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Abstract. Consider a family of probability measures, indexed by ∂D, on a
bounded open region D ⊂ R

d with a smooth boundary. For any starting point
inside D, we run a standard d-dimensional Brownian motion in R

d until it first
exits D, at which time it jumps to a point inside the domain D according to
the jump measure at the exit point and starts a new Brownian motion. The

same evolution is repeated independently each time the process reaches the
boundary. We study the exponential rate at which the transition distribution
of the process converges to its invariant measure, in terms of the spectral
gap of the generator. In particular, we prove two conjectures of I. Ben-Ari
and R. Pinsky for an interval (see J. Funct. Anal. 251 (2007), 122–140,
and preprint (2007)) by studying when a combination of the sine and cosine
transforms of probability measures on an interval has only real zeros.

1. Introduction

Let D be a bounded, open, connected subset of R
d with a C2-smooth boundary

and let {νy : y ∈ ∂D} be a family of probability measures on D. For any starting
point x ∈ D, we run a standard d-dimensional Brownian motion B(t) ∈ R

d until it
first exits D at time τ , at which time it jumps to a point in the domain D according
to the measure νB(τ) at the exit point and starts the Brownian motion afresh. This
evolution is repeated independently each time the process reaches the boundary, and
the resulting diffusion process will be called Brownian motion with jump boundary
(BMJ). BMJ models have been used for a variant of the Fleming-Viot branching
process in [4], Brownian flow on a finite interval with jump boundary conditions
in [10], and the behavior of the double knock-out barrier options in the study of
financial derivatives in [5], [6], [7].

If, for a fixed p ∈ D, νy = δp for all y ∈ ∂D, i.e. the jumps are deterministic and
concentrated at a single point p ∈ D, then the ergodicity of BMJ was studied in [5],
[8] using Laplace transform methods and the theory of analytic semigroups. In the
case where νy = ν for all y ∈ ∂D (ν need not be a point measure), the ergodicity of
BMJ (as an important special case of elliptic operators) was systematically studied
in [2] using a functional analytic approach. Recently, the most general case, where
νy depends continuously on its exit point y ∈ ∂D, was studied in [3]. The key
results in [2], [3] address the construction of the invariant probability measure and
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relate the rate of convergence of the transition distribution to the invariant measure
to the spectral gap of the generator of BMJ.

Consider the Markov process X(t) with νy depending continuously on its exit
point y ∈ ∂D. If p(t, x, ·) represents the transition probability measure for this
Markov process, then it was shown in [3] that p(t, x, ·) approaches a unique station-
ary invariant measure µ on D with the density

(1.1) µ(dy) =

∫
D

GD(x, y)dν(x)dy∫
D

∫
D

GD(x, y)dν(x)dy
=

GD(ν, y)dy∫
D

GD(ν, y)dy
,

where ν =
∫

∂D
νydm(y) and m is the unique invariant measure on ∂D such that

m(y) =
∫

∂D

∫
D

H(z, y)dνx(z)dm(x) =
∫

∂D

H(νx, y)dm(x).

Here H(x, y), for every (x, y) ∈ D × ∂D, is the density of the harmonic measure
associated with the first exit location, and the Dirichlet Green’s function GD(x, y)
is the solution of

1
2
∆xGD(x, y) = −δ(x − y), x ∈ D,(1.2)

GD(x, y) = 0, x ∈ ∂D.(1.3)

Equivalently, GD(x, y) =
∫ ∞
0

pD(t, x, y)dt is the 0-potential of the transition sub-
probability function pD(t, x, y) of the absorbed Brownian motion on D.

The article [3] also describes the rate of convergence of p(t, x, ·) to the stationary
measure. Consider the eigenvalues of the non-local eigenvalue problem

1
2
∆u = λu on D, u(y) =

∫
D

u(x) dνy(x), y ∈ ∂D.(1.4)

In [3] it was shown that the eigenvalues of (1.4) are countable and do not have an
accumulation point, the non-zero eigenvalues have a negative real part, and

lim
t→∞

1
t

sup
f∈L∞(D),‖f‖∞≤1

log ‖E xf(X(t)) −
∫

D

fdµ‖∞ = γ1,

where

(1.5) γ1 = sup{�λ : 0 �= λ is an eigenvalue of (1.4)}

is the spectral gap.
Throughout the article, the superscript D will correspond to the Dirichlet bound-

ary condition u = 0 on ∂D. For any probability measure ν on D and any function
g on D we will use the notation

g(ν) :=
∫

D

g(x) dν(x), E νg :=
∫

D

E xg dν(x).

Our first two results are about the BMJ on an interval D = (a, b) with jump
measures νa and νb on D. In an earlier version of this article, independent of [3], we
identified the invariant measure µ, in very explicit form, for the D = (a, b) case. We
give the instructive proof of this result. This explicit form may also be derived from
(1.1) once the invariant measure m on the boundary and the associated harmonic
density H(x, y) are identified.
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Proposition 1.1. Let X(t) be the BMJ process on (a, b) associated to the probabil-
ity measures νa, νb and let ma, mb be the means of νa, νb. Then X(t) has a unique
invariant measure µ given by

(1.6) µ(dy) =
(b − mb)GD(νa, y)dy + (ma − a)GD(νb, y)dy

(b − mb)
∫ b

a
GD(νa, y)dy + (ma − a)

∫ b

a
GD(νb, y)dy

,

where

GD(x, y) =
2

b − a
(b − max(x, y)) (min(x, y) − a), x, y ∈ (a, b),

is the solution of ( 1.2), ( 1.3) for D = (a, b).

Corresponding to (1.4) for D = (a, b), consider the eigenvalues of the non-local
eigenvalue problem:

1
2
u′′ = λu on (a, b),(1.7)

u(a) =
∫ b

a

u(x) dνa(x), u(b) =
∫ b

a

u(x) dνb(x).(1.8)

Define the spectral gap

γ1(νa, νb) = sup{�λ : 0 �= λ is an eigenvalue of (1.7), (1.8)}.
We have the following results.

Theorem 1.2. If νa, νb are probability measures on (a, b), then all the eigenvalues
of (1.7), (1.8) are real and non-positive. As a consequence

(1.9) sup
νa,νb

γ1(νa, νb) = λD
0 = − π2

2(b − a)2
,

and if νa = νb = ν, then

(1.10) γ1(ν, ν) = λD
1 = − 2π2

(b − a)2
.

Here λD
0 , λD

1 are the largest and the second largest Dirichlet eigenvalues for ∆/2
on (a, b).

In (1.9) the supremum is never attained, as shown in the proof of Theorem 1.2,
and in (1.10) the RHS is independent of ν, which is quite surprising and we do not
have a good probabilistic explanation for it. The equations (1.9) and (1.10) were
conjectured in [3] and [2] respectively, and Proposition 2 in [2] shows that (1.10)
is a consequence of the main result in Theorem 1.2. In [3], it was also conjectured
that

(1.11) inf
νa,νb

γ1(νa, νb) = λD
2 = − 9π2

2(b − a)2
,

where λD
2 is the third largest Dirichlet eigenvalue; in [3] it was shown that the value

on the right-hand side of (1.11) is attained at νa = δ(a+2b)/3 and νb = δ(2a+b)/3.
This conjecture is still open and is related to our convexity conjecture that for all
h ∈ [0, 1]

hγ1(νa, νb) + (1 − h)γ1(ν′
a, ν′

b) ≤ γ1(hνa + (1 − h)ν′
a, hνa + (1 − h)ν′

b).
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Our third result concerns BMJ on the unit ball in R
d with the assumption that

νy is independent of y ∈ ∂D. Let B denote the open unit ball in R
d and ν a

probability measure on B. Then (1.4) takes the form of the eigenvalue problem

1
2
∆u = λu in B, u|∂B =

∫
B

u dν.(1.12)

If the non-zero eigenvalue of (1.12) with the largest real part is real, then there is
a useful upperbound γ1(ν) < λD

0 as stated in Theorem 5 of [2]. This motivates the
study of the question of when the eigenvalues of (1.12) are real.

Theorem 1.3. Suppose d > 1 is odd and ν is an absolutely continuous (w.r.t.
Lebesgue measure) probability measure on the open unit ball B in R

d with a density
in L2(B). If r−dν({x ∈ R

d : |x| < r}) is an increasing function of r on (0, 1), then
the eigenvalues of (1.12) are real (and non-positive).

The odd d case reduces to the study of the zeros of the Fourier transform of
measures; we have no results for the even d case because we do not have tools to
study the zeros of the Fourier-Bessel transforms of measures.

Remark 1.4. For general ν, even in the D = B case, (1.12) may have complex
eigenvalues as seen when d = 3, ν = δp with |p| = 1/4 (see section 4), but we do
not have any examples for which the non-zero eigenvalue with the largest real part
is not real.

The remaining sections are organized as follows. In section 2 we prove Proposi-
tion 1.1, in section 3 we prove Theorem 1.2 and in section 4 we prove Theorem 1.3.

2. Proof of Proposition 1.1

We give the proof when a = 0 and b = 1; the (a, b) case is similar. We relabel
νa as ν0 and νb as ν1.

Green’s function GD(x, y) for (1.2), (1.3) should be considered as one-half the
potential at the point x due to a unit positive electrical charge placed at y inside
the grounded boundary ∂D. From the probabilistic point of view,

GD(x, y)dy = E x

∫ τ

0

I{B(t)∈dy}dt

=
∫ ∞

0

Px(B(t) ∈ dy, τ > t)dt =
∫ ∞

0

pD(t, x, y)dtdy

is the expected time that the standard Brownian motion path starting at x spends
in dy before hitting ∂D. Another way of writing this is that

(2.1)
∫

D

f(y)GD(x, y)dy = E x

∫ τ

0

f(B(t))dt, f ∈ L∞.

Consider the semigroup {Tt}t≥0 from L∞ to L∞ associated with BMJ X, i.e.

Ttf(x) = E xf(X(t)) =
∫ 1

0

p(t, x, y)f(y)dy, f ∈ L∞.
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We prove that µ is an invariant measure for {Tt}t≥0. Since X coincides with the
absorbed Brownian motion up to the stopping time τ , we have∫ 1

0

(Ttf)(y)GD(ν0, y)dy =
∫ 1

0

∫ 1

0

(Ttf)(y)GD(x, y)dydν0(x)

=
∫ 1

0

E x

∫ τ

0

(Ttf)(X(s))dsdν0(x) = E ν0

∫ τ

0

E X(s)f(X(t))ds

= E ν0

∫ τ

0

f(X(s + t))ds = E ν0

∫ t+τ

t

f(X(s))ds

= E ν0

∫ τ

0

f(X(s))ds + E ν0

∫ t+τ

τ

f(X(s))ds − E ν0

∫ t

0

f(X(s))ds.(2.2)

For the middle term in the last line, we have with the process starting at x,

E x

∫ t+τ

τ

f(X(s))ds = E x

(∫ t+τ

τ

f(X(s))ds
∣∣X(τ ) = 0

)
· Px(X(τ ) = 0)

+ E x

(∫ t+τ

τ

f(X(s))ds
∣∣X(τ ) = 1

)
· Px(X(τ ) = 1)

= E ν0

∫ t

0

f(X(s))ds · (1 − x) + E ν1

∫ t

0

f(X(s))ds · x,(2.3)

where Px(X(τ ) = 0) = Px(B(τ ) = 0) = 1 − x and Px(X(τ ) = 1) = x follows
from the well-known one-dimensional hitting probability associated with continuous
gambler’s ruin probability.

Substituting (2.3) into (2.2), we obtain∫ 1

0

(Ttf)(y)GD(ν0, y)dy =
∫ 1

0

f(y)GD(ν0, y)dy

+ m0

(
E ν1

∫ t

0

f(X(s))ds − E ν0

∫ t

0

f(X(s))ds

)
.

Similarly, we find∫ 1

0

(Ttf)(y) GD(ν1, y)dy =
∫ 1

0

f(y)GD(ν1, y)dy

+ (1 − m1)
(

E ν0

∫ t

0

f(X(s))ds − E ν1

∫ t

0

f(X(s))ds

)
.

Thus for the “mixed” Green’s function

(2.4) G(y) = (1 − m1)GD(ν0, y) + m0G
D(ν1, y),

we have
∫ 1

0
(Ttf)(y)G(y)dy =

∫ 1

0
f(y)G(y)dy, which implies µ(y) = G(y)/

∫ 1

0
G(y)dy

is the invariant measure in (1.6). �

3. Proof of Theorem 1.2

For a simpler presentation, we prove Theorem 1.2 when (a, b) = (0, 1) and we
relabel the jump measures as ν0 and ν1; the general case is similar. We replace λ
by −z2/2 for convenience, so λ will be real and non-positive if z is real, which is
what we intend to prove. The general solution of (1.7) is

(3.1) u(t) = A cos(zt) + B sin(zt),
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so the boundary conditions (1.8) force

A =
∫ 1

0

(A cos(zs) + B sin(zs)) dν0(s),(3.2)

A cos(z) + B sin(z) =
∫ 1

0

(A cos(zt) + B sin(zt)) dν1(t).(3.3)

This system in A, B will have a non-zero solution if and only if F (z) = 0, where

F (z) := sin z −
∫ 1

0

sin(zt) dν1(t) −
∫ 1

0

sin(z(1 − s)) dν0(s)

+
∫ 1

0

∫ 1

0

sin(z(t − s)) dν0(s) dν1(t).(3.4)

We show that the equation F (z) = 0 has only real solutions. Note that F (z) has
an infinite number of zeros because of the Hadamard Factorization Theorem (see
page 211 of [1]) and the fact that F (z) is odd and the entire function F (

√
z)/

√
z is

of order 1/2.
The starting point is an argument used by Pólya in [12] (also see [13]) to prove

that the finite sine and cosine transforms of increasing functions have only real zeros.
For any positive integer n, we approximate these integrals using a subdivision of
(0, 1) into n parts. Define

an = ν0((
n − 1

n
, 1)), aj = ν0((

j − 1
n

,
j

n
]), j = 1, · · · , n − 1,

b0 = ν1((0,
1
n

)), bk = ν1([
k

n
,
k + 1

n
)), k = 1, · · · , n − 1,

and

Fn(z) := sin(z)−
n−1∑
k=0

bk sin(
kz

n
)−

n∑
j=1

aj sin(
z(n − j)

n
) +

n−1∑
k=0

n∑
j=1

ajbk sin(
z(k − j)

n
).

Then the analytic function Fn(z) converges to the analytic function F (z) uniformly
on compact subsets. Hence, by Hurwitz’s theorem (see page 178 of [1]), F (z) will
have only real zeros if we can show that Fn(z) has only real zeros. Define

Gn(w) := wn −
n−1∑
k=0

bkwk −
n∑

j=1

ajw
n−j +

n−1∑
k=0

n∑
j=1

ajbkwk−j .

Then Fn(z) =
1
2i

(Gn(w)−Gn(w−1)) if we take w = eiz/n, and Fn(z) has only real

zeros iff all the zeros of Gn(w) − Gn(w−1) are on the unit circle. We show that
Gn(w) − Gn(w−1) has no zeros inside the unit circle, so it will not have any zeros
outside the unit circle too, and we will be done.

Now Gn(w) = w−nPn(w)Qn(w) where

Pn(w) := wn −
n−1∑
k=0

bkwk, Qn(w) := wn −
n∑

j=1

ajw
n−j .

We claim that the zeros of Pn(w) and Qn(w) are in the closed unit disk and, for
sufficiently large n, at least one zero, either of Pn(w) or of Qn(w), is in the open
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unit disk. If w0 is a zero of Pn(w) with |w0| ≥ 1, then wn
0 =

∑n−1
k=0 bkwk

0 , so

1 =

∣∣∣∣∣
n−1∑
k=0

bkwk−n
0

∣∣∣∣∣ ≤
n−1∑
k=0

bk|w0|k−n ≤
n−1∑
k=0

bk = 1.

So |w0| = 1; a similar argument applies to Qn(w). Now if all the zeros of Pn(w)
or Qn(w) were on the unit circle, then their products would have absolute value 1,
which would imply b0 = 1 or an = 1. If this were true for an infinite number of n,
then letting n approach infinity we would have ν0(∅) = 1 or ν1(∅) = 1, which is not
true.

Suppose Pn(w) =
∏n

j=1(w − pj) and Qn(w) =
∏n

j=1(w − qj). Note that the pj

and qj are either real or occur in complex conjugate pairs because the coefficients
of Pn(w) and Qn(w) are real. The zeros of Gn(w) − Gn(w−1) are the solutions of

1 =
Gn(w)

Gn(w−1)
=

∏n
j=1(w − pj)(w − qj)∏n

j=1(1 − pjw)(1 − qjw)
=

n∏
j=1

w − pj

1 − pjw

n∏
j=1

w − qj

1 − qjw
.(3.5)

For any α with |α| < 1, the Mobius transformation (w − α)/(1 − αw) maps the
open unit disk to the open unit disk; if |α| = 1, then all the points are mapped to
the unit circle. Since one of the pj and one of the qj are in the open unit disk, it is
clear that (3.5) cannot hold for any w in the open unit disk.

Next we show how (1.9) follows from the fact that the eigenvalues of (1.7), (1.8)
are real. From (3.4), λ = −z2/2 will be an eigenvalue of (1.7), (1.8) iff

(3.6) F (z) :=
∫ 1

0

∫ 1

0

κ(s, t; z) dν0(s) dν1(t) = 0,

where

κ(s, t; z) := (1 − cos(zs))(sin(z) − sin(zt)) + sin(zs)(cos(z) − cos(zt))

= sin(
t − s + 1

2
z) sin(

t − 1
2

z) sin(
s

2
z).(3.7)

Since κ(s, t, z) > 0 for all z ∈ (−π, 0) and for all (s, t) ∈ (0, 1) × (0, 1), (1.7), (1.8)
will have no eigenvalues in [−π2/2, 0). Further, if we take ν0 = δp and ν1 = δq for
p, q in (0, 1), then, as stated in Proposition 2 of [3],

γ1(ν0, ν1) = − 2π2

max(p2, (1 − q)2, (1 − p + q)2)
,

which approaches −π2/2 as (p, q) approach (0, 1). This proves (1.9). �

4. Proof of Theorem 1.3

The densely defined operator φ 	→ ∆φ is not a symmetric operator on L2(B)
for φ restricted to functions in C∞(B) satisfying the boundary condition in (1.12);
hence the theory for self-adjoint operators is not applicable in any obvious way to
prove that the eigenvalues are real.

Below S denotes the boundary of B. Let λ be an eigenvalue and u the corre-
sponding eigenfunction for (1.12). We assume that u ∈ Hs(B) for some s > 1/2
(so u has traces on S). Since u ∈ L2(B) and ν has an L2 density, it is clear that
u will be integrable w.r.t. ν so that the boundary condition in (1.12) makes sense.
Since u is constant on S because of the boundary condition in (1.12) and the RHS
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of (1.12) is in Hs(B), using Theorem 4.18 in [11] repeatedly, one may conclude that
u has continuous derivatives of all orders on B.

Theorem 2 in [2] characterizes the eigenvalues of (1.12), but for the special do-
main B and when µrev is the Lebesgue measure, we have more specific information.
As in [2], let {λD

n }∞n=0 be the Dirichlet eigenvalues of ∆/2 and {φD
n }∞n=0 the cor-

responding eigenfunctions with unit L2 norm; the λD
n are known to be real. From

equation (3.5) in the proof of Theorem 2 in [2], either λ is one of the Dirichlet
eigenvalues or (our u is the v in [2])

u = c + λc

∞∑
n=0

Fn

λD
n − λ

φD
n(4.1)

for some constant c, where Fn ≡
∫

B
φD

n (x) dx. The Dirchlet eigenfunctions φD
n (x) =

an(r)bn(θ), where r = |x| and θ = x/|x|, for some homogeneous harmonic polyno-
mial bn(x). From the properties of homogeneous harmonic polynomials (see [14])
either bn(x) = constant or

∫
|θ|=1

bn(θ) dθ = 0. Hence if φD
n is not a spherically sym-

metric function, then Fn =
∫

B
φD

n (x) dx = 0, implying that u, as given by (4.1), is
spherically symmetric. Hence either λ is one of the Dirichlet eigenvalues (and real)
or the eigenfunction u is spherically symmetric. We now examine the spherically
symmetric eigenfunctions of (1.12).

If λ = −z2/2 is an eigenvalue corresponding to a smooth spherically symmetric
eigenfunction a(r), then a(r) is a solution of the boundary value problem

arr +
d − 1

r
ar + z2a = 0, |r| ≤ 1,(4.2)

a(1) =
∫

B

a(r) dν =
∫ 1

0

a(r) dσ,(4.3)

where σ is a probability measure on the Borel subsets of the interval [0, 1) defined
as

σ(E) := ν ({rθ : r ∈ E, θ ∈ S})
for any Borel subset E of [0, 1). Using Fubini’s theorem, (4.3) may be rewritten as

(4.4) 0 = a(1) −
∫ 1

0

a(r) dσ =
∫ 1

0

a′(r) F (r) dr,

where F (r) := σ([0, r)).
Below c will represent some constant which may vary from equation to equation,

and we define Ds :=
1
s

d

ds
. The smooth solutions of (4.2) are multiples of a(r) :=

(rz)(2−d)/2J(d−2)/2(rz). If d = 2l + 1, then using (6) on page 46 of [16] we have

a(r) = (rz)1/2−lJl−1/2(rz) = (−1)l Dl
s(s

1/2J−1/2(s))|s=rz = c Dl
s(cos s)|s=rz.

Now
d

dr
(f(rz))=zf ′(rz)=z

(
d

ds
f(s)

)
s=rz

=rz2

(
1
s

d

ds
f(s)

)
s=rz

=rz2(Dsf(s))s=rz;

hence a′(r) = cz2r
(
Dl+1

s cos s
)
s=rz

. Since 1
2Ds corresponds to differentiation with

respect to s2, we have

Dl+1
s (s2j)|s=rz =

2l+1 j!
(j − l − 1)!

(rz)2(j−l−1) =
1

r2(l+1)
Dl+1

z (rz)2j ,
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so a′(r) = c
z(d+2)/2

rd
D

(d+1)/2
z cos(rz). Hence, from (4.4), z is a root of

(4.5)
∫ 1

0

(
D(d+1)/2

z cos(rz)
)

r−dF (r) dr = 0.

Define

P (z) :=
∫ 1

0

cos(rz) r−d F (r) dr.

Since r−dF (r) is increasing on [0, 1], from the result on page 13 of [15], P (z) = 0
will have only real roots. Now P (z) is an entire function, and on |z| ≤ R we have

|P (z)| ≤ 1
2

∫ 1

0

(|eirz| + |e−irz|) r−dF (r) dr ≤ eR

∫ 1

0

r−dF (r) dr.

So P (z) is an entire function of order at most 1; see page 16 of [9]. Since the power
series of P (z) consists of powers of z2, we see that Dk

zP (z) is an entire function for
every positive integer k. Further, by writing the expanded form of Dk

z P (z) as an
integral and using arguments used above, one may see that Dk

z P (z) is of order at
most 1. Hence, by Laguerre’s theorem (P (z) is real for real z) - see page 96 of [9] -
we conclude that (4.5) will have only real roots. �

We now give a proof of Remark 1.4. Let d = 3 and ν be a probability measure
concentrated at a point p units from the origin, for some p ∈ (0, 1). Then the
associated σ is a probability measure on [0, 1] concentrated at p, and its distribution
function is

F (r) =

{
0, r ≤ p,

1, p < r ≤ 1.

Then, from (4.5) we need to examine the roots of

0 =
∫ 1

0

D2
z cos(rz)

r3
F (r) dr =

∫ 1

p

sin(rz)
r2z3

− cos(rz)
rz2

dr = −
∫ 1

p

d

dr

(
sin(rz)

rz3

)
dr

=
sin pz − p sin z

pz3
.

If we take p = 1/4, w = z/4, and note that

4 sin w − sin(4w) = sin w (1 − cos w) (2 cos2 w + 2 cosw + 1),

one may see that the equation will have roots which are not real. Note that these
roots do not generate the non-zero eigenvalue with the largest real part. The non-
zero eigenvalue with the largest real part is actually a Dirichlet eigenvalue associated
with a non-radial eigenfunction and is real.
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