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Abstract

In [C. Benítez, Y. Sarantopoulos, A. Tonge, Lower bounds for norms of products of polynomials, Math.
Proc. Cambridge Philos. Soc. 124 (3) (1998) 395–408] it was conjectured that for all unit vectors u1, . . . , ud

in Rd ,

X (u1, . . . , ud ) := sup
x∈Rd , |x|2=d

d∏
i=1

〈x,ui〉2 � 1

with equality occurring iff u1, . . . , ud are orthonormal. We relate this to a conjecture about solutions of
Ay = y−1, where A = (〈ui, uj 〉), and show that if the conjecture fails then the u1, . . . , ud minimizing X
must be linearly dependent. We also show X (u1, . . . , ud) � 1 for certain families of u1, . . . , ud .
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In the study of polynomials on Banach spaces in [4], Benítez, Sarantopoulos and Tonge in-
troduced the concept of a linear polarization constant. For any positive integer d and any Banach
space X, the d th linear polarization constant for X is cd(X) defined by
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cd(X)−1 := inf
fi∈X∗,‖fi‖=1

‖f1 · · ·fd‖ = inf
fi∈X∗,‖fi‖=1

sup
x∈X,‖x‖=1

∣∣f1(x) · · ·fd(x)
∣∣.

If R
d is endowed with the standard inner product then it was conjectured in [4] that cd(Rd) =

dd/2 (independently, [11] also discussed this) which may be restated as the following conjecture.

Conjecture 1. If u1, . . . , ud are unit vectors in Rd then

X (u1, . . . , ud) := sup
x∈Rd , |x|2=d

∣∣〈x,u1〉 · · · 〈x,ud〉∣∣2 � 1, (1)

with equality occurring iff u1, . . . , ud are orthonormal.

One may easily check that if u1, . . . , ud are orthonormal then the maximizing x are∑d
i=1 ±ui and hence X (u1, . . . , ud) = 1; the main difficulty in the conjecture is to show that

X (u1, . . . , ud) � 1 for all u1, . . . , ud—see Section 6.2.
The article [15] has a proof of Conjecture 1 when d � 5 and Theorem 2 in [14] shows

that X (u1, . . . , ud) � 1 if u1, . . . , ud are close to orthonormal unit vectors. If the span of
u1, . . . , ud is two-dimensional then [1] shows that X (u1, . . . , ud) � 4(d/4)d which is attained
iff ±u1, . . . ,±ud are 2d equally spaced vectors in a plane. Conjecture 1, for Cd instead of Rd ,
was shown to be true in [2], where it was also observed that this lead to a lower bound for X
for the R

d case too. Using these ideas, for the R
d case, [7] and [11] gave better bounds, cul-

minating in [16], where it was shown that X (u1, . . . , ud) � 1/2d−2 for all u1, . . . , ud . Using
an averaging argument, the recent article [6] gives the improved lower bound X (u1, . . . , ud) �
(d/2)d�(d/2)/�(3d/2) for the Rd case. Using a geometric approach, for the Rd case, [13] gives
an interesting lower bound X (u1, . . . , ud) � det(〈ui, uj 〉)—also see [12] for some older results.
Ball’s solution of the complex plank problem in [3], where he proved the existence of an x ∈ C

d ,
|x|2 = d with |〈x,ui〉| � 1 for all i = 1, . . . , d , is a result stronger than Conjecture 1 for the
complex case.

Below all matrices and vectors will have real entries and all vectors will be thought of as
column vectors. We prove three results in this article. The first relates to the conjecture for all
u1, . . . , ud and the other two show that X (u1, . . . , ud) � 1 when u1, . . . , ud are restricted to
certain families of unit vectors.

Theorem 1. If there exist linearly independent unit vectors u1, . . . , ud in R
d so that

X (u1, . . . , ud) < 1 then there exist linearly dependent unit vectors v1, . . . , vd in R
d so that

X (v1, . . . , vd) < X (u1, . . . , ud).

This shows that if Conjecture 1 is false then the u1, . . . , ud which minimize X (u1, . . . , ud)

must be linearly dependent. However, our intuition suggests that given a linearly dependent
set of u1, . . . , ud one should be able to find a linearly independent set of w1, . . . ,wd with
X (w1, . . . ,wd) < X (u1, . . . , ud); if this could be shown then Conjecture 1 would follow from
Theorem 1. We have made some progress in this direction which is described in Section 6.1.

Theorem 2. Suppose u1, . . . , ud are unit vectors in R
d and ε some ±1 vector in R

d such that
εiεj 〈ui, uj 〉 � 0 for all i, j = 1, . . . , d . Then X (u1, . . . , ud) � 1 with equality occurring iff
u1, . . . , ud are orthonormal; in fact there exists an x ∈ R

d , |x|2 = d , so that |〈x,ui〉| � 1 for
all i = 1, . . . , d .
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Theorem 2 asserts that X (u1, . . . , ud) � 1 if, after direction reversal, the ui make acute angles
with each other. When, say εi = 1 for all i = 1, . . . , d , one is tempted to use as x a vector parallel
to

∑d
i=1 ui ;

∑d
i=1 ui has the longest length amongst all vectors

∑d
i=1 σiui with σi = ±1. How-

ever, this vector can fail to satisfy even the condition
∏d

i=1〈x,ui〉2 � 1 as shown in Theorem 3
in [14].

Our last result is that X (u1, . . . , ud) � 1 if ±u1, . . . ,±ud form a root system. Please refer
to [8] for additional details about root systems and the connection with finite reflection groups.

Definition 2. Suppose n and d are positive integers with n < d . For any unit vector u ∈ R
n let Su

be the orthogonal transformation on R
n consisting of reflection across the hyperplane 〈x,u〉 = 0.

A subset Φ = {±u1, . . . ,±ud} of the unit vectors in R
n will be called a root system if SuΦ = Φ

for all u ∈ Φ .

Let e1, . . . , en be the standard basis for R
n and u a unit vector in R

d and let Suei =∑n
j=1 αij ej , for i = 1, . . . , n. Then Su may also be considered a homomorphism on the algebra

R[x1, . . . , xn] of multinomials in x1, . . . , xn with real coefficients, by taking Suxi := ∑n
j=1 αjixj

for i = 1, . . . , n. The subalgebra of R[x1, . . . , xn] consisting of multinomials fixed by all the Sui
,

i = 1, . . . , d , is generated by the constant 1 and n algebraically independent homogeneous multi-
nomials f1, . . . , fn with positive degrees d1, . . . , dn (Chevalley’s theorem). While there is more
than one choice for the fi , the di are uniquely determined by the root system.

Theorem 3. Suppose n,d are positive integers with n < d and u1, . . . , ud are unit vectors in R
n

so that {±u1, . . . ,±ud} forms a root system. Then

X (u1, . . . , ud) = 2−2d
n∏

i=1

d
di

i

and in particular X (u1, . . . , ud) � 1.

The root systems are built by combining orthogonal collections of 11 basic root systems
corresponding to the 11 possible, basic finite reflection groups—see [8]. So Theorem 3 proves
X (u1, . . . , ud) � 1 only for those u1, . . . , ud which can be constructed from orthogonal unions of
a finite number of irreducible root systems, but it does provide the exact value of X (u1, . . . , ud)

in these cases. Further, u1, . . . , ud lead to non-trivial root systems only if they are linearly depen-
dent and as seen in Theorem 1 the linearly dependent case is important and not well understood.
The proof of Theorem 3 uses an integral relation conjectured by Macdonald—see [5].

Using Lagrange multipliers, a maximizing x in the definition of X (u1, . . . , ud) satisfies∑d
j=1

1
〈x,uj 〉uj = λx for some λ. Taking the dot product of this relation with x and noting that

|x|2 = d , we obtain λ = 1 and hence

d∑
j=1

1

〈x,uj 〉uj = x. (2)

Taking the dot product of this relation with ui , we obtain
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d∑
j=1

〈ui, uj 〉
〈x,uj 〉 = 〈x,ui〉, i = 1, . . . , d. (3)

Hence all maximizers are also solutions of (3). It is certainly possible (if u1, . . . , ud are linearly
dependent) that solutions of (3) may not satisfy (2). However, if x satisfies (3) then x = z +∑d

i=1
ui〈x,ui 〉 for some vector z which is orthogonal to all the ui . Now the choice of z does not

affect 〈x,ui〉, so clearly if |x|2 = d then the maximizer should have no component perpendicular
to the ui . So the maximizers x ∈ R

d are to be found amongst the solutions of (3) which lie in the
span of the ui .

If A = (〈ui, uj 〉) then diag(A) = I and A � 0; conversely, every A � 0 with diag(A) = I

arises in this fashion. Define y ∈ R
d by

y := [〈x,u1〉−1, . . . , 〈x,ud〉−1];
then (2) and (3) may be written as x = ∑d

j=1 yjuj and Ay = y−1 where y−1 is to be taken

componentwise. Also note that
∏d

j=1 y−2
j = ∏d

j=1〈x,uj 〉2.

The following proposition will be useful in the proof of our results and is of interest on its
own. For any ±1 vector ε = [ε1, . . . , εd ] in R

d , the set

Q := {
y ∈ R

d
∣∣ sign(yi) = εi or 0 for all i = 1, . . . , d

}
will be called a quadrant of Rd . For any d × d matrix A � 0, we define, respectively, the hollow
and the solid ellipsoids

A := {
y ∈ R

d
∣∣ yTAy = d

}
, E := {

y ∈ R
d

∣∣ yTAy � d
}
.

Proposition 3. If A � 0 is a d × d matrix and Q a closed quadrant of R
d , then:

(a) the equation Ay = y−1, y ∈ R
d , has at most one solution in Q;

(b) E ∩ Q is bounded iff Q ∩ kerA = {0};
(c) Ay = y−1 has a solution in Q iff E ∩ Q is bounded;
(d) Ay = y−1 has a solution in Q iff supy∈E ∩Q

∏d
i=1 y2

i is finite. Further, the maximizer is

unique and is the solution of Ay = y−1.

In view of this proposition and our work just before that, Conjecture 1 is equivalent to the
following conjecture.

Conjecture 4. For every d × d matrix A � 0 with diag(A) = I ,

Y (A) := min
y∈Rd ,Ay=y−1

d∏
i=1

y2
i � 1 (4)

and equality occurs iff A = I .
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It is clear that Y (I ) = 1 and the main difficulty is the proof of Y (A) � 1. For future
reference we explicitly state the connection between the two conjectures. Given unit vectors
u1, . . . , ud in R

d , let A = (〈ui, uj 〉); then x is a maximizer in the definition of X (u1, . . . , ud) iff
x = ∑d

j=1 yjuj where y ∈ R
d is a solution of Ay = y−1 with the smallest

∏d
i=1 y2

i amongst all

the solutions. Further 〈x,uj 〉 = y−1
j and X (u1, . . . , ud) = Y (A)−1.

Ball’s proof of the complex plank problem and in particular of Conjecture 1 for the complex
case, was based on showing that Az = z−1 has a solution z with |zi | � 1 for all i = 1, . . . , d .
However, in the complex case, Az = z−1 has an infinite number of solutions whereas in the real
case Ay = y−1 has at most 2d solutions and, for some A, has no solutions with |yi | � 1 for all
i = 1, . . . , d . The equation Ay = y−1, in the real case, also shows up in an optimization problem
studied by the authors in [9]; [10] has other interesting properties of the solutions of Ay = y−1.

We state theorems equivalent to Theorems 1 and 2; these are the theorems we will prove.

Theorem 4. If there is a matrix A > 0, diag(A) = I , such that Y (A) > 1 then there is a singular
matrix As � 0 of the same size, diag(As) = I , so that Y (As) > Y (A).

Theorem 5. Suppose A = (aij ) � 0 is a d × d matrix with diag(A) = I and ε some ±1 vector
in R

d such that εiεj aij � 0 for all i, j = 1, . . . , d . Then Y (A) � 1 with equality occurring iff
A = I ; in fact Ay = y−1 has a solution with |yi | � 1 for all i = 1, . . . , d .

One consequence of Theorem 5 is that Y (A) � 1 for all tri-diagonal matrices A � 0 with
diag(A) = I .

In Section 2 we prove Proposition 3 and the continuity of X and Y and in Sections 3–5
we prove Theorems 4, 5 and 3. Given a singular A � 0, with the use of Theorem 4 to prove
Conjecture 4 in mind, in Section 6.1 we suggest a procedure to possibly construct a B � 0,
diag(B) = I with Y (B) > Y (A); in Section 6.2 we study the equality part of Conjecture 4.

2. Solutions of Ay = y−1 and continuity of X and Y

Proposition 5. X and Y are continuous functions on their domains.

Proof. The domain of X consists of d tuples of unit vectors in R
d and the domain of Y consists

of d × d matrices A � 0 with diag(A) = I .
To every A � 0, diag(A) = I we can associate a unique positive semidefinite matrix U = √

A,
and if u1, . . . , ud are the columns of U then X (u1, . . . , ud) = Y (A)−1. Since

√
A is a continuous

function of A, the continuity of Y will follow from the continuity of X .
The continuity of X follows from the following observation. Suppose X and U are compact

metric spaces and f : X × U → R is a continuous function. Define F : U → R with F(u) =
supx∈X f (x,u); then F is continuous as shown next.

Suppose uk is a sequence in U converging to u in U . From the compactness of X, there are xk

and x in X so that F(uk) = f (xk,uk) and F(u) = f (x,u). Hence f (x,uk) � f (xk,uk); using
this and the definitions we have

F(u) = f (x,u) = lim f (x,uk) = lim inff (x,uk) � lim inff (xk,uk) = lim infF(uk).

k→∞ k→∞ k→∞ k→∞
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Next, suppose ukn is a subsequence such that lim supk→∞ F(uk) = limn→∞ F(ukn). Further, let
xkn ∈ X so that F(ukn) = f (xkn, ukn). From the compactness of X, there is a subsequence xknl

which is convergent to some point x∗. Then

lim sup
k→∞

F(uk) = lim
l→∞F(uknl

) = lim
l→∞f (xknl

, uknl
) = f

(
x∗, u

)
� F(u). �

Proposition 6. Suppose B(t) is a continuously differentiable matrix for all t in an open interval
J around 0, B(t) � 0 and diag(B(t)) = I . If B(0)y = y−1 has a solution in a quadrant Q then
B(t)y = y−1 has a (unique) solution in Q for all t in some interval around 0; further y(t) will
be continuously differentiable on this interval.

Proof. Let B(t) = (bij (t)) and define the map F : Q × J → Rd by

F(z, t) = (
F1(z, t), . . . ,Fd(z, t)

)
,

where Fi(z, t) = zi

∑d
k=1 bik(t)zk . Then F is a continuously differentiable function of z and t

and a solution of B(t)z = z−1 in Q is exactly the solution of F(z, t) = e. Now F(y,0) = e and

∂Fi

∂zj

(y,0) = bij (0)yi + δij

d∑
k=1

bik(0)yk = bij (0)yi + δij y
−1
i ,

hence

Fz(y,0) = (bij yi) + D
(
y−1) = D(y)

(
B + D

(
y−2)),

where D(v) is the diagonal matrix whose diagonal entries are those of the vector v. Now D(y) is
invertible, B � 0 and D(y−2) > 0, hence Fz(y,0) is invertible, so an application of the implicit
function theorem completes the proof. �
Proof of Proposition 3. (a) Fix a quadrant Q of Rd and suppose p and q are two solutions
of Ay = y−1 in Q, so Ap = p−1, Aq = q−1, and pi/qi > 0 for i = 1, . . . , d . Hence using the
AM–GM inequality, we have

(p − q)TA(p − q) = pTAp + qTAq − pTAq − qTAp

= pTp−1 + qTq−1 − pTq−1 − qTp−1

= d + d −
d∑

i=1

(
piq

−1
i + qip

−1
i

)
� 2d − 2

d∑
i=1

√
piq

−1
i qip

−1
i = 0.

Further, since we used the AM–GM inequality, the inequality is a strict inequality unless pi/qi =
qi/pi for all i = 1, . . . , d ; that is unless p = q because pi and qi have the same sign. But A � 0
so we cannot have a strict inequality, hence p = q .

(b) Suppose v is a non-zero vector in kerA ∩ Q. Then σv ∈ Q for all σ > 0 and also
(σv)TA(σv) = 0 and hence E ∩ Q is unbounded. Conversely, suppose E ∩ Q is unbounded.
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Then we have a sequence yn in Q with yT
n Ayn � d and limn→∞ |yn| = ∞. The bounded se-

quence of unit vectors un = yn/|yn| in Q has a convergent subsequence in Q; without loss of
generality we assume that un is convergent to a unit vector u in Q. Then

uTAu = lim
n→∞uT

nAun = lim
n→∞

1

|yn|2 yT
n Ayn � lim

n→∞
d

|yn|2 = 0.

Since A � 0 so Au = 0 and hence Q contains an element of the kernel of A.
(c) and (d) Suppose Ay = y−1 has a solution y in Q. If Q ∩ E is unbounded then there is a

non-zero vector v in kerA ∩ Q. Hence vi/yi � 0 for all i = 1, . . . , d with at least one of these
quantities strictly positive. Then using Av = 0 and Ay = y−1 we have 0 = yTAv = vTAy =
vTy−1 = ∑d

i=1 viy
−1
i > 0, which is impossible. Hence Q ∩ E is bounded.

Conversely, suppose supy∈Q∩E
∏d

i=1 y2
i is finite. If Q ∩ kerA �= (0) then there is a non-zero

v ∈ Q so that Av = 0. Pick any z ∈ Q ∩ E all of whose components are non-zero and let w =
z + σv for some σ > 0. Then wTAw = zTAz � d while

∏d
i=1 w2

i can be made as large as we
wish by increasing σ . Hence we must have Q ∩ kerA = (0) so E ∩ Q must be bounded. Then
from compactness, the supremum is attained. Clearly the maximum is positive and is attained on
the boundary of Q∩ E but not on the boundary of Q because

∏d
i=1 y2

i = 0 on the boundary of Q.
Hence the maximum occurs on the relative interior of Q ∩ A. From Lagrange multipliers, the
maximizing y ∈ Q ∩ A must satisfy Ay = λy−1; but yTAy = d so λ = 1 and hence the optimal
y is the unique solution of Ay = y−1 in Q. �
3. Proof of Theorem 4

Suppose Y (A) > 1 for some A > 0 with diag(A) = I ; clearly A �= I . Then Ay = y−1 has
exactly one solution in each quadrant Q of R

d .
For any real number t define B(t) = A + t (A − I ); note that diag(B(t)) = I and at least for t

near 0 we have B(t) > 0. Let τ > 0 be the largest number so that B(t) > 0 on [0, τ ). For future
use we also note that B(t) = A + t (A − I ) so B ′(t) = A − I and A − I = (B(t) − I )/(1 + t);
here ′ represents the t derivative.

Fix any quadrant Q, and for t in [0, τ ), let y = y(t) be the continuously differentiable solution
of B(t)y = y−1 in Q. Define f : [0, τ ) → R by f (t) := ∏d

i=1 y2
i (t). Then

f ′(t)
f (t)

= 2
d∑

i=1

y′
i (t)

yi(t)
= 2y′(t)Ty(t)−1 = 2y′(t)TB(t)y(t).

Now B(t)y(t) = y(t)−1 implies y(t)TB(t)y(t) = d . Differentiating this with respect to t we
obtain

0 = 2y′(t)TB(t)y(t) + y(t)TB ′(t)y(t)

which implies that

2y′(t)TB(t)y(t) = −y(t)T(A − I )y(t).

Hence, using the AM–GM inequality
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f ′

f
= −yT(A − I )y = − 1

1 + t
yT(B − I )y = 1

1 + t

(|y|2 − yTBy
)

= 1

1 + t

(|y|2 − d
)
� d

1 + t

(
f 1/d − 1

)
. (5)

Since Y (A) > 1 so f (0) > 1; then using (5) one may show that f (t) is a strictly increasing
function on [0, τ ). This is true in every quadrant so Y (B(t)) is a strictly increasing function on
[0, τ ). Hence, using the continuity of Y , we have Y (B(τ)) > Y (A). Note that B(τ) is singular
by our definition of τ ; of course B(τ) � 0 and diag(B(τ)) = I .

4. Proof of Theorem 5

If y is a solution of Ay = y−1 then z = [ε1y1, . . . , εdyd ] is a solution of Bz = z−1 where
B = (εiεj aij ). Hence there is no loss of generality in assuming that ε = [1, . . . ,1]. So we are
given that aij � 0 for all i, j and we have to show that Ay = y−1 has a solution with |yi | � 1 for
all i = 1, . . . , d .

Let Q be the quadrant in which all components are non-negative. Since all entries of A are
non-negative and diag(A) = I , the kernel of A intersects Q only at 0. Hence, from Proposition 3,
there is a solution of Ay = y−1 in Q, that is with yi > 0 for all i = 1, . . . , d—we continue to call
this solution y. Then, since aii = 1 and aij � 0, we have

y2
i �

d∑
j=1

aij yiyj = 1, i = 1, . . . , d,

so 0 � yi � 1. Further, if Y (A) = 1 then yi = 1 for all i so
∑d

j=1 aij = 1 for all i, hence d =∑d
i,j=1 aij . But aij � 0 and diag(A) = I so all off-diagonal entries of A must be zero.

5. Proof of Theorem 3

We will use the notation ak ∼ bk to mean that limk→∞ ak/bk = 1. Define the function P(x) on
R

n by P(x) := ∏d
i=1〈x,ui〉. Then, as conjectured by Macdonald and proved by a combination

of efforts of several authors (see [5, Eq. (1.20)]), for every positive integer γ , one has

1

(2π)n/2

∫
Rn

e−|x|2/2
∣∣P(x)

∣∣2γ
dx = 2−dγ

n∏
i=1

�(1 + diγ )

�(1 + γ )
. (6)

Now, using polar coordinates,

∫
Rn

e−|x|2/2
∣∣P(x)

∣∣2γ
dx =

∫
θ∈Sn−1

∣∣P(θ)
∣∣2γ

dθ

∞∫
0

e−t2/2t2dγ+n−1 dt

= 2dγ−1+n/2�(dγ + n/2)

∫
n−1

∣∣P(θ)
∣∣2γ

dθ.
θ∈S
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Hence (6) implies

∫
θ∈Sn−1

∣∣P(θ)
∣∣2γ

dθ = (π)n/22−2dγ+1

�(dγ + n/2)

n∏
i=1

�(1 + diγ )

�(1 + γ )
,

so

sup
θ∈Sn−1

∣∣P(θ)
∣∣2 = lim

γ→∞

( ∫
θ∈Sn−1

∣∣P(θ)
∣∣2γ

dθ

)1/γ

= 1

22d
lim

γ→∞

(
1

(dγ − 1 + n/2)!
n∏

i=1

(diγ )!
γ !

)1/γ

. (7)

From Stirling’s formula, for large m one has m! ∼ √
2π mm+1/2 e−m. Hence, for large γ ,

(
(diγ )!

γ !
)1/γ

∼ (diγ )di+1/(2γ )

γ 1+1/(2γ )

e

edi
∼ e1−di d

di

i γ di−1,

(
1

(dγ − 1 + n/2)!
)1/γ

∼ ed+(n−2)/(2γ )

(dγ + (n − 2)/2)(d+(n−1)/(2γ ))
∼ ed

(dγ + (n − 2)/2)d
∼ ed

ddγ d

because limγ→∞(dγ + a)b/γ = 1 by L’Hopital’s rule. Hence from (7) and that
∑n

i=1 di = d + n

(see [8, Section 3.9]) we have

sup
θ∈Sn−1

∣∣P(θ)
∣∣2 = lim

γ→∞
2−2ded

ddγ d

n∏
i=1

e1−di d
di

i γ di−1 = 2−2dd−d

n∏
i=1

d
di

i .

Noting that d + n = ∑n
i=1 di , we have 2−2d

∏n
i=1 d

di

i = ∏n
i=1(4(di/4)di ) which exceeds 1 be-

cause 4(x/4)x � 1 if x = 1 or x � 2; so X (u1, . . . , ud) � 1 for root systems.

6. Remarks

6.1. Variation for linearly dependent u1, . . . , ud

With the use of Theorem 4 towards proving Conjecture 1 in mind, given linearly dependent
unit vectors u1, . . . , ud in R

d , in certain situations, we construct unit vectors v1, . . . , vd so that
X (v1, . . . , vd) < X (u1, . . . , ud). Equivalently, if A = (〈ui, uj 〉) (which is singular), in certain
situations, we construct a B � 0, diag(B) = I so that Y (B) > Y (A). If we were able to do this
for all linearly dependent u1, . . . , ud , Conjectures 1 and 4 would follow from Theorem 4.

Choose v to be a unit vector orthogonal to u1, . . . , ud , choose smooth functions θi(t) with
θi(0) = 0, and define unit vectors

vi(t) := cos θi(t)ui + sin θi(t)v, i = 1, . . . , d.
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Let A := (〈ui, uj 〉), B(t) := (〈vi(t), vj (t)〉); note that B(0) = A, B(t) � 0 and diag(B(t)) = I .
Note that B = D(p)AD(p) + qqT where D(p) denotes the diagonal matrix whose diagonal is
the vector p and

p(t) := [
cos θ1(t), . . . , cos θd(t)

]
, q(t) := [

sin θ1(t), . . . , sin θd(t)
]
. (8)

Differentiating (8) we have

p′ = −q ◦ θ ′, q ′ = p ◦ θ ′, p′′ = −q ′ ◦ θ ′ − q ◦ θ ′′, q ′′ = p′ ◦ θ ′ + p ◦ θ ′′.

Since p(0) = e and q(0) = 0, we obtain

p′(0) = 0, q ′(0) = θ ′(0), p′′(0) = −θ ′(0)2, q ′′(0) = θ ′′(0). (9)

Differentiating the relation B = D(p)AD(p) + qqT we obtain

B ′ = D(p′)AD(p) + D(p)AD(p′) + q ′qT + qq ′T,

B ′′ = D(p′′)AD(p) + D(p)AD(p′′) + 2D(p′)AD(p′) + q ′′qT + qq ′′T + 2q ′q ′T.

Hence B ′(0) = 0 and B ′′(0) = 2θ ′(0)θ ′(0)T − D(θ ′(0)2)A − AD(θ ′(0)2).

If Q is a quadrant with no solutions of Ay = y−1 (but B(t)y = y−1 may have a solution in
Q), then from (d) in Proposition 3 we can find a z ∈ Q with

∏d
i=1 z2

i > Y (A) + 1 and zTAz < d .

Hence, by continuity, zTB(t)z � d for t near zero while
∏d

i=1 z2
i > Y (A) + 1.

If Q is a quadrant containing a solution of Ay = y−1 so that
∏d

i=1 y2
i > Y (A), then again

continuity implies that
∏d

i=1 yi(t)
2 > Y (A) for the solution y(t) in Q of B(t)y = y−1, for t

near 0.
Finally, suppose Q is a quadrant containing a solution of Ay = y−1 with

∏d
i=1 y2

i = Y (A)—
we call Q an optimal quadrant and y an optimal solution for A. From Proposition 6, for t near 0,
B(t)y = y−1 has a smoothly varying solution y(t) in Q. Define f (t) = ∏d

i=1 yi(t)
2; then as in

the proof of Theorem 4,

f ′(t)
f (t)

= −yT(t)B ′(t)y(t). (10)

But B ′(0) = 0 so f ′(0) = 0. From (10) and that f ′(0) = 0, B ′(0) = 0 we have

f ′′(0)

f (0)
= −yTB ′′(0)y = yT(

D
(
θ ′2)A + AD

(
θ ′2) − 2θ ′θ ′T)

y

= yTD
(
θ ′2)Ay + yTAD

(
θ ′2)y − 2〈θ ′, y〉2 = 2yTD

(
θ ′2)y−1 − 2〈θ ′, y〉2

= 2
(|θ ′|2 − 〈θ ′, y〉2) = 2

(
1 − 〈θ ′, y〉2), (11)

where we have chosen that |θ ′(0)| = 1.
If we can find a unit vector θ ′(0) so that |〈θ ′(0), y〉| < 1 for all optimal y for A then f ′′(0) > 0;

hence f (t) > f (0) for all t near zero, in all optimal quadrants for A. Hence for t near 0 we have
Y (B(t)) > Y (A).



Y.J. Leung et al. / Journal of Functional Analysis 255 (2008) 2861–2871 2871
If the span of the set of optimal y is of dimension d − 1 or less then choosing θ ′(0) to be
orthogonal to this span will work. For example, if two or more of the ui are the same, say
u1 = u2, then y1 = y2 for all solutions of Ay = y−1 and hence θ ′(0) = [1,−1,0, . . . ,0]/√2 will
work.

Since the ellipsoid yTAy = d is unbounded in the quadrants containing the kernel of A, one
conjectures that the optimal y would lean away from kerA; hence one may consider taking θ ′(0)

to be an element of the kernel of A.

6.2. Equality in Conjecture 4

We show here that if Y (A) � 1 for all A � 0 with diag(A) = I then A > 0 and Y (A) = 1
implies A = I—we are not able to extend this to singular A.

Suppose A > 0, diag(A) = I and Y (A) = 1, but A �= I . We will use the construction and
the calculations in the proof of Theorem 4. Suppose Q is an optimal quadrant for A and y(t)

the solution of B(t)z = z−1 in Q, for t ∈ [0, τ ). Now f (0) = 1; if y(0) is not a ±1 vector
then from (5) we have f ′(0) > 0 because we used the AM–GM inequality in (5). So if y(0)

is not a ±1 vector then f (t) is strictly increasing. Since Y (B(t)) � 1, we conclude that there
must be a ±1 vector ε so that Aε = ε−1 = ε and hence B(t)ε = ε. This argument also shows
that Y (B(τ)) = 1 and the optimal solutions of B(τ)y = y−1 must be ±1 vectors. Since B(τ) is
singular, there is a unit vector z so that B(τ)z = 0; then for any ±1 vector ε with B(τ)ε = ε, one
has zTε = zTAε = εTAz = 0. Hence z is orthogonal to the span of the optimal vectors of B(τ)

and so from Section 6.1 we must have Y (B(τ)) < 1. This is a contradiction, hence A = I .
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