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SMALL BALL PROBABILITIES
FOR THE SLEPIAN GAUSSIAN FIELDS

FUCHANG GAO AND WENBO V. LI

Abstract. The d-dimensional Slepian Gaussian random field {S(t), t ∈ R
d
+}

is a mean zero Gaussian process with covariance function ES(s)S(t) =∏d
i=1 max(0, ai − |si − ti|) for ai > 0 and t = (t1, · · · , td) ∈ R

d
+. Small ball

probabilities for S(t) are obtained under the L2-norm on [0, 1]d, and under the
sup-norm on [0, 1]2 which implies Talagrand’s result for the Brownian sheet.
The method of proof for the sup-norm case is purely probabilistic and analytic,
and thus avoids ingenious combinatoric arguments of using decreasing mathe-
matical induction. In particular, Riesz product techniques are new ingredients
in our arguments.

1. Introduction

For a given continuous Gaussian random field X(t), t ∈ [0, 1]d, the small ball
probability studies the asymptotic behavior of log P (‖X‖ ≤ ε) as ε → 0+, where
‖·‖ is a norm on the space C([0, 1]d). In the literature, small deviation probabilities
of various types are studied and applied to many problems of interest under differ-
ent names such as small ball probability, lower tail behaviors, two-sided boundary
crossing probability, the first exit time, etc. The survey paper of Li and Shao [LS01]
for Gaussian processes, together with its extended references, covers much of the
recent progress in this area. In particular, various applications and connections
with other areas of probability and analysis are discussed.

Arguably, the most fundamental multi-parameter Gaussian random field is the
so-called Brownian sheet {W (t), t ∈ R

d
+} with mean zero and covariance

E W (s)W (t) =
d∏

i=1

min(si, ti),

where s = (s1, · · · , sd) ∈ R
d
+ and t = (t1, · · · , td) ∈ R

d
+. It is a tensor product

of the standard Brownian motions. The first systematic study of the small ball
probability for W (t) and its tied-down variants with applications to Kolmogorov-
Smirnov statistics and Chung’s LIL is presented in Bass [Ba88], together with the
sharp lower bound in (1.1) below, given also in Lifshits and Tsyrelson [LT86]. In a
striking paper in comparison with the L2-norm result in (1.3) for d = 2, Talagrand
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[Ta94] showed the sharp upper bound of the estimate that

(1.1) −C2ε
−2| log ε|3 ≤ log P

(
sup

0≤s,t≤1
|W (s, t)| ≤ ε

)
≤ −C1ε

−2| log ε|3

for ε > 0 small. Here and throughout this paper, we use C, C1 or C2 to denote
positive absolute constants which may change values from line to line. A somewhat
simplified proof of the upper bound in (1.1) can be found in Dunker [Du00]. Here we
will give a simple and general approach to avoid ingenious combinatoric arguments
used before. Our method is purely probabilistic and analytic by providing explicit
constructions via Riesz products. We shift the combinatorics difficulties in d = 2
into the structure of analytic considerations. This is why the arguments in our
proof are clear in ideas and can also be applied to Slepian Gaussian random field in
d = 2. Indeed, this is the main contribution of the paper, and it will be discussed
in details in Section 2. In particular, Riesz product techniques are introduced as
new ingredients in our arguments.

For d ≥ 3, the situation becomes much more difficult, as the combinatorial ar-
guments used in Talagrand [Ta94] for d = 2 fail and our analytic method (which
avoids combinatorics in d = 2) also encounters interesting combinatorial difficulties
which are somewhat simpler than before. We hope that the idea of shifting combi-
natorial difficulties into structures of analytic considerations can be carried out in
the case d ≥ 3. The best known bounds for d ≥ 3 are

(1.2) −C2ε
−2| log ε|2d−1 ≤ log P

(
sup

t∈[0,1]d
|W (t)| ≤ ε

)
≤ −C1ε

−2| log ε|2d−2.

The upper bound above follows from (1.3), and the lower bound was later proved
by Dunker, Kuhn, Lifshits, and Linde [D-99] (a slightly weaker lower bound is given
in Belinsky [Be98]). It should be pointed out that the proofs of the lower bound in
[D-99] and [Be98] are based on approximation theory and the connection between
small ball probability and entropy numbers discovered in Kuelbs and Li [KL93],
and hence are not probabilistic but analytic. Also, arguments to obtain small ball
probabilities in Belinsky and Linde [BL02] for fractional Brownian sheets are based
on fractional integration operators and hence are not probabilistic. It would be
interesting to find a pure probabilistic proof of the lower bound in (1.2). The only
known probabilistic proof for the lower bound with d ≥ 2 is presented in Bass
[Ba88], which gives 3d − 3 for the power of the log-term.

Before we finish the discussion on Brownian sheets, we need to mention the
results under the much simpler L2-norm given in Csáki [Cs82]. Namely,

(1.3) log P

( ∫
t∈[0,1]d

|W (t)|2dt ≤ ε2
)
∼ −cdε

−2| log ε|2d−2,

where cd = 2d−2/(
√

2πd−1(d − 1)!). Various generalizations of the above result are
given in Li [Li92], Karol, Nazarov and Nikitin [K-03], Fill and Torcaso [FT04], and
Gao and Li [GL04].

The main purpose of this paper is to introduce Riesz product techniques into the
study of small ball probability under sup norm. It can also give a more transparent
and much simpler proof when applied to 2-dimensional Brownian sheets, and in fact,
we believe it is the simplest and most elementary proof for the upper bound. Our
method is much more general and can also be applied to many related problems.
The key is to avoid hard combinatorial arguments. The method is introduced
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through the small ball estimates for the so-called d-dimensional Slepian Gaussian
random fields {S(t), t ∈ R

d
+} which is a mean zero Gaussian process with covariance

function

E S(t)S(s) =
d∏

i=1

max(0, ai − |si − ti|)

for ai > 0. Such fields are homogeneous and are tensor products of the few sta-
tionary one-parameter Gaussian processes for which exact distributions of certain
functionals, such as maximum, are known. To be more precise, it is the tensor
products of one-dimensional Slepian processes defined by

S(t) = W (t + a) − W (t), 0 ≤ t ≤ 1,

with a > 0 fixed, where W (t) is the standard Brownian motion. See Adler [Ad84]
for a detailed study of the upper tail behavior for S(t), t ∈ [0, 1]d. Our first result
is the following.

Theorem 1.1. We have for ε > 0 small

−C2ε
−2| log ε|3 ≤ log P( sup

0≤s,t≤1
|S(s, t)| ≤ ε) ≤ −C1ε

−2| log ε|3.

The proofs and relations with Brownian sheets will be discussed in detail in
Section 2.

Our next result concerns the L2-norm which should be compared with (1.3).
The proof is given in Section 3.

Theorem 1.2. Let S(t) be a Slepian field with ai ≥ 1. Then

log P

(∫
[0,1]d

|S(t)|2dt < ε2

)
∼ −kdε

−2| log ε|2d−2,

where kd = 2−dcd and cd is given in (1.3).

Finally, we have to point out that the estimate of small ball rates of Gauss-
ian fields is important not only in probability theory, but also in other areas of
mathematics. For example, through the relation between small ball probability
and metric entropy, the small ball rates of Brownian sheets was applied to solve a
long-standing open problem in approximation; see Kuelbs and Li [KL93].

The remainder of the paper is organized as follows. We prove Theorem 1.1 in
Section 2. The key analytical result is Theorem 2.1, which is proved by using Riesz
products. This new approach has great potential of success in many other related
problems; in particular for the d ≥ 3 case in (1.2) which is under investigation.
In Section 3, we prove Theorem 1.2 based on explicit Karhunen-Loéve expansion.
Proposition 3.1 also provides the exact Laplace transform which is of independent
interest.

2. Proof of Theorem 1.1

This is the main part of the paper on small ball estimates under sup norm for
d = 2. We first look at the lower bound in Theorem 1.1, which follows from the
lower bound for Brownian sheets. Indeed, we can write in distribution

S(s, t) = W (s + a1, t + a2) − W (s + a1, t) − W (s, t + a2) + W (s, t).



1342 FUCHANG GAO AND WENBO V. LI

Note that

sup
0≤s,t≤1

|W (s + a1, t + a2) − W (s + a1, t) − W (s, t + a2) + W (s, t)|

≤ 4 sup
0≤s,t≤1+a

|W (s, t)|,

where a = max(a1, a2), and thus

log P( sup
0≤s,t≤1

|S(s, t)| ≤ ε) ≥ log P(4 sup
0≤s,t≤1+a

|W (s, t)| ≤ ε)

≥ −C2ε
−2| log ε|3,

where the last line follows from (1.1). Furthermore, the above shows that the
upper bound for S(s, t) implies the upper bound for the Brownian sheet. Hence
the Slepian field results obtained in Theorem 1.1 apply to the Brownian sheet for
the much harder upper bound case.

We break the upper bound case into several steps in order to highlight the basic
ideas. First, note that for any 0 < δ < 1,

P

(
sup

0≤s,t≤1
|S(s, t)| ≤ ε

)
≤ P

(
sup

0≤s,t≤δ
|S(s, t)| ≤ ε

)
= P

(
sup

0≤s,t≤1
|S̃(s, t)| ≤ εδ−1

)
by the scaling properties of Slepian process, where

S̃(s, t) = W (s + δ−1a1, t + δ−1a2) − W (s + δ−1a1, t) − W (s, t + δ−1a2) + W (s, t).

Thus, it is enough to consider the case where min(a1, a2) ≥ 1 by taking δ ≤
min(a1, a2).

Second, we use Anderson’s inequality to concentrate on a suitable expansion for
S(s, t). Let Φn be an orthonormal basis of L2([0, 1 + a]2) with a = max(a1, a2).
Then by the definition of S(s, t), we can express in distribution

(2.1) S(s, t) =
∞∑

n=1

∫ s+a1

s

∫ t+a2

t

Φn(x, y)dydx · gn,

where gn are independent standard normal random variables. By Anderson’s in-
equality, we have

P

(
sup

0≤s,t≤1
|S(s, t)| ≤ ε

)
≤ P

(
sup

0≤s,t≤1
|X(s, t)| ≤ ε

)
,

where X(s, t) is any partial sum in the representation (2.1) for S(s, t). Of course,
an explicit choice of X(s, t) is defined below. We choose an orthonormal basis that
contains a special set of orthonormal functions φm,i,j , 0 ≤ m ≤ n, 1 ≤ i ≤ 2m,
1 ≤ j ≤ 2n−m, such that the partial sum

(2.2) Xn(s, t) :=
n∑

m=0

2m∑
i=1

2n−m∑
j=1

∫ s+a1

s

∫ t+a2

t

φm,i,j(x, y)dydx · gm,i,j

is relatively easy to handle, where gm,i,j are independent standard normal random
variables. We choose φm,i,j in such a way that∫ s+a1

s

∫ t+a2

t

φm,i,j(x, y)dydx = [ψm,i(s+a1)−ψm,i(s)]·[ψn−m,j(t+a2)−ψn−m,j(t)],
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for 0 ≤ s, t ≤ 1, where

ψm,i(t) =

⎧⎪⎪⎨⎪⎪⎩
0 t /∈ ((i − 1)2−m, i2−m),
2−m/2−2 t = (i − 3/4)2−m,

−2−m/2−2 t = (i − 1/4)2−m,
linear otherwise.

Of course this can be achieved by taking

φm,i,j(x, y) = 2m/2sgn(cos(2m+1πx)) · 2(n−m)/2sgn(cos(2n−m+1πy))

on the rectangle [(i−1)2−m, i2−m]×[(j−1)2−(n−m), j2−(n−m)], and φm,i,j(s, t) = 0
otherwise. In addition, we have by using the fact that min(a1, a2) ≥ 1,

(2.3) Xn(s, t) =
n∑

m=0

2m∑
i=1

2n−m∑
j=1

ψm,i(s)ψn−m,j(t) · gm,i,j , (s, t) ∈ [0, 1]2,

which follows from (2.2).
We choose such functions because of their orthogonality with the corresponding

hm,i functions that will be used in our Riesz products. More precisely, we have∫ 1

0
ψm,i(t)dt = 0, and if hm′,i′(t) is the scaled Haar function on [0, 1] given by

h−1,0(t) = 1,

hm′,i′(t) =

⎧⎨⎩
1 t ∈ [(i′ − 1)2−m′

, (i′ − 1/2)2−m′
),

−1 t ∈ [(i′ − 1/2)2−m′
, i′2−m′

),
0 otherwise,

for m′ ≥ 0 and 1 ≤ i′ ≤ 2m′
, then

(2.4)
∫ 1

0

ψm,i(s)hm′,i′(s)ds =

⎧⎪⎪⎨⎪⎪⎩
0 if m′ < m or m′ = m + 1,
2−3m/2−3 if (m, i) = (m′, i′),
0 if m′ = m and i′ �= i,
cm,m′,i,i′ if m′ > m + 1,

where cm,m′,i,i′ is a constant such that |cm,m′,i,i′ | ≤ 2−2(m′−m)−1 · 2−3m/2.
The third step is crucial and is the meat of this paper. We have to compare it

with the key combinatorial argument in Talagrand [Ta94], which is the following
result: If q = 9, then for each n ≥ 1, and each family of numbers (αm,i,j)(m,i,j)∈Tn

,
where

Tn =
{

(m, i, j) : 0 ≤ m ≤ n − 1, 0 ≤ i < 2qm, 0 ≤ j < 2q(n−m)
}

,

we have

(2.5) sup
0≤s,t≤1

∑
(m,i,j)∈Tn

αm,i,jψm,i(s)ψn−m,j(t) ≥ 2−3qn/2−7
∑

(m,i,j)∈Tn

|αm,i,j |.

This has also been used in several related problems; see Temlyakov [Te95] and
Martin [Ma04]. The role of the parameter q in Talagrand’s combinatorial inequality
(2.5) is to ensure that the contribution of certain error terms is sufficiently small.
The proof uses ingenious combinatoric arguments via decreasing mathematical in-
duction which is hard to apply in general settings.

We will show the following by using Riesz products which are simple and clear.
More importantly, our new approach via Riesz products can be used in other related
problems.
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Theorem 2.1. For each n ≥ 1, and each family of numbers (αm,i,j),
(2.6)

sup
0≤s,t≤1

n∑
m=0

2m∑
i=1

2n−m∑
j=1

αm,i,jψm,i(s)ψn−m,j(t) ≥ 2−3n/2−16
n∑

m=0

2m∑
i=1

2n−m∑
j=1

|αm,i,j |.

Proof. Define the Riesz product

R(s, t) =
n∏

m=0

⎛⎝1 + σ

2m∑
i=1

2n−m∑
j=1

εm,i,jhm,i(s)hn−m,j(t)

⎞⎠ ,

where εm,i,j ∈ {−1, 1}, and 0 < σ < 1 is a constant to be determined later. Note
that R(s, t) depends on n. Later in the proof, we will use R(s, t) for a suitably
chosen n.

Because |hm,i(s)hn−m,j(t)| ≤ 1, we have R ≥ 0. Thus,

‖R‖1 =
∫ 1

0

∫ 1

0

R(s, t)dsdt

=
∫ 1

0

∫ 1

0

∑ n∏
m=0

⎡⎣σ

2m∑
i=1

2n−m∑
j=1

εm,i,jhm,i(s)hn−m,j(t)

⎤⎦δm

dsdt,

where the outmost summation in the integrand is over all choices of δm ∈ {0, 1},
0 ≤ m ≤ n. Since the integral (with respect to s) of a product of any distinct hm,i(s)
functions vanishes, the only remaining term in the integral is the case δm = 0 for
all m, and its value is one. So, we have ‖R‖1 = 1. Note that ‖R‖1 = 1 for any
choices of εm,i,j . In particular, we will choose εm,i,j = sgn(αm,i,j).

For notational simplicity, we denote

H̃m =
2m∑
i=1

2n−m∑
j=1

εm,i,jhm,i(s)hn−m,j(t),

Yn(s, t) =
n∑

m=0

2m∑
i=1

2n−m∑
j=1

ψm,i(s)ψn−m,j(t) · αm,i,j .

Write

R(s, t) = 1 + σ

n∑
m=0

H̃m +
∑
∆

n∏
m=0

[
σH̃m

]δm

,

where

∆ =

{
(δm)n

m=0 : δm ∈ {0, 1},
n∑

m=0

δm ≥ 2

}
.
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Because ‖R‖1 = 1, we have

sup
0≤s,t≤1

Yn(s, t) ≥
∫ 1

0

∫ 1

0

Yn(s, t)R(s, t)dsdt

=
∫ 1

0

∫ 1

0

Yn(s, t)dsdt + σ

n∑
m=0

∫ 1

0

∫ 1

0

Yn(s, t)H̃mdsdt

+
∑
∆

∫ 1

0

∫ 1

0

Yn(s, t)
n∏

m=0

[
σH̃m

]δm

dsdt

=: I1 + I2 + I3.

It is clear that I1 = 0 since the integral of ψm,i over [0, 1] vanishes. To estimate
I2, note that ψm,i(s)ψn−m,j(t) is orthogonal to hm′,i′(s)hn−m′,j′(t) if (m, i, j) �=
(m′, i′, j′), and hence we have

I2 = σ

n∑
m=0

2m∑
i=1

2n−m∑
j=1

εm,i,j

∫ 1

0

∫ 1

0

ψm,i(s)ψn−m,j(t)hm,i(s)hn−m,j(t)dsdt · αm,i,j

= 2−3n/2−6σ

n∑
m=0

2m∑
i=1

2n−m∑
j=1

|αm,i,j |,

where in the last equality we also used (2.7) for the case (m, i, j) = (m′, i′, j′).
Now, we start to estimate I3. For each (δk) ∈ ∆, let p = min{k : δk = 1} and

q = max{k : δk = 1}. So, p < q. For each fixed (m, i, j), consider

Jm :=
∑
∆

∫ 1

0

∫ 1

0

ψm,i(s)ψn−m,j(t)
n∏

k=0

[
σH̃k

]δk

dsdt.

If q < m, then, for each t fixed,
n∏

k=0

[
σH̃k

]δk

=
∏

k<m

[
σH̃k

]δk

remains as a constant on the support of ψm,i(s); thus∫ 1

0

ψm,i(s)ψn−m,j(t)
n∏

k=0

[
σH̃k

]δk

ds = 0.

Similarly, if p > m, then∫ 1

0

ψm,i(s)ψn−m,j(t)
n∏

k=0

[
σH̃k

]δk

dt = 0.

For the remaining case, we have p ≤ m, q ≥ m, and p < q. Thus,

Jm =
∑
Am

∫ 1

0

∫ 1

0

ψm,i(s)ψn−m,j(t) · σH̃pσH̃q ·
q−1∏

l=p+1

[1 + σH̃l] dsdt,

where Am = {(p, q) : p < q; p ≤ m, q ≥ m}.
Note that H̃pH̃q is the sum of the separately supported functions

±hp,i′(s)hn−p,j′(t) · hq,u(s)hn−q,v(t),
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each of which either equals 0, or equals ±hq,u(s)hn−p,j′(t), supported on a 2−q-
by-2−(n−p) rectangle. Also note that the support of ψm,i(s)ψn−m,j(t) is a 2−m-by-
2−(n−m) rectangle. So, there are no more than 2q−p choices of hp,i′(s)hn−p,j′(t) ·
hq,u(s)hn−q,v(t) whose support overlaps that of ψm,i(s)ψn−m,j(t). Once it overlaps,
the support is a 2−q-by-2−(n−p) rectangle, on which

q−1∏
l=p+1

[1 + σH̃l]

is a positive constant no larger than (1 + σ)q−p−1.
By (2.4), we have

∣∣∣∣∫ 1

0

∫ 1

0

ψm,i(s)ψn−m,j(t) · hq,u(s)hn−p,j′(t) dsdt

∣∣∣∣
≤ 2−2(q−m)−12−3m/2 · 2−2(m−p)−12−3(n−m)/2

= 2−2(q−p)−22−3n/2.

Thus,

|Jm| ≤ σ2
∑
Am

2−2(q−p)−22−3n/2 · 2q−p · (1 + σ)q−p−1

= σ2
∑
Am

2−3n/2−1 ·
(

1 + σ

2

)q−p−1

≤ (1 + σ)σ2

(1 − σ)2
2−3n/2+1.

Therefore

|I3| ≤ (1 + σ)σ2

(1 − σ)2
2−3n/2+1

n∑
m=0

2m∑
i=1

2n−m∑
j=1

|αm,i,j |.

Choose σ = 2−9; we have |I3| ≤ I2/2. Therefore, we have

sup
0≤s,t≤1

Yn(s, t) ≥ 1
2
I2 = 2−3n/2−16

n∑
m=0

2m∑
i=1

2n−m∑
j=1

|αm,i,j |,

which finishes the proof of Theorem 2.1.
The final step to show Theorem 1.1 is now relatively easy. For small ε > 0,

choose the largest n such that ε23n/2+16 ≤ (n + 1)2n−1, which implies (n + 1)2n ≈
c(log(1/ε))3ε−2. Putting things together and using exponential Markov inequality,
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we have

P

(
sup

0≤s,t≤1
|S(s, t)| ≤ ε

)
≤ P

(
sup

0≤s,t≤1
|Xn(s, t)| ≤ ε

)

≤ P

⎛⎝2−3n/2−16
n∑

m=0

2m∑
i=1

2n−m∑
j=1

|gm,i,j | ≤ ε

⎞⎠
≤ P

⎛⎝ n∑
m=0

2m∑
i=1

2n−m∑
j=1

|gm,i,j | ≤ (n + 1)2n−1

⎞⎠
= P

⎛⎝exp{−λ
n∑

m=0

2m∑
i=1

2n−m∑
j=1

|gm,i,j |} ≥ exp{−λ(n + 1)2n−1}

⎞⎠
≤ exp{λ(n + 1)2n−1} · (E exp{−λ|g|})(n+1)2n

≤ e−λ(n+1)2n/6 ≈ e−C′ε−2(log 1/ε)3

for a suitable choice of the constant λ > 0, where in the last inequality we used

E exp(−λ|g|) < e−2λ/3

for λ > 0 sufficiently small. This can be seen by letting h(λ) = E exp (2λ/3 − λ|g|)
and checking the derivative at 0: h′(0) = 2/3 − (2/π)1/2 < 0.

3. Small ball estimates under the L2-norm

Arguably, the L2 norm and sup norm are the two most important norms under
which the small deviation of a Gaussian field is studied. Of course, the L2-norm
case is much simpler, in general due to the Karhunen-Loéve expansion and various
analytical methods which enable one to determine even the exact small deviation
rate P(‖X‖2 ≤ ε) as ε → 0 and sometimes a closed form of the Laplace transform
E exp{−λ‖X‖2

2} for all λ > 0. For the sup-norm, as we have seen from Section
2, the nice orthogonality of the eigenfunctions in the Karhunen-Loéve expansion is
less useful and the small deviation rate depends not only on the eigenvalues but also
heavily on the structure of eigenfunctions. Here in this section, we prove Theorem
1.2 which holds for all d ≥ 2 with the exact constants at the logarithmic level.
More precise estimates (next term in the asymptotics) can be obtained based on
our approach given below, but they are less interesting and require complicated
(but more or less routine) calculations. So we omit them.

Let us consider the one-dimensional Slepian process first, namely

S(t) = W (t + a) − W (t), 0 ≤ t ≤ 1,

with a ≥ 1 fixed, where W (t) is the standard Brownian motion. Let us first consider
the Karhunen-Loéve expansion in a one-dimensional setting.

Proposition 3.1. If a ≥ 1, then we have in distribution (as process)

S(t) = W (t + a) − W (t) =
∑
n≥1

√
λ

(a)
n ξnφn(t), λ(a)

n > 0,
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where ξn are independent standard normal random variables,

(2λ
(a)
2n )−1/2 = (n − 1)π + π/2,

and (2λ
(a)
2n−1)

−1/2 are the only solutions of the equation

(3.1) (2a − 1) tanx = x−1, a ≥ 1, on [(n − 1)π, (n − 1)π + π/2).

In particular, we have in distribution∫ 1

0

S2(t)dt =
∫ 1

0

(W (t + a) − W (t))2dt =
∑
n≥1

λ(a)
n ξ2

n.

Moreover, we have the Laplace transform

(3.2) L(λ) = E e−λ
∫ 1
0 S2(t)dt =

[
cosh

√
λ
(
cosh

√
λ + (2a − 1)

√
λ sinh

√
λ
)]−1/2

.

Proof. By direct calculation, we have the covariance function

K(s, t) = E S(s)S(t) = a − |s − t| for s, t ∈ [0, 1].

To find the eigenvalues associated with this covariance function, we need to solve
the integral equation

λf(t) =
∫ 1

0

K(s, t)f(s)ds, 0 ≤ t ≤ 1.

That is, for a ≥ 1,

(3.3) λf(t) =
∫ t

0

(a − t + s)f(s)ds +
∫ 1

t

(a + t − s)f(s)ds, 0 ≤ t ≤ 1.

We may differentiate (3.3) with respect to t to obtain

(3.4) λf ′(t) = −
∫ t

0

f(s)ds +
∫ 1

t

f(s)ds.

Differentiate again to obtain λf ′′(t) = −2f(t). Hence

(3.5) f(t) = c1 sin
√

2λ−1t + c2 cos
√

2λ−1t.

Setting t = 0 and t = 1 in (3.3) and (3.4), we obtain boundary conditions

(3.6) f ′(0) + f ′(1) = 0 and f(0) + f(1) = (2a − 1)f ′(0).

Substituting (3.5) into (3.6) and simplifying yields(
1 + cos

√
2λ−1

)
c1 − sin

√
2λ−1c2 = 0,(

sin
√

2λ−1 − (2a − 1)
√

2λ−1
)

c1 +
(
1 + cos

√
2λ−1

)
c2 = 0.

In order for there to be non-zero choices for c1 and c2, the determinant of the above
two equations has to be zero. Thus,

(3.7)
(
2 + 2 cos

√
2λ−1 − (2a − 1)

√
(2λ)−1 sin

√
2λ−1

)
= 0.

Simplifying, we obtain

cos
√

(2λ)−1
(
cos
√

(2λ)−1 − (2a − 1)
√

(2λ)−1 sin
√

(2λ)−1
)

= 0.
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By a general theorem in Gao et al. [G-03], we have the Laplace transform of ‖S‖2
2

in the closed form given in (3.2).

To prove Theorem 1.2, we note that by using the inequality tanx > x on ( 0, π/2 )
and (3.1), we have

(2a − 1)−1(2λ
(a)
2n−1)

1/2 = tan
(
(2λ

(a)
2n−1)

−1/2
)

= tan
(
(2λ

(a)
2n−1)

−1/2 − (n − 1)π
)

> (2λ
(a)
2n−1)

−1/2 − (n − 1)π ≥ 0,

which gives us (2λ2n−1)−1/2 = (n − 1)π + O(1/n). Together with the expression
for λ2n, we have

(3.8) λn ∼ 2π−2n−2.

The proof of Theorem 1.2 then follows from the method used in Example 3 in Li
[Li92]. Of course, arguments in Karol, Nazarov and Nikitin [K-03], Fill and Torcaso
[FT04], and Gao and Li [GL04] can also be used to finish the proof. We omit the
details.
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