On the other hand, for every ¢;,...,t, > 0,

— drq -+ - dx,, H/ dsy---ds,,E Hpe (WH(Sk) - Zl,’k)
styl™ k=1

Letting € — 0, from (5.9) we get

p p
Ea' ([0,t,] % - x [0,,)"™ < T[] {Ea" ([0,1,")"}""" = E )" 114
j=1 J=1
where the last equality uses self-similarity (IL.I2)). Hence
Ea" ([0, 7] x -+ x [0,7,])"
_ / dty -~ dty e HOEGT ([0,8] x - x [0,4,])"
(R4)P
< Eq™ m/ Ldt,, e (it +tp)(t1 . .tp)m(l—Hd(p—l)/p)
Ry)P

— Ea" ’”r(1+m 1— Hd(p— 1)/p))p.
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(5.14)

m py 1/p
§H / dxy -+ dx,, (/ dsl---dsmEHpE(WH(sk)—:Bk)> }
; (Rd)m [0,¢5]™ k=1

Hd/p

(5.15)



By Stirling’s formula again,

lim inf 1 log { (m!)~#»=DE&" ([0, 1]7)™ }

m—oo 1M

> c(d,H,p)+ (p— Hd(p—1))log(1 — Hd(p —1)/p).
We have shown that

lim — log { (m!)~#¥P=VE&" (j0,1]*)"™} = C(d, H, p), (5.16)

m—oo M,

where by (B.14),
C(d,H,p) = c(d, H,p) + (p — Hd(p — 1)) log(1 — Hd(p — 1)/p) (5.17)

d(p—1)/2
< log { (H/ﬂ-> P p—d/21—\(1 . Hd/p*)p(l _ Hd/p*)p—Hd(p—l)} ‘

On the other hand, let &(A) be the intersection local time generated by ¢ B! (t), -+ , ¢y BE(t).
We have that

a(A) =P Va(4), Ac ®RY) (5.18)
In view of the decomposition (L.6), by Lemma [B.1] we have that
E[dH([O, 1]1’)”"”] > E[aH([O, 1]1’)”"”} - c;%}p‘”mE[aH([o, 1]p)’”] (5.19)
It follows from (5.25) below that
d(p—1) *\ 5 _a [ 2H\—d/2__¢ g
Cld ) 2 o {0 ()35 2my st [ (14 2) Petan
0

x (1—Hd(p—1) /p)P—Hd<p—1>} : (5.20)

Applying Lemma 3.8 leads the first conclusion (2.7) of our theorem with

~ C(H,d,p)
K(H,d,p) = Hd(p—1 _ D)
(H,d,p) = Hd(p )eXp{ Hd(p_l)}
and therefore the bounds given in (2.8)) follows from (5.17) and (5.20). O

5.2 Proof of Theorem 2.4] — comparison argument
In connection to (5.16), we first show that
1 m
lim — log {(m!)_Hd(p_l)EaH([O, 1]p) } =C(d,H,p) —d(p—1)logcy, (5.21)
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The upper bound follows immediately from (B.I6) and the comparison (5.I9). To
establish the lower bound, we once again consider the intersection local time a*(A)
generated by the normalized fractional Brownian motions

By'(t) = ci BY'(t),+ . B (t) = ¢y B,'(1).

For any e > 0, define

//Hpe (55) =) ds -~ dsy du, (5.22)

Let 0 < § < 1 be a small but fixed number. Notice
Ea.([0,1]")™ > Ea.([5,17)"

:/(Rd) dmeE/ (Bj(s) — k)
— /([5,1]@) dsmEng( (51,8), Bf(snk))

where g.(z1,---,x,) is defined by (5.4)) and we adopt the notation sx = (s14, - Spk)-

Consider (W (ty),--- ,WE(t,)) (t = (ti,---,t,) € [0,1]7) as a Gaussian random
variable taking values in the Banach space ®§:10{[0, 1]p,Rd}. Then the reproduc-

ing kernel Hilbert space of (WlH(tl),-~- ,WpH(tp)) is Hy = ®%_ Hy. For each
(frltr) -+ fp(1)) € Hy

(A fE)Ig, = ZHfJHHW

where || - || g, is the reproducing kernel Hilbert norm of Hyy.

Let Z3%(t),---, Z§ (t) be the processes constructed in Lemma (with a = 6) by
Z{(t),- -, Z(t), respectively. For each (sy,---,sy) € [0,1]7)™ by the decomposition

(L4) we have
E T g (B (s10). -+ . Byl (sp0)

k=1
=E ng <W1H(Sl,k> + ZlH(SLk)a ety WpH(Sp,k> + Zf(sp,k)>
k=1
= BT 0 (W (0 2 (s W ) + 250
k=1
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Fixed (s1, - ,sm) € [4,1]P)™. Applying Lemma [B.6[ii) to the functional g(f1, -, f,)
on ®}_; C{[0,17, R?} defined by

g1 Hgﬁ(fl s1) e Folsnn)) (e s ) € 8L, C{ (0,1, R7Y,
then the right hand side is greater than

p
(o { - 528 1By, } ) Balwit,oo w2
= <Eexp{ — %HZ({{H%{W}) EHQE( (51,6, ,WPH(Sp,k>>.

Summarizing our estimate, we have

Ea.([0,1]7)"
1 P o

> (E — —||ZE | ) / dsy - - -ds,E (Wi N 1
1 P -

— (Eexp{ — §\|Z§{||§{W}) Eaﬁ([é, 1]1’)

By Lemma B.1] letting ¢ — 0T on both sides yields
m 1 P ~ m
Ba((0.17)" = (Besp { - 5112411, }) Ba. (61

In view of (5.18),
1 -
1nnjnf-—1og(nu)—Hd@—1hE[afqu,up) } (5.23)

m—oo 1

1 m
>d(p—1)logey + hmnlio%f - IOg(m!)Hd(p—l)E[&H([é7 1) ]

To establish the lower bound for (5.21]), therefore, it remains to show that

1 . "
hmlnfllmmf log (!)HWE[Q ([0,17) ] > C(H,d,p). (5.24)

6—0t m—oo m

Write
a([0,1]7) = a([6,1] x [0,1]7~1) + &([0,6] x [0,1]71).

By triangular inequality,

{Bfago.m)"] }Um
gﬁﬂwmuxMH“WﬂFm+%ﬂﬂmﬂxm”””ﬂ}
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Given € > 0,

E[&e([é, 1] % [0, 1]1’—1)’”]

:/ d:)sl---dzvm[/ EHpe(WH(sk)—xk)dsl---dsm}
(Rd)m [6.1™ 4
m p—1
X {/ EHpE(WH(Sk) —xk)dsl---dsm]
[0,1]™

k=1

< dmdzl..-d;pm mEﬁpf(WH(Sk) = a)dsy - s py 1/p
() sy A1

X { /(]Rd)m dzy - - - dx,, l/{og}m E}i[lpe (WH(Sk> — xk)dsl - _dSm}P}(p—l)/p

= {E |:C~Ye([5, l]p)m] }Up{E[dE([(), 1]p)m] }(p_l)/p

Letting € — 07 yields

E[&([& 1] x [0, 1]p—1)m} < {E[&([é, 1]p)m} }”p{E[&([o, 1]p)m}}

Similarly,

E[d([O,cS] « [0, 1]p—1)m} < {E[@([o,a]p)m} }l/p{E[d([O, 1]p)m}}

So we have
{E[d([o, 1]?)’”: }Ump < {E[@([&, 1]p)m] }Ump + {E[d([o,a]p)m]}

By scaling,

(p—1)/p

(r—1)/p

1/mp

E|a(0,0]7)" | = s e=mg a((0,1])"]

Thus mp
E[a([5,17)"] = [1 - ¢ #4-0/r E a(0,117)"].

Therefore, (5.24)) follows from (5.16).
To bound the limit in (5.21) from below, we claim that
1 m
lim — log {(m!)~#P=VEa" ([0, 17)"}

m—oo M,

> plog {(1 - Hd/p*)_(l_Hd/p*)(p*)%i*(27r)_2% / (1+ t2H)_d/2e_tdt}.
0
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Let 7i,---,7, be i.i.d. exponential times independent of B{'(t),---, B}(t). Given
e>0

Blof (0. x < 05)"] = [ dn oo Qe

where
Qe(z1, - ,2m) = / et [/ dsy---ds,,E HpE(BH(sk) — ZL’k) dt.
0 [0,4]m Pl
Let f(x1,---,7,,) be a rapidly decreasing function on (R%)™ such that

/ |f(,f1j‘17-~-’xm)|p*d$1"'d$m:1.
(Re)™
By Holder inequality,
o my 1/p
{Elaf(l0,7]x < [0,7))] "}
>/ d1"'dxmf(I1>"'axm)QE(xlf"axm)
(Rd m

/ / |:/ dxldsz(xla >$m)Hs,e(xl>"' axm):| dSl"'dSmdta
(0,8]™ LJ(RA)™

where .
Hs,e(Ih"' 7$m) = EHPE(BH(Sk) - l’k) 5 = (51, T 7Sm)-

Consider the Fourier transform

f()\l,"',)\m):/d dzy - dxp f(r, - Tm) GXP{ Z)\k Ib"k}
(R)m

It is easy to see that

f[s75()\1,--- s Am) —exp{ Z|)\k|2 - —Var(Z)\k B (), )}

By Parseval identity,

/ day---dap f(xr, - xm)Hs (21, -+, T)
(Rd)m




Thus,
1/p
{E|af(0.7] % - x [0.5))] "}
> md/ -tdt/ ---dsm[/ Ay - d
Otm (Rd)m
x f()\l, L Am) exp{ -5 Z el — %Var (> BH(sk))H .
k=1 k=1

We now let ¢ — 07 on the both hand sides. Noticing that the left hand side falls into
an obvious similarity to (5.7,

{E|a ([o nlx - x 0,7 )} }”p (5.26)

> / _tdt/ - dSy, l/ dM\1 -+ -d\,
(2m) [0, (Réym
~ 1 "
X f(Aq, - exp{ 5 Z)\k B (sg )H )
We now specify the function f(zq,---,x,,) as

f(xlv o ,ZL’m) = Cmel(xk)
k=1

where
d(p*—1)

C = (") (2m) "5
We have

—~ 1 m
d)\l---d)\mf()\l,---,)\m)exp{——Var e - BT () }
[Rd)m 2 <; )
1 m 1 m d
__m 2 H
—C [/md)\l-nd)\mexp{—§;Ak—§\/ar(;>\k30 (sk))H

where B (t) is an 1-dimensional fractional Brownian motion.

Let &, - -+ &y be i.id. standard normal random variable independent of BJ (t). Write
Mk :gk“‘Bé{(Sk) k=1,---,m.
We have

%g + Var(Z)\kB sk):%\/ar<g)\knk>.
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By Gaussian integration,

0'2 e 2 1 e H
/ d\; - - -d)\mexp{ — 72)% — §Var (Z)\kBO (sk))}
m k=1 k=1

—-1/2

= (2m)™/% det {Cov (- 77]m)}

When s; < --- < s,,,, by Lemma [3.7]

det {Cov (m, -+ ,nm)} = ﬁ\/ar <nk\m, e ,nk_l)
k=1

—

{1 + Var <Bé{(sk)|Bé{(sl), e ,Bé{(sk—l)>}

e
I
—_

<

=

{1 + (s — sk_l)w}

e
Il
—

where the last step follow from the computation
Var (B (0] B (). -+ . B (s1-1))
= Var (B (s1) = B (31| Bl (s1), -+, B (s4-1) )
< Var (Béq(sk) — Bf(sk_1)> = (sp — sp_1)*.
Summarizing our argument since (5.26]), we obtain

{E[QH([ONH] X -+ X [Oij])}m}l/p
> m!(0(27r)—d/2)m /OOO e_tdt/[(]t]m dsy -+ -ds,, ﬁ {1 + (s — Sk_1)2H}_d/2

k=1

= ml(C(2m)~ )" { /0 N (14624 Ze_tdt} "

E{oﬁf([o,ﬁ] XX [o,Tp])]m (5.27)
> (ml)? (C(2m)~42)™" [/m (1+ tQH)‘d/Qe—tdt} "
On the other hand, with obvious similarity to (5.15])
E[a”([0,7] -+ x [o,T,,])}m <E[a" (0, 1]?)}m{r(1 +m(1 — Hd(p—1)/p) }p.
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Hence, ([5.25)) follows from (5.27) and Stirling formula.

By (&I7) and (5.25), the limit given in (5.2I) is finite. By Lemma B.8 the large
deviation given in (Z9) holds with

fﬂHdm%=Hﬂp—nwp{—CUL%M_d@—lﬂ%qq

Hd(p—1)
— M — _ G dp)y _ g
=cy Hd(p 1)exp{ Hd(p—l)}_cH K(H,d,p).

6 The law of the iterated logarithm

We will prove Theorem in this section. Due to the similarity of arguments, we will
only establish (2.I7). By the self-similarity property (LI12]), the large deviation limit
of Theorem [23] can be rewritten as

tlim (loglogt) ™! log P{&H([O, tP) > AP~ HAP=1) (Jog log t)Hd(p_l)}

= —K(H,d,p)\*"/H (X >0). (6.1)

Therefore, the upper bound

i sup 7407 (log log )6 ([0,]7) < K (H,d,p) "™ a.s

t—00
is a consequence of the standard argument using Borel-Cantelli lemma.

To show the lower bound, we proceed in several steps. First let N > 1 be a large
but fixed number and write t,, = N™ (n = 1,2,---). For each n, let (H,,| - ||lm,) be
the reproducing kernel Hilbert space generated by W#(.) when viewed as a Gaussian
random variable in C’( 0, t,11]; ]Rd). Define the d-dimensional process

Qi) = [ iz0
0

where B(u) is a standard d-dimensional Brownian motion. Now we define the following
modifications of QX (t) (cf. the proof of Proposition [3.5).

When H € (0,1/2), we put

£QI(t,), 0<t<t,
QI (1), t>t,.

GH (1) - {
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When H € (3,1), GE(t) is defined by

n

Gl (1) = {(3@5(%) - thnH(tn)> (t/t,)? + <—2QnH(tn) + thrIL{(tn)) (t/t.)3, 0<t<t,
Q' (1) t>t,.

Lemma 6.1 Almost surely {GY (t)}ieor,,,) C Ha, for every n > 1. Furthermore,

sup E[IGY [, < oo, (6.2)

Proof: Obviously, it suffices to consider the case d = 1. By the same argument as
in Proposition B.5, we infer that {G¥ (¢)}1e0,,,) C H,, almost surely. If H € (0,1/2),
then m = [H 4+ 1/2] =1 and by Corollary [A4]

1 tn+1 .
GHI12 — —/ [1—(H+1/2)GHt 2 gt
161, = s |, o 0]

t
/ (t —s)"HHYDGH (5 ds
0

2

dt. (6.3)

1 tnt1
T T(H+1/2T(1/2— H)? /0

For t > t,,
t tn
/ (t _ 8)—(H+1/2)G£{(8) ds = t;lQH(tn)/ (t . S)_(H+1/2) ds
0 0
tn t
4 (H —1/2) / [ / (t — 8)WHHD (5 4 o) H=3/2 ds} dB(u).
0 tn

Thus

2 2

t
E‘/ (t —s)"HHYDGH (5)ds
0

<o B[R w]] -9 mas)
+ (2H — 1)E{ /Ot" [/t:(t — ) WD (5 1 u)H_?’/st} dB(u)}

<c{gl> = 4ty (6.4)

2

where C' is a constant depending only on H (C' > 0 will be allowed to be different at
different places). Indeed,

2" -1 2H

E[Q¥ (t,)]* = /0 = 2 (6.5)

tn 2
t— )y HA) gy « = 41/2-H
/0 (t=s) =190 ’
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and

E{ /Otn{/t:(t—s)_(H+1/2)(S+u)H_3/2 ds] dB(u)}2
= /Otn Ut:(t— §)THFD) (5 4 ) H3/2 dsrdu
< /OOO [/Ot(t—s)_(H+1/2)(s+u)H_3/2dsrdu

2 2 [e%e) t1_2H 2H—1 1
() [ e,
1-2H) J, (t+u)? t
where in the last two steps we used the identities

9 f1/2—H H-1/2

1-2H t+u

t
/ (t _ S)_(H+1/2)(S +U)H_3/2 ds =
0

and

o0 y1-2H  2H~1 1
/ ————du=7(1—-2H)csc(2rH) -.
o (t+u)? t

Combining these estimates we get (6.4]).
When 0 <t <t,,

t
: 2
t— ) HHL2)GH (o) dg = t=1QH (t,) t1/2~H.
/0< s) 2(s)ds = - Q1 (1)

Taking expectation in (€3] and using bound (6.4) together with the above equality
and (6.5) we get

tn+1 tnt1 1
E|GHE, <C+ CtiH—Q/ 21 qt + C/ —dt
tn tn 1
=C+C [(tn+1/tn)2‘2H — 1] + Clog(tat1/ts)
< CN2—2H
because t,.1/t, = N > 2 is fixed. The proof is complete in the case H € (0,1/2).

If He (1/2,1), then m = [H 4+ 1/2] = 2 and by Corollary [A4]

1 tnt1 .
GHI12Z — —/ 72 HAL2) GH 4y12 gy

2 dt.  (6.6)

[= sy a

1 tnt1
- T(H +1/2)2I'(3/2 — H)? /0
Put

&= (3Q0 (1) = QI () 1.2 = (=208 (1) + aQE (1)) 1,
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so that GH(t) = &,1% + 0,3 when 0 <t < t,,.
Then, for 0 <t <t,,
t t t
/ (t — )2 HGH (5) ds = 2§n/ (t — )Y H ds + Gnn/ (t —s)/> Hsds,
0 0 0

so that
E’/ )V HGH (s )ds)2 < C[EE 72 + En2 2721
Since
EE: < O |t BQY (t)* + £, EQ! (t,)?] = C 27~
and
En? < C [t;°EQI (1) + £, EQY (1)) = C 27",

we get for 0 <t <t,,
E‘/ 1/2 HGH( )ds‘z <C [tiH—4 320 tiH—ﬁ t5—2H} . (6.7)
If t > t,, then
/0 )V HEH () ds = /0 "= SR HER () ds
+ (H —1/2)(H —3/2) /Ot" [/t(t — §)VEH (5 )52 ds] dB(u).
tn

Similarly as above,

e,

tn 2 tn 2
E&2 </0 (t —s)/2H ds) + En? (/0 (t — s)l/z_Hsds) ]

S C [tiH—él t3_2H + tiH_G t5_2H} ’ (68)

which is the same kind estimate as (6.7). Then, as ¢, <t < t,.1,

E{ /Otn Utt (t =) (s +u)"= ds] dB(U)}2

<C

_( 2/ _ 3 2H(u_|_t) 3du

\3 - 0 (t + u)?

<( A 2H—"<C(J\f—1)3‘2H1 (6.9)
—\3- t 2= t
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where the first inequality comes from the mean value theorem. Combining (6.6])—(6.9)
we obtain

tn
E|GIE <C / [¢2H =43 =2H 206 45=2HT gy
0

(2} n+1 1
+C / [¢2H 4320 2064521 gy 4 O(N — 1)° 727 / i
tn

< C(tugrfta — 1) 7+ C (tyar Jt — D+ C (N = 1)° M log(t a1 /1)
< C( )6 2H

This bound, independent of n, concludes the proof. Il
Define the sigma field

Fi=o{(Bu(s), -+ By(s)): s<t.

We claim that for any A < I?(H, d,p)~H4P=1) one can take N sufficiently large, so
that

ZP{&H([%n,th] ) > AP AP (g log tn+1)Hd(p_1)).7-}n} =00 a.s. (6.10)

n

Let € > 0 be fixed and write

&' ([2tn, taa]”) I/ dsy - dsp g (WY (1), -+, W, (s))
[2tntnt1]?
:/ dsl---dspge(WfI(tn+sl),--- ,WpH(tn+sp))
[tn,tnt1—tn]
S [ sy (V) 2 s Y )+ 201G,
[tn,tnr1—tn]P
where g(z1,---,x,) is given in (5.4) and
t7l+t tn
VIO = [t 9B ), 2@ = [t 9 By
t 0

J

Consider a symmetric set A C ®§:16’{[0, oyl Rd} defined by

a=-{i mearofonmzd

/ dsy - - dsp ge (fl (51)7 T 7f ( )) > Atfz—i-llfd(p Y (10g log tn-i-l)Hd(p_l)} .
[tn tn+1 tn}
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For any (fi,---, f,) € ®_,H,, applying Lemma B.6(ii) to the indicator of A leads to

PL(WI + i, W+ ) € A} > exp | —%iuf&n}lp{(vv{% W) € A},

it f1,---,f, € H,.
Notice that

{270 o<t <t} 2{QUW: t <t <tars} = {GHW); ta <t <tun}

(Y0t <t <tua f 2{WH0; ta <t <t
and Y (t) and Z#(t) are in dependent. By Lemma [6.T],

)
o { - 23168 I Ye{ v Wy e 4,
j=1

7, }

1 p
> exp { = 5 S NGH I3, FP{al (ftn, s — 1)) = X" (loglog ) 7400 ]
j=1

P{(V + 2, Y 4z e A
> e

or

P{&f ([Qtnu tn-l—l]p) Z )\ti_'_llid p= 1 (log logt )Hd(p—l)

Letting € — 0 on the both sides yields

P{&H([thtnﬂ]p) > M1 (log log 1) 4P

7, }

1 p
> exp{ 3 Z ||Gr]Zj||%Hn}P{dH([tnatn+l —£,)7) > M2 D (log log ¢ 1)Hd(p_1)}.
=1

By (6.1) and by an argument similar to the one used for (5.24)), for A < l?(H, d,p)~Hdr=1)
and any small § > 0, one can take N sufficiently large so that

P{&H([tn,tn+1 — t)P) > A Hd(p=1) (log log tn+1)Hd(p_1)}
> exp { — (1 —6)loglogt,s1} = (nlog N)~'*
for large n.

To establish (6.10), therefore, it suffices to show that for any €, > 0,
1 p
Z Wl{ Z IGYN1f, < elog logth} =00 a.s. (6.11)
n 7j=1

42



Indeed, by Lemma 6.1 GZ can be viewed as a Gaussian sequence taking values in H,,.
By the Gaussian tail estimate, see [29], p.59, there is u = u(e) > 0 such that for large
n

p
1
P{ D IGH |13, = cloglogtun | < —.
j=1

Then for 0 < § < u,

1 p
Z n1—51{ Z IG5, = eloglogth} <00 a.s.
j=1

n

which leads to (E.1T).
By Corollary 5.29, p. 96 in [7], (611 implies that

lim sup thﬂp_l)_p(log log tn+1)_Hd(p_1)dH([2tn, ta1]’) > A as.

n—oo

which leads to

lim sup 74P~ 1P (log log ¢~ #4e=Da" ([0,4]") > X a.s.
t—o0
Letting A — [N((H, d,p)~f¥P=1 on the right hand side leads to the lower bound as
claimed. 0

7 Local times of Gaussian fields

We begin with mentioning the work of Geman, Horowitz and Rosen ([19]) on the
condition for the existence and continuity of the local times of the Gaussian fields, see
also recent work of Wu and Xiao [42]. Let X (t) (t € (RT)?) be a mean zero Gaussian
field taking values in R? such that there is a v > 0 such that for any ¢+ > 0 and
m=1,2,---,

/ dsy - - -dsm/ dA - - dA\y, (7.1)
(0,g]p)™ (RE)™

m 1 m
X (kl:[l |>\k|“’) exp { — §Var (; Ak - X(sk)>} < 0.

Geman, Horowitz and Rosen (Theorem (2.8) in [I9]) proved that the occupation time
,U,t(B) = / 1{X(s)eB} ds BC R?
[0,t]
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is absolutely continuous with respect to the Lebesgue measure on R?. Further, the
correspondent density function formally written as

a([O,t],:B) :/[Ot]éx(X(s)) ds

is jointly continuous in (t,z). For fixed z, the distribution function «([0,t],2) (t €
(R*)”) generates a (random) measure o (A, z) (A C (R)?) on (RT)? which is called
the local time of X (t).

In this paper, the result of Geman, Horowitz and Rosen is applied to the following four
Gaussian fields:

1. The d-dimensional fractional Brownian motion X (t) = B (¢).
2. The d-dimensional Riemann-Liouville process Xo(t) = W ().
3. The d(p — 1)-dimension Gaussian field

Xl ty) = (B (1) = B (t2), -+, BIL, (1) = BY(1)).
4. The d(p — 1)-dimension Gaussian field

Xaltr, o ty) = (W (t) = Wi ).+ Wi (ty) = W) ).

p

Theorem 7.1 Under Hd < 1, Xi(t) and Xy(t) satisfy the condition (71); under
Hd < p*, X5(t) and X4(t) satisfy the condition (7.1)). Consequently, X, Xo, X5 and
X4 have continuous (jointly in time and space variables) local times.

Proof: Due to similarity we only verify (] for X3, which becomes

([O’t]p)m (Rd(Pfl))m
1 LN m.
X eXp{ — §Var(z>\k.X(sk)>}H‘)\k|v < 00
k=1 k=1

where we use the notation
st = (t1, - ,trp) and e = (Aks o Aop—1) -

Notice that

Var <2’”: A - X(Sk)> = ZVar (Zm:()\k,j — A1) - BH(Sk,j)>



with the convention ;o = A, = 0. By suitable substitution, a bound

p
el < CT[max{1, [Aej — Arjal}

j=1
we have
/ dgl...d;mexp{ _%Var<§:5\k-X(sk))}ﬁ|5\k|v
(Re(p—1)ym =1 k=1
gC/ dj\l"'dj‘p—lﬁHj(j‘J)
(Rmd)p—1 j=1
where

H(y) = (ﬁmax{l, Ml exp { _ %Var (znj: Mo - BH(S,W-))}

for j\j = (>\1J,' o 7)\m,j> (1 S] Sp— 1) and 5\;,, = —(5\1 + - —|—)\p_1).
Write

HHj(Xj):ﬁ IT ‘O,

j=1 j=11<k#j<p

By Holder inequality

j=1
p B B B 1/p
< H { /( md)p—1 Ay - dAp H Hk()\k)p } '

j=1 ~ (& 1<k#j<p

When j = p,

/(W)p cddor [ Hew)” —H AP dA.

1<k<p R’”d
As for 1 < j < p—1, recall that 5\1, =M+ F Xp_l). By translation invariance,

H,(\,)P d\j = H,(\)P d\.

Rmd Rmd

By Fubini theorem, for fixed j,

/(W)pldx o [ HeOw) = / H, (AP dA.

1<k#5<p 1<k#5<p
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Summarize our argument,

/ ds,, / cd\,
(0.47) (RA>-1)m

k=1 =
SC{/ dsl---dsm{/ d)\l---d)\m<HmaX{1,|)\k|p*7}>
[0,4]™ (Rd)m k=1
% m 1/p* Y P
X exp{ - —Var(Z)\k-BH(Sk))}] }
k=1

Hence all we need is to find v > 0 such that

/[O,t]m dsy o {/(Rd)m A= dAm ( g |)\k|y) (7.3)
X exp{ - %Var (Z)‘k : BH(sk))H ’ < o0
k=1

for all m =1,2---. Further separating variable and substituting variable, the above is
reduced to

/[O,t]m dsl...dsm{/m d)\l...d)\m<H |)\k‘v> (7.4)

k=1

1 m d/p*
X exp { - §Var (Z )kaé{(sk)> H < 00.
k=1

By (@), for any 5 < -+ < 5p.
Var (Bé;l(sk) - Bé{(sk—l)‘B(];](sl)v o 7B(]);I(8k—1>)

1 1
> ﬁ(sk — sp1)* = ﬁ\/’ar (Bé{(sk) - Bé{(sk—l))-

This property is generalized into the notion known as local non-determinism. By
Lemma 2.3 in Berman [6], there is constant ¢,, > 0 such that for any A;,---, A\, € R
and any sy < --- < S,

Var(Z)\k(Bé{(sk)—BoH Sk_1 ) Z sk — sp_1)2 N2
k=1 =1
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Consequently,

/ A\ - - .d)\m<lfl |)\k|7> exp{ — %Var (gAkBé{(Sk))}
:/mal)\l- (ﬁ Ak — Ak 1|>
X exp{ — —Var (i (Bg! (k) Bg(sk—l))>}

k=1
< / A, - -dAm(H s — Ak_m) exp { —en Y (s - sk_l)”fAz} .
" k=1 k=1
Using triangle inequality (for which we take v < 1)
TT I = M < T O + e 7) = Z 1_[|>\k|6ch
k=1 k=1 - gm k=1

where 9;, = 0, v or 2. Notice that

[Tl < TTAv x> H (1V | A])?
k=1 k=1 k=1

Notice the number of the terms in the previous summation is at most 2. Thus,

IT 2 = el < 2n TT@ v ah®
k=1

k=1

In this way, the problem is reduced to finding v > 0 such that

/[ow dsy - -dsm, {/mdkl-~-d)\m<g\)\w)

m d/p*
X exp { — Cm Z(Sk - 8k-1)2H>\2H < 00. (7.5)

k=1
Observe that
/ d)‘ld)\m<H|)\k|w) eXp{ Z Sk — Sk—1 2H)\i}
m k=1 k=
_ H /OO ‘)\|'Y€_Cm(5k_5k71)2H)‘2d)\
k=1Y—°
_ { / |A|Ve—wcm} [T (s = sun) 05
- k=1
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Therefore, we need to find v > 0 such that

/ dsy---ds,, H(sk — sp_q) " WEVHAPT o
[0 t]< k=1

This is always possible because Hd < p*, so that there is a v > 0 such that
(14+~)Hd < p*

and we finish the proof. O

8 Appendix

The constant

Lemma A1 Let {BH(t)}icr be a standard fractional Brownian motion given by

BH(t) = cy /t ((t _ g2 (_S)f—l/z) dB(s), (A1)

—00

where {B(t) }ier is a standard Brownian motion. Then
ey =VvV2H2"B(1—H H+1/2)""*, (A2)

where B(a,b) = fol 22711 — 2)" Y dw is the usual beta function.

Proof. Since Var(Bf (1)) =1 we get

oo 9 1 -1/2
(1 Y12 H=12)? gy . A3
{ /0 + ) T )" dx+ Vi (A3)
Put -
I= / (14 2)12 = 2 H12)° g,
0
Then
I=lim [ ((14a)f 12— gH12)  emme gy
“—>0+ 0
= lim {(6“ + D M 0(2H) — e y(2H, 1) — 2 / (1+ 2) =12 =12 dm}
pu—0 0
1 [ele]
=——+ lim {26“/2,LL_2HF(2H) — 2/ (1 + )2 H-1/2p—ne dx}
2H u—0t 0
S + lim {2e*2,72HT(2H) — le“/zf(H + l) wHK (H)
2H u—0t \/7_1' 9 —-H 9 )
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where 7(z,z) and K,(z) are the incomplete gamma function and modified Bessel
function of the second kind, respectively. The third equality uses the facts that
e’y (2H, 1) = 557 + o(1), and that (e + 1)pu=2# = 2er/2 21 4 o(1) for H < 1, as
i — 0. The forth equality applies formula 3.3838 in [20].

Using the duplication formula

92H -1 1
I'(2H) = 7 I'(H)(H + 5),
see 8.3351 [20], we get
- LU T(H + 1) lim {u—2H22Hr(H) oy H KH(H)} . (A4)
°0H ' /7 27 ot 2

Notice that o ,
p 2T (H) = / = te™"re dg,
0

and by the identity

Eal

Ky(z) = §(§)V/O e dt,

see 3.4326 in [20], we also get

—-H H oo e 1
21 KH(§) = x7 e 1 A d.
0

Hence, as u — 0,
2

p2HPHT(HY) — 2 KH(%) = / xH_le_MT””(l — e‘ﬁ) dx

0
— [ 271 —eis)de =4 "H'T(1 — H).
0

The last expression comes from change of variable and integration by parts. Substi-
tuting this into (A4)) we conclude that

1 T(Q-HI(H+1 1 B(1-HH+1
I=——+ ( T 2)=——+ ( 2). (A5)
2H JTARH 2H 2H4H
I'(@)I'(

y)

_— .g., 8.3841
T +y) (see, e.g., 8.38
[20]). Combining (AF) with (A3)) yields the formula ([(A2) for cy. O

The last equality follows from well-known formula B(z,y) =

Below we give a plot of ¢y as a function of H € (0, 1).
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The RKHS of a Riemann—Liouville process

Consider the Riemann-Liouville process W (t) with index H > 0 defined by (L2).
The reproducing kernel Hilbert space (RKHS) H of {WH(t)}te[O,T} follows standard
theory of RKHS, see [31] and [4]. A convenient form for us can be found in van der
Vaart and van Zanten |41, Lemma 10.2] as H = I(ﬁ“/z(LQ [0,77), where

1 t

120 = o [ =9 () ds, e o.1) (A0
i I'(@) Joy

is the Riemann-Liouville fractional integral of order o > 0; for « = 0, I, f := f. In

this section we address the question, given f € C([0,77]), how to verify that f is in H?

The results are used in Sections

Let AC™[0,T] denote the space of functions f which have continuous derivatives up to
order m — 1 on [0, T] with f(™=1 absolutely continuous on [0, 7], where m € N. Put

ACT[a,b] = {f € AC™[a,b] : /ab |f™(2)|? dx < oo} : (A7)

Proposition A2 Let H > 0 and let m be the smallest integer greater than or equal
to H+1/2. For f € C[0,T], put fy = I@‘(H“/”f. The RKHS of the process
{WH(t)}te[O L viewed as a random element in C[0,T), is a Hilbert space

H = {feC[O,T]: fur € AC0,T) and £(0) = 0, fork;:O,...,m—l}.

20



The RKHS-norm of f is given by

T 1/2
Il = s (17 OFar) (48)

Proof: By [41, Lemma 10.2| we have H = I£+1/2(L2 [0,77) and
1755 gl = T(H +1/2) 7 - gl pator s 9 € L[0, 7). (A9)

Let f € H, so that f = Iéfl/zg for some g € L,[0,T]. By the semigroup property of
{I§. : o« > 0} (see [40, Theorem 2.5|,

m—(H+1/2) tH+1/2 m
fH:Io+( +/)]0++/9:Io+9'

Hence fy € ACH'[0,T] and fl(f)(O) =0for k =0,...,m — 1. Moreover, fl({m) =g€
Ly[0,T]. Clearly (A8) follows from (A9).

Conversely, if for a continuous function f we have that fg € AC3'[0,T] with f}}“)(o) =0
for k=0,...,m —1, then

m—1 (k) ¢
(O) m—1 m m m
fult) = S IS+ [y ) s = 1P

where fl({m) € L»[0,T]. Again by the semigroup property,
m—(H m m m—(H m
0= Iy UV g g = I T ()

Since the operator [gf;(HH/Q) : L2[0,T) — Ly[0,T] is injective (see [40, Theorem 13.1]),

we get f = Iéflp I({m). O

Remark A3 Proposition also covers the well-known cases of a Brownian motion

and k-times integrated Brownian motion, k = 0,1,.... In these cases H+1/2 =k +1
is a positive integer, so that fg = I0, f = f. Consequently, f € H if and only if
f € ACY™0,T] and f(0) =--- = f®)(0) = 0.

The following is a simple sufficient condition for function to belong to the RKHS of
{WH(t>}te[o,T]'

Corollary A4 Let m = [H + 1/2] be as in Proposition[A2. Then any function [ in
ACP[0,T), with f(0) = ---= fMm=Y(0) = 0, belongs to H and

1 T (H+1/2) 2
Il = g (] 1 ma)

ol



Proof: We can write f = I&f(m), where f(™ € L,[0,T]. Then we have

Hence f47(0) = 0 for k = 0,...,m — 1 and fJ" = 1772 gm) ¢ 120, T]. The
formula for the norm is a consequence of the last equality and (AS]). O

Determinant of a Gaussian covariance

Lemma A5 Let z1,...,x, be vectors in a Hilbert space with the inner product (-,-)
and let C' = [(z;,%;)],; j<,,- Then
det(C) = [l21]* [laz — proj, (@2) [+ - |z — Projs, .z, _, (za)I

where proj,, .. (x;) denotes the orthogonal projection of x; onto the linear space
spanned by x1,...,T;_1.

Proof. Notice that vectors y; = x; — proj,, .. ,(z;),i=1,...,n, are orthogonal and
T = anyr + -+ QinlYn

for some a;; € R with a; = 1 and a;; = 0 for j > . Since
n
(wiyay) =Y awagyllyll®,
k=1

we have C' = AAT, where A = [a;;||y;]
on the diagonal. Hence

: : o :
1<ij<n 18 @ lower triangular matrix with [|y;[|’s

det(C) = det(A)* = T llwll*
=1

References

|1] Anderson, T.W. An introduction to multivariate statistical analysis. Wiley Pub-
lications in Statistics, 1958.

o2



2|

3]

4]

[5]

(6]

17l
18]

19]

[10]

1]

[12]

[13]

[14]

[15]

Asselah, A. and Castell, F. (2007) Self-intersection local times for random walk,
and random walk in random scenery in dimension d > 5. Probab. Theor. Rel.
Fields 138 1-32.

Bass, R. F. and Chen, X. Self intersection local time: critical exponent, large
deviations and law of the iterated logarithm. Ann. Probab. 32 (2004) 3221-3247.

Berlinet, A. and Thomas-Agnan, C. Reproducing kernel Hilbert spaces in proba-
bility and statistics. Kluwer Academic, 2004.

Berman, S. M. (1969). Local times and sample function properties of stationary
Gaussian processes. Trans. Amer. Math. Soc. 137 277-299.

Berman, S. M. (1973). Local nondeterminism and local times of Gaussian pro-
cesses. Indiana Univ. Math. J. 23 69-94.

Breiman, L. Probability. Addison-Wesley Massachusetts, 1968.

Chen, X. (2004). Exponential asymptotics and law of the iterated logarithm for
intersection local times of random walks. Ann. Probab. 32 3248-3300.

Chen, X. Random Walk Intersections: Large Deviations and Related Topics. Math-
ematical Surveys and Monographs, AMS (to appear).

Chen, X. and Li, W.V. (2003). Quadratic functionals and small ball probabilities
for the m-fold integrated Brownian motion, Annals of Probability, 31, 1052-1077.

Chen, X. and Li, W.V. (2004). Large and moderate deviations for intersection
local times. Probab. Theor. Rel. Fields 128 213-254.

Chen, X. and Li, W.V. and Rosen, J. (2005). Large deviations for local times of
stable processes and stable random walks in 1 dimension, FElectronic Journal of
Probability, 10, Paper no. 16, 577-608.

Davies, P.L. (1976). Tail behaviour for positive random variables with entire char-
acteristic functions and completely regular growth, Z. Ang. Math. Mech. 56 T334—
336.

Dembo, A. and Zeitouni, O. Large Deviations Techniques and Applications. (2nd
ed.), Springer, New York, 1998.

Donsker, M. D. and Varadhan, S. R. S. (1981). The polaron problem and large
deviations. New stochastic methods in physics. Phys. Rep. 77 235-237.

23



[16] Fernandez, R., Frohlich, J. and Sokal, A. D. Random Walks, Critical Phenomena,
and Triviality in quantum field theory. Springer, New York, 1992.

[17] Fleischmann, K., Morters, P. and Wachtel, V. (2008). Moderate deviations for
random walk in random scenery. Stoch. Proc. Appl. 118 1768-1802.

[18] Gantert, N., Kénig, W. and Shi, Z. (2007). Annealed deviations of random walk
in random scenery. Ann. Inst. H. Poincaré 43 47-76.

[19] Geman, D., Horowitz, J. and Rosen, J. (1984). A local time analysis of intersections
of Brownian paths in the plane. Ann. Probab. 12 86-107.

[20] Gradshteyn, I.S. and Ryzhik, .M. Table of Integrals, Series, and Products. Sizth
Ed. Academic Press, 2000.

[21] Hamana, Y. and Kesten, H. (2001). A large-deviation result for the range of ran-
dom walk and for the Wiener sausage. Probab. Theory Related Fields 120 183-208.

[22| van der Hoftad, R., Konig, W. and Morters, P. (2006). The universality classes in
the parabolic Anderson model. Comm. Math. Phys. 267 307-353.

[23] den Hollander, F.Random Polymers. Lecture Notes in Mathematics 1974
Springer, Heidelberg, 2009.

[24] Hu, Y., Nualart, D. (2005). Renormalized self-intersection local time for fractional
Brownian motion. Ann. Probab. 33 948-983.

[25] Hu, Y., Nualart, D. and Song, J. (2008). Integral representation of renormalized
self-intersection local time. Journal of Functional Analysis 255 2507-2532.

[26] Konig, W. and Morters, P. (2002). Brownian intersection local times: Upper tail
asymptotics and thick points. Ann Probab. 30 1605-1656.

[27] Lawler, G. F. Intersections of Random Walks, Probability and Its applications.
Birkhauser Boston, 1991.

[28] Le Gall, J-F. (1986). Propriétés d’intersection des marches aléatoires. I. Conver-
gence vers le temps local d’intersection. Comm. Math. Phys. 104, 471-507.

[29] Ledoux, M. and Talagrand, M. Probability on Banach Spaces, Springer, Berlin,
1991.

[30] Li, W.V. and Linde, W. (1998). Existence of small ball constants for fractional
Brownian motions. C.R. Acad. Sci. Paris, 326 , 1329-1334.

o4



[31] Li, W.V. and Linde, W. (1999). Approximation, metric entropy and small ball
estimates for Gaussian measures. Ann. Probab. 27, 1556-1578.

[32] Li, W.V. and Shao, Q.M. (2001). Gaussian processes: inequalities, small ball prob-
abilities and applications. Handbook of Statistics, Vol. 19, Stochastic processes:
Theory and methods, Edited by C.R. Rao and D. Shanbhag, 533-598, Elsevier.

[33] Madras, N. and Slade, G. (1993). The Self-avoiding Walk. Birkh&user, Boston.

[34] Mandelbrot, B. and Van Ness, J, (1968). Fractional Brownian motions, fractional
noises and applications. SIAM Rev. 10 422-437.

[35] Marcus, M. B. and Rosen, J. (1997). Laws of the iterated logarithm for intersec-
tions of random walks on Z*. Ann. Inst. H. Poincaré Probab. Statist. 33 37-63.

[36] Nualart, D. and Ortiz-Latorre, S. (2007). Intersection local time for two indepen-
dent fractional Brownian motions. J. Theor. Probability 20 759-757.

[37] Pipiras, V. and Taqqu, M.S. (2002). Deconvolution of fractional Brownian motion.
J. Time Ser. Anal. 23 487-501.

[38] Revuz, D. and Yor, M. Continuous martingales and Brownian motion. Third edi-
tion Springer-Verlag, 1999.

[39] Rosen, J. (1987). The intersection local time of fractional Brownian motion in the
plane. J. Multivariate Anal. 23 37-46.

[40] Samko, S. G., Kilbas, A. A. and Marichev, O. I. Fractional Integrals and Deriva-
tives. Gordon and Breach Science Publishers, Yverdon, 1993.

[41] van der Vaart, A.W. and van Zanten, J.H. (2008). Reproducing kernel Hilbert
spaces of Gaussian priors. IMS Collections Pushing the Limits of Contemporary
Statistics: Contributions in Honor of Jayanta K. Ghosh Vol. 3(2008) 200-222.

[42] Wu, D. and Xiao, Y. (2009) Regularity of intersection local times of fractional
Brownian motions. To appear in J. Theor. Probab.

[43] Xiao, Y. (2006). Properties of local nondeterminism of Gaussian and stable random
fields and their applications. nn. Fac. Sci. Toulouse Math. XV 157-193.

[44] Xiao, Y. (2007). Strong local nondeterminism of Gaussian random fields and its
applications. Asymptotic Theory in Probability and Statistics with Applications
(T.-L. Lai, Q.-M. Shao and L. Qian, eds) 136-176, Higher Education Press, Bei-

jing.

95



Xia Chen

Department of Mathematics
University of Tennessee
Knoxville TN 37996, USA
xchen@math.utk.edu

Jan Rosinski

Department of Mathematics
University of Tennessee
Knoxville TN 37996, USA
rosinski@math.utk.edu

Wenbo V. Li

Department of Mathematical Sciences
University of Delaware

Newark DE 19716, USA
wli@math.udel.edu

Qi-Man Shao

Department of Mathematics

Hong Kong University of Science and Technology
Hong Kong, China

maqgmshao@ust .hk

o6



	Introduction 
	Main results
	Basic Tools
	Comparison of local times 
	The remainder in the decomposition of BH(t) 
	Technical lemmas

	Large deviations for local times
	Proof of Theorem 2.1 -- superadditivity argument
	Proof of Theorem 2.2 -- comparison argument

	Large deviations for intersection local times
	Proof of Theorem 2.3 -- subadditivity argument
	Proof of Theorem 2.4 -- comparison argument

	The law of the iterated logarithm
	Local times of Gaussian fields
	Appendix 

