
J. Math. Anal. Appl. 331 (2007) 1452–1466

www.elsevier.com/locate/jmaa

Optimal ellipsoids and decomposition of positive
definite matrices

Yuk J. Leung, Wenbo V. Li 1, Rakesh ∗

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

Received 13 February 2006

Available online 3 November 2006

Submitted by William F. Ames

Abstract

Given a positive definite matrix A, we characterize the unique diagonal matrix D, D � A, with the
smallest determinant. Equivalently, given an ellipsoid A, we characterize the unique ellipsoid of the largest
volume contained in A, with principal axes parallel to the coordinate axes.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this article, all matrices are real valued, AT represents the transpose of the ma-
trix A, and for matrices A,B , we say A > B if A − B is positive definite, and A � B if A − B

is positive semi-definite. For a positive integer n, vectors in Rn will be considered as n × 1 ma-
trices and for an x ∈ Rn we say x > 0 if each component of x is positive. If x = [x1, . . . , xn]T
and y = [y1, . . . , yn]T are vectors in Rn and α is a real number, we define e = [1,1, . . . ,1]T ,
Π(x) = ∏n

i=1 xi , x ◦ y = [x1y1, . . . , xnyn]T , xα = [xα
1 , . . . , xα

n ]T . For p ∈ Rn, D(p) represents
the n×n diagonal matrix whose entries are the corresponding entries of p. For a square matrix X,
diag(X) denotes the diagonal matrix with the same diagonal as X.
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The following problem studied in this article is motivated by the computer simulation of
multivariate Gaussian random variables by the acceptance/rejection method (see [3]) using a
product of one-dimensional Gaussian distributions.

Problem 1 (Diagonal problem). Suppose A is a positive definite matrix. Minimize det(D) over
all diagonal matrices D for which D � A.

[6] gives efficient numerical methods for finding the optimizer of Problem 1 using interior
methods; our goal in this article is a theoretical analysis of the problem.

Problem 1 has an interesting geometrical interpretation. We have D � A if and only if
xT Dx � xT Ax for all x, or, after normalization, that n � xT Ax for all x with xT Dx = n. So
D � A if and only if the ellipsoid xT Ax � n contains the ellipsoid xT Dx = n. The volume of
the ellipsoid xT Dx = n is nn/2ωn/

√
det(D) where ωn is the volume of the unit ball in Rn. So

Problem 1 is equivalent to the following problem:

Given an ellipsoid A in Rn, find the ellipsoid D, contained in A with principal axes parallel
to the coordinate axes, of the largest volume.

Definition. Sym(n) will denote the set of real valued, symmetric matrices of order n. Given
positive integers n1, . . . , nk and n with n1 + · · · + nk = n, we define B(n1, . . . , nk) to be the
subset of Sym(n) consisting of block matrices B of the form

B =

⎡
⎢⎢⎣

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bk

⎤
⎥⎥⎦

where each Bi is an ni × ni matrix. For a square matrix M of order n, block(M) will be the
unique block matrix B whose blocks Bi equal the corresponding entries of M .

One may generalize Problem 1 by conducting the search for the optimizer over block matrices
of a certain type instead of diagonal matrices.

Problem 2. Suppose A is a positive definite matrix of order n and n1, . . . , nk are positive integers
so that n = n1 + · · · + nk . Minimize detB over all block matrices B ∈ B(n1, . . . , nk) for which
B � A.

The following theorem gives a characterization of the optimizer of Problem 2.

Theorem 1 (Block characterization). The infimum is attained in Problem 2 and the minimizer
is unique. Further, the block matrix B ∈ B(n1, . . . , nk) is the minimizer iff the following two
conditions are satisfied:

(i) B � A and B − A is singular;
(ii) there is an n × n matrix X � 0 with (B − A)X = 0 and block(X) = B−1.

A corollary of Theorem 1 characterizes the optimizer of Problem 1.
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Corollary 2 (Diagonal characterization). In Problem 1, the infimum is attained by a unique
positive diagonal matrix. Further, a diagonal matrix D is the optimizer for Problem 1 if and only
if the following two conditions hold:

(i) D � A and D − A is singular;
(ii) there is an n × n matrix X � 0 with (D − A)X = 0 and diag(X) = D−1.

In Corollary 2, the characterization condition (ii) is the significant condition; condition (i)
just determines the correct scalar multiple of a diagonal matrix. Geometrically, condition (ii)
determines the lengths of the principal axes of the optimal ellipsoid up to a constant; condition (i)
determines the constant.

In [4] (see [1] for a more recent exposition), John considered the question: Given a convex
set K in Rn with a non-empty interior, determine the ellipsoid of largest volume contained in K ;
note that no restrictions are placed on the orientation of the principal axes of the ellipsoids (unlike
the situation considered in our problem). John obtained necessary and sufficient conditions for an
ellipsoid E to be the largest ellipsoid contained in the convex set K . If E is the largest ellipsoid
in the convex set K then trivially the smallest that K can be is E . John also considered the
following question: if E is the largest ellipsoid in K then how large can K be? His answer was,
if E is centered at the origin (WLOG) then K is contained in nE so E ⊆ K ⊆ nE , and if K is
symmetric then E ⊆ K ⊆ √

nE . Further this result is optimal in the sense that these limits are
attained for certain K—see [1].

If K itself is an ellipsoid then the answer to John’s largest ellipsoid question is trivial—the
largest ellipsoid is K itself. Problem 1 is the determination of the largest ellipsoid, with axes
parallel to the coordinate axes, contained in the ellipsoid K . As done for John’s problem, an
interpretation of Corollary 2 provides a characterization of this maximal ellipsoid. The second
question posed by John suggests we ask—if xT Dx = n is the largest volume ellipsoid with axes
parallel to coordinate axes which is contained in xT Ax � n, then how large is the ellipsoid
xT Ax � n. For such A, the ellipsoid xT Ax � n may have points with |x| as large as we wish (by
changing A), but there are still some restrictions on the size of the ellipsoid xT Ax � n in certain
directions as stated in the next theorem.

Theorem 3. If A is a positive definite matrix of order n and B ∈ B(n1, . . . , nk) is the optimizer of
Problem 2, then block(A) � 1

k
B . Further, this estimate is sharp (amongst estimates depending

only on n1, . . . , nk) at least when all the blocks are of the same size or if there are only two
blocks.

If B is the optimizer of Problem 2 then B � A and in particular B � block(A); the theorem
gives a lower bound on block(A) and hence places some restrictions on how large the ellipsoid
xT Ax = n can be. The proof of Theorem 3 will also show that if B is the optimizer for Problem 2
then the kernel of B − A has dimension at least max(n1, . . . , nk).

The characterization in Corollary 2 is still far from satisfactory because we cannot verify
easily whether a particular diagonal matrix D is the optimizer of Problem 1; the difficulty is
the verification of condition (ii) in the characterization. However, Corollary 2, does provide a
mechanism for constructing all matrices A > 0 for which a given diagonal matrix D > 0 is the
solution of Problem 1—see Section 7.

The characterization in Corollary 2 may be used effectively in some special cases, covering a
substantial number of matrices, for which the optimizer of Problem 1 is related to the solution of
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an interesting non-linear system of algebraic equations Ax = x−1 where x ∈ Rn. The following
lemma discusses the number of solutions of this equation. This equation and its solutions also
play an important role in certain other geometrical problems.

Lemma 4. Suppose A is a positive definite matrix of order n × n. The equation

Ax = x−1 (1)

has exactly 2n solutions in Rn; these solutions are on the ellipsoid xT Ax = n and there is exactly
one solution in each ‘quadrant’ of Rn.

D − A is singular when D is the optimizer of Problem 1. The next three theorems study the
special cases when the nullity of D − A is 1 or n − 1 or when the entries of A are “conveniently
signed.”

Theorem 5 (Kernel of D − A is one-dimensional). Suppose A > 0 is an n × n matrix.

(a) If D is the optimizer of Problem 1 and the kernel of D − A is one-dimensional, then D =
D(x−2) for any x ∈ Rn which is a solution of Ax = x−1 for which Π(x2) is the smallest
(amongst all solutions).

(b) Suppose x ∈ Rn is a solution of Ax = x−1 for which Π(x2) is the smallest. Further, suppose
D(x−2) � A, then D(x−2) is the optimizer of Problem 1.

Section 7 contains a discussion of situations in which the kernel of D −A is one-dimensional.
Theorem 5 asserts that, in certain situations, the optimal solution of Problem 1 is obtained by
examining the exactly 2n solutions of (1).

If D is the optimizer of Problem 1 and kernel of D − A is of dimension n − 1, then D − A is
a rank one matrix which is positive semi-definite, hence D − A = uuT for some vector u in Rn

implying A = D − uuT . The next theorem gives the solution of Problem 1 for such A.

Theorem 6 (Kernel of D − A is (n − 1)-dimensional). Suppose u and q are vectors in Rn with
every entry of u non-zero, and A = D(q) − uuT > 0. Then the optimizer for Problem 1 is either
D(q) or D(x−2) where x is any solution of Ax = x−1 with the smallest Π(x2) (amongst all
solutions). Further, D(q) is the optimizer iff

2 max
i=1,...,n

|ui |√
qi

�
n∑

i=1

|ui |√
qi

.

The next theorem gives the solution of Problem 1 for the large family of “conveniently signed
matrices.”

Definition. A matrix A � 0 is said to be conveniently signed if we can find a vector ε with ±1
entries so that all the entries of the matrix (aij εiεj ) are non-negative.

Theorem 7 (Conveniently signed A). For a matrix A > 0, A conveniently signed with respect to
the vector ε, the solution of Problem 1 is D(x−2) where x is the unique solution of Ax = x−1 in
the same quadrant as ε.
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Problem 1 and its generalization Problem 2 fall into a general category of problems of determi-
nant maximization subject to linear matrix inequality constraints. [6] discusses many applications
where such problems arise and also characterizes the optimizer of this family of problems. Our
characterization in Theorem 1 is derived from the result in [6]. [6] also discusses a numerical al-
gorithm to solve this family of problems. Solutions of the algebraic equation (1) in the complex
domain Cn (where the behavior is quite different) were used by Ball in [2] to obtain results on
the complex plank problem.

2. Proof of Theorem 1

Theorem 1 may be derived from an application of the Kuhn–Tucker conditions, or Fenchel
duality, or from other results in convex optimization. We have chosen to use Theorem 3.1 in [6]
because it seems the shortest route. Theorem 3.1 in [6] is a result specialized to our problem and
is a consequence of results from convex optimization.

We convert our problem to the setting in [6]—see (1.1) in [6]. Since B � A > 0 iff A−1 �
B−1 > 0 (see [5, p. 471]), and B is a block matrix iff B−1 is a block matrix (with the same
structure), we have B∗ is the optimizer of Problem 2 iff B−1∗ is the optimizer of the following
problem.

Problem 3. Given an n × n matrix A > 0,

minimize − log detB

subject to B ∈ B(n1, . . . , nk), A−1 � B > 0.

Since the map M �→ log detM is strictly concave on the set of positive definite matrices [5,
Theorem 7.6.7] and the constraint set B ∈ B(n1, . . . , nk), A−1 � B > 0 is convex, Problem 3
has at most one solution. We now prove the existence of an optimizer for Problem 3 (hence for
Problem 2) and the characterization condition in Theorem 1.

Identifying B(n1, . . . , nk) with Rm where m = (n1 + · · · + nk) + 1
2 ((n2

1 + · · · + n2
k) − (n1 +

· · ·+nk)), Problem 3 fits into the framework of Problem (1.1) in [6] with c = 0, F :Rm → Rn×n

and G :Rm → Rn×n with B = (bij ) in B(n1, . . . , nk) defined as follows:

G(B) = B =
∑
i,j

bijEij , F (B) = A−1 − B = A−1 −
∑
i,j

bijEij ,

where the sums range only over the “block” indices (i, j) for which i � j , and Eij is the n × n

matrix whose only non-zero entries are the (i, j) and (j, i) entries and these entries are 1. By
a “block” index (i, j) we mean those indices for which the (i, j)th entry of some matrix in
B(n1, . . . , nk) is non-zero.

From (3.1) in [6] and some computations, we may show that the problem dual to Problem 3 is

maximize log det block(W) − tr
(
A−1W

) + n

subject to W ∈ Sym(n), W � 0, block(W) > 0.

Since the dual problem is strictly feasible, from Theorem 3.1 in [6], the primal optimum is
achieved, that is Problem 3 has an optimizer. Further, since the primal problem is also strictly fea-
sible, from the first paragraph of [6, p. 514], a feasible B ∈ B(n1, . . . , nk) is the optimizer of Prob-
lem 3 iff there exists Z � 0 in Sym(n) so that (A−1 −B)Z = 0 and tr(EijB

−1)+ tr(−EijZ) = 0
for all i � j for which (i, j) is a “block” index, that is (A−1 − B)Z = 0 and block(Z) = B−1.
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So B∗ is an optimizer for Problem 2 iff B−1∗ is an optimizer for Problem 3, that is iff there is
a Z � 0 in Sym(n) so that (A−1 − B−1∗ )Z = 0 and block(Z) = B∗. Take X = B−1∗ ZB−1∗ , then X

is symmetric, X � 0, and block(X) = B−1∗ block(Z)B−1∗ = B−1∗ . Further, Z = B∗XB∗ so(
A−1 − B−1∗

)
Z = 0 ⇐⇒ A−1Z = B−1∗ Z ⇐⇒ A−1B∗XB∗ = B−1∗ B∗XB∗

⇐⇒ B∗X = AX ⇐⇒ (B∗ − A)X = 0.

3. Proof of Theorem 3

We state a simple lemma which we use in the proof of Theorem 3. The lemma gives a con-
dition which is equivalent to condition (ii) in Theorem 1 and Corollary 2 and is also useful in a
construction discussed in Section 7. The lemma follows from simple arguments so we will not
give its proof.

Lemma 8. Suppose M and X are symmetric matrices of order n with M � 0. Further, let V be
the kernel of M and let u1, . . . , um be a basis for V . Then the following are equivalent:

(a) X � 0 and MX = 0;
(b) there exist vk (some possibly zero) in V , k = 1, . . . ,m, so that X = ∑m

k=1 vkv
T
k ;

(c) there exists a positive semi-definite matrix (αij ) of order m so that X = ∑m
i,j=1 αijuiu

T
j .

3.1. Proof of the lower bound

Our proof is motivated by the proof of John’s theorem in [1]. If B is the optimal ma-
trix for Problem 2, for A, then I is the optimal matrix for Problem 2 with A replaced by
B−1/2AB−1/2, and the statement of Theorem 3 also respects such a modification because
block(B−1/2AB−1/2) = B−1/2block(A)B−1/2. Hence it is enough to prove Theorem 3 for those
A for which I is the optimizer of Problem 2. To keep the notation simple, we will prove Theo-
rem 3 only in the special case where k = 2, that is B consists of two blocks. The proof for general
k follows from obvious modifications to our proof.

So suppose A > 0 and is such that I is the optimal matrix for Problem 2. Then, from Theo-
rem 1, I � A and I −A is singular. So 1 is an eigenvalue of A and is the largest eigenvalue of A.
If the kernel of I − A is m-dimensional then A has the spectral decomposition

A =
m∑

i=1

uiu
T
i +

n∑
i=m+1

λiuiu
T
i (2)

where 0 < λi < 1, the vectors ui are orthonormal, and ui , i = 1, . . . ,m, are eigenvectors of A

corresponding to the eigenvalue 1, and for i = m + 1, . . . , n, ui is an eigenvector corresponding
to λi . Then from Theorem 1 and Lemma 8

In = block

(
m∑

i,j=1

αijuiu
T
j

)
(3)

for some m × m matrix α = (αij ) � 0.
Define the n × m matrix U = [u1, . . . , um] and let U = [ P1

P2

]
where the Pi are matrices of

order ni × m. Then the orthonormality of the ui implies that

Im = UT U = P T
1 P1 + P T

2 P2. (4)
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Further, (3) is equivalent to

In = block
(
UαUT

) = block

([
P1αP T

1 P1αP T
2

P2αP T
1 P2αP T

2

])
=

[
P1αP T

1 0
0 P2αP T

2

]
.

Hence

P1αP T
1 = In1, P2αP T

2 = In2 . (5)

From (5), trivially, all the eigenvalues of Pi

√
α
√

αP T
i are 1; hence2 all the non-zero eigen-

values of
√

αP T
i Pi

√
α are 1. This implies

√
αP T

i Pi

√
α � Im, for i = 1,2. So multiplying (4)

on both sides by
√

α, we obtain

α = √
α
(
P T

1 P1 + P T
2 P2

)√
α = √

αP T
1 P1

√
α + √

αP T
2 P2

√
α � 2I. (6)

Using this back in (5) we obtain Ini
= PiαP T

i � 2PiP
T
i , which implies 1

2Ini
� PiP

T
i for i =

1,2.
Now, from (2), since λi > 0,

A =
m∑

i=1

uiu
T
i +

n∑
i=m+1

λiuiu
T
i �

m∑
i=1

uiu
T
i = UUT =

[
P1P

T
1 P1P

T
2

P2P
T
1 P2P

T
2

]
.

Hence

block(A) �
[

P1P
T
1 0

0 P2P
T
2

]
� 1

2

[
In1 0
0 In2

]
= 1

2
In

which concludes the proof of the theorem.
We also note that since Pi is an ni ×m matrix, (5) implies that m � ni—this proves the remark

after the statement of Theorem 3 in the introduction.

3.2. Tightness of the lower bound

We provide examples to show that the estimate is tight when all the blocks are the same size
or when there are only two blocks.

Equal sized blocks. We provide an example with only two equal sized blocks—the general-
ization to k equal sized blocks will be obvious. Let n = 2m and choose m orthonormal vectors
v1, . . . , vm in Rm. Define the orthonormal vectors u1, . . . , um in Rn as ui = 1√

2

[ vi

vi

]
. Choose an

additional m vectors ui , i = m + 1, . . . , n, in Rn so that the ui , i = 1, . . . , n, are orthonormal;
also choose a λ in the interval (0,1). Define the positive definite matrix of size n with the spectral
decomposition

A =
m∑

i=1

uiu
T
i + λ

n∑
i=m+1

uiu
T
i . (7)

We claim that I is the solution of Problem 2 for A, for all λ < 1, and block(A) − 1
2I approaches

0 as λ approaches 0.

2 For any two (possibly rectangular) matrices M and N for which MN and NM makes sense, MN and NM have the
same non-zero eigenvalues.
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Clearly I � A and the kernel of I − A is spanned by ui , i = 1, . . . ,m. We note that

2
m∑

i=1

uiu
T
i =

⎡
⎣

∑m
i=1 viv

T
i

∑m
i=1 viv

T
i∑m

i=1 viv
T
i

∑m
i=1 viv

T
i

⎤
⎦ =

[
Im Im

Im Im

]
,

which implies that In = block(2
∑m

i=1 uiu
T
i ). Hence, by Lemma 8, the conditions of Theorem 1

are satisfied, proving that I is the optimal matrix for A. Finally from the definition of A, we have

A =
m∑

i=1

uiu
T
i +

n∑
i=m+1

uiu
T
i = 1

2

[
Im Im

Im Im

]
+ λ

n∑
i=m+1

uiu
T
i .

Hence block(A) − 1
2In approaches zero as λ approaches 0.

Two blocks. So k = 2 and n1 and n2 are two positive integers so that n = n1 +n2. Below ei and
ēi will represent vectors in Rn1 and Rn2 respectively whose ith entry is 1 and all other entries are

zero. Define the vector u in Rn as u = [ en1
ēn2

]
; note ‖u‖ = √

2. Choose a number α in the interval

(0, 1
2 ) and take A = In − αuuT .

We claim that In � A > 0 and In is the solution of Problem 2 for A. It is clear that In � A

and A > 0 because the eigenvalues of A are 1 and 1 − α|u|2 = 1 − 2α > 0. Define the following
vectors in Rn:

pi =
[

ei

0

]
, q =

[
en1−ēn2

]
, rj =

[
0
ēj

]
, i = 1, . . . , n1 − 1, j = 1, . . . , n2 − 1.

Now

block

(
n1−1∑
i=1

pip
T
i + qqT +

n2−1∑
j=1

rir
T
i

)
=

[
In1 0
0 In2

]
= In.

Further pi , q , and rj are orthogonal to u and hence reside in the kernel of I − A. Hence, from
Theorem 1 and Lemma 8, In is the solution of Problem 2 for A. We also note that

block(A) =
[

I − αen1e
T
n1

0
0 I − αēn2 ē

T
n2

]

and the eigenvalues of I − αen1e
T
n1

are 1 and 1 − α; the same is true of I − αēn2 ē
T
n2

. Hence the
largest multiple of I which is a lower bound for I − αen1e

T
n1

is (1 − α)I ; the same is true for

I −αēn2 ē
T
n2

. Now α is chosen arbitrarily from (0, 1
2 ) so 1−α comes arbitrarily close to 1

2 . Hence
the estimate in Theorem 3 is tight, at least in the two block case.

4. Proof of Theorem 5 and Lemma 4

Define H = {h ∈ Rn: h > 0, Π(h) = 1} and if A is a positive definite n×n matrix then define
the ellipsoids

A = {
x ∈ Rn: xT Ax = n

}
, A′ = {

x ∈ Rn: xT A−1x = n
}
.

To prove Theorem 5 we restate Problem 1 as a min–max problem. Every diagonal matrix
D > 0 has a unique representation D = σD(h−1) for a h ∈ H and a σ > 0. Since det(D) = σn,
Problem 1 is the same as
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minimize σn

subject to h ∈H, σ > 0, σD
(
h−1) � A.

Now σD(h−1) � A iff σA−1 � D(h) or equivalently σn � xT D(h)x for all x ∈ Rn with
xT A−1x = n. So σD(h−1) � A iff nσ � supx∈A′ xT D(h)x. Hence Problem 1 is equivalent
to

Problem 4. Given A > 0, find the optimizer of minh∈H maxx∈A′ xT D(h)x.

For future use we observe that if h is an optimizer of Problem 4 then D = σD(h−1) is the
optimizer of Problem 1 where σ is the largest eigenvalue of the generalized eigenvalue problem
Ax = σD(h−1)x because D − A must be singular and D � A. On the other hand, if D(p) is the
optimizer of Problem 1 then h = Π(p)p−1 is the optimizer of Problem 4. Finally

optimal value of Problem 4 = n · (optimal value of Problem 1)1/n. (8)

Consider the max–min problem associated with the min–max problem, Problem 4.

Problem 5. Given A > 0, find the optimizer of maxx∈A′ minh∈H xT D(h)x.

It may be shown easily that the optimal value of Problem 5 is bounded above by the optimal
value of Problem 4—Theorem 5 deals with the special situation where these two optimal values
are equal.

Proposition 9 (Solution of Problem 5). The optimal value of Problem 5 is attained at a point
(x = y−1, h = Π(y−2)1/ny2) where y is any solution of

Ay = y−1 (9)

for which Π(y2) is the smallest (amongst all solutions). The optimal value for Problem 5 is
nΠ(y−2)1/n.

If (x,h) is an optimal point for Problem 5 then (−x,h) is also an optimal point. It is possible
that Problem 5 has more than two optimal points; we do not know how these various optimal
points are related.

Proof of Proposition 9. Firstly, for a fixed x = [x1, . . . , xn]T , we claim that

inf
h∈H

xT D(h)x = n
(
Π

(
x2))1/n

.

To see this, note that if h = [h1, . . . , hn]T is in H, then from the AM–GM inequality, we have

xT D(h)x =
n∑

i=1

hix
2
i � n

(
n∏

i=1

hi

n∏
i=1

x2
i

)1/n

= n

(
n∏

i=1

x2
i

)1/n

with equality occurring if h1x
2
1 = · · · = hnx

2
n = λ for some λ � 0. So, if all the xi are

non-zero then the minimum value is as claimed above and it occurs when hi = λ/x2
i ; since

h1 · · ·hn = 1 we have λ = (x2
1 · · ·x2

n)1/n. Hence, if no coordinate of x is zero then the optimal
h is h = Π(x2)1/nx−2. If one of the xi is zero, say x1 = 0 then we can make h1 large and
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h2, h3, . . . , hn as small as we wish while maintaining h1 · · ·hn = 1. So h1x
2
1 + · · · + hnx

2
n may

be brought as close to zero as we wish. Hence the claim is true in both cases.
So to solve Problem 5, we need to resolve the equivalent problem

max
x∈A′ Π

(
x2). (10)

This problem clearly attains its supremum and the supremum is attained at a point x with all its
components non-zero. From Lagrange multipliers, at the optimal x in A′, we have A−1x = μx−1

for some μ. Since xT A−1x = n we have μ = 1; hence any optimizer of (10) is a solution of

A−1x = x−1. (11)

Further, the maximum is attained at the solutions x of (11) for which Π(x2) is the largest. The
corresponding optimal h is h = Π(x2)1/nx−2. Taking y = x−1 the optimizer of Problem 5 is
(x,h) where x = y−1, h = Π(y−2)1/ny2, and y is a solution of Ay = y−1 with the smallest
Π(y2). �
Proof of Theorem 5. (a) Suppose D(p) > 0 is the optimizer of Problem 1 for which the kernel
of D(p) − A is one-dimensional. Then, from Corollary 2 and Lemma 8, there is vector x in the
kernel of D(p)−A so that D(p−1) = diag(xxT ) or equivalently p = x−2. But (D(p)−A)x = 0
hence Ax = D(p)x = D(x−2)x = x−1.

The optimal value of Problem 1 is Π(p), hence from the discussion of the equivalence of
Problems 1 and 4, discussed at the beginning of Section 4 (also see (8)), the optimal value of the
min–max problem, Problem 4, is nΠ(p)1/n, that is nΠ(x−2)1/n. Let y be a solution of Az = z−1

with the smallest Π(z2). Then, we have

nΠ
(
x−2)1/n = optimal value of Problem 4 � optimal value of Problem 5

= nΠ
(
y−2)1/n � nΠ

(
x−2)1/n

,

where the second last relation holds because of Proposition 9, and the last relation holds because
of the definition of y. Hence equality holds throughout and Π(x2) = Π(y2) and x is one of the
solutions of Az = z−1 for which Π(z2) is the smallest.

(b) Suppose x is a solution of Az = z−1 with the smallest Π(z2) and also suppose that
D(x−2) � A. Then the optimal value of Problem 1 is bounded above by Π(x−2). So, using (8),
we have that the optimal value of Problem 4 is bounded above by nΠ(x−2)1/n. Hence

nΠ
(
x−2)1/n � optimal value of Problem 4 � optimal value of Problem 5

= nΠ
(
x−2)1/n

,

where the last step follows from Proposition 9. Hence there must be equality at all stages of the
above equation and we have proved (b). �
Proof of Lemma 4. By definition, any solution x of (1) will have all its coordinates non-zero
and xT Ax = xT x−1 = n implying x is on the ellipsoid A. Let M be the subset of A consisting
of points none of whose coordinates are zero, that is

M = {
x = [x1, . . . , xn]T ∈ Rn: xT Ax = n, xi = 0 for i = 1, . . . , n

}
.

Then M is a manifold of dimension n − 1 with 2n connected components—the components
being the intersections of the ellipsoid A with the ‘quadrants’ of Rn. We will show that (1) has
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exactly one solution in each component of M; to keep the notation simple M will represent just
one of its components for the rest of this proof.

Define the map ψ :M → R with ψ(x) = Π(x2); ψ has an obvious extension to M (the
closure of M) and to Rn. It is clear that ψ attains its supremum on M and the supremum is
non-zero. Since ψ is zero on the boundary of M and ψ is differentiable on M, the maximum
is attained at a critical point in M, that is at a point x ∈ M where ∇ψ(x) = λ∇(xT Ax − n)

which is equivalent to 2ψ(x)x−1 = λAx. One may see that λ = 0 and hence Ax = x−1 because
xT Ax = n since x ∈ M. Hence, the largest value of ψ on M occurs at a point x ∈M which is a
solution of (1), implying (1) has a solution in M. It remains to show that this is the only solution
of (1) in M.

If x and y are two solutions of (1) in M then Ax = x−1, Ay = y−1, and xi/yi > 0 for
i = 1, . . . , n. Consider

(x − y)T A(x − y) = xT Ax + yT Ay − xT Ay − yT Ax

= xT x−1 + yT y−1 − xT y−1 − yT x−1

= n + n −
n∑

i=1

(
xiy

−1
i + yix

−1
i

)
� 2n − 2

n∑
i=1

√(
xiy

−1
i

)(
yix

−1
i

)
= 0.

But A > 0, so x = y. �
5. Proof of Theorem 6

For vectors u and q , A = D(q) − uuT is positive definite only if q > 0. So taking q > 0,
D(q) − uuT > 0 iff I − vvT > 0 where v = q−1/2 ◦ u. Now the eigenvalues of I − vvT are 1

and 1 −|v|2; hence A = D(q)−uuT > 0 iff q > 0 and
∑n

i=1
u2

i

qi
< 1. Since no entry of u is zero,

D(p) is optimal for A = D(q) − uuT iff D(p ◦ u−2) is optimal for D(q ◦ u−2) − eeT . Further x

is a solution of (D(q)−uuT )x = x−1 iff y = D(u)x is a solution of (D(q ◦u−2)−eeT )y = y−1.
Hence we need to prove Theorem 6 only when u = e.

5.1. The case when D(q) is not the minimizer

Suppose D(p) is the solution of Problem 1 for A = D(q)−eeT and D(p) = D(q). Then some
entry of p must be strictly smaller than the corresponding entry of q otherwise D((p + q)/2)

would be a strictly better candidate than the optimal D(p). We claim that the nullity of D(p)−A

is 1 and this claim combined with Theorem 5 proves Theorem 6.
To prove that the nullity of D(p)−A is 1, we define r = p−q—note that at least one entry of

r = p − q is negative. Actually, exactly one entry of r is negative because if (say) r1 < 0, r2 < 0,
then taking x = [1,−1,0,0, . . .], we have

xT
(
D(r) + eeT

)
x = (

xT e
)2 + xT D(r)x = 0 + r1 + r2 < 0

which contradicts the fact that D(r) + eeT = D(p) − (D(q) − eeT ) � 0.
Without loss of generality let r̄ = [r1, . . . , rn−1]T be positive and rn < 0. If ē is the n − 1

vector of 1’s, then

D(p) − A = D(r) + eeT =
[

D(r̄) + ēēT ē

ēT 1 + r

]
. (12)
n
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We must have 1 + rn > 0 because taking x = [ēT , xn]T we have

0 � xT
(
D(p) − A

)
x = ēT

(
D(r̄) + ēēT

)
ēT + (1 + rn)x

2
n + 2(n − 1)xn

for all xn, and the right-hand side may be made negative, if 1 + rn � 0, by choosing xn to be a
large negative number. Next, using the representation (12),[

I −(1 + rn)
−1ē

0 I

](
D(p) − A

)[
I 0

−(1 + rn)
−1ē I

]

=
[

D(r̄) + rn
1+rn

ēēT 0

0 1 + rn,

]
(13)

so the nullity of D(p) − A is the same as the nullity of D(r̄) + rn
1+rn

ēēT which is the same as the

nullity of I + rn
1+rn

vvT where v = √
r̄−1—note all entries of r̄ are positive. Now the eigenvalues

of the matrix I + σvvT are 1 (of multiplicity n − 1) and 1 + σ |v|2 (the eigenvectors are v⊥
and v); hence the nullity of D(p) − A is at most 1. But the kernel of D(p) − A is not empty,
hence the nullity of D(p) − A is 1.

5.2. The case when D(q) is the minimizer

We now determine the q for which D(q) is the solution of Problem 1 for A = D(q)−eeT > 0.
If V is the kernel of D(q)−A = eeT then V consists of all vectors orthogonal to e. V has a basis
{v1, . . . , vn−1} where vi is the vector whose ith component is 1, its nth component is −1, and all
other components are zero. From Corollary 2 and Lemma 8, D(q) is the minimizer iff we can
find an (n − 1) × (n − 1) matrix (αij ) � 0 so that D(q−1) = diag(

∑
i,j αij viv

T
j ) or equivalently

q−1 = [α11, . . . , αn−1n−1,
∑

ij αij ]T for some (n − 1) × (n − 1) matrix (αij ) � 0. In Lemma 10
below, taking n − 1 instead of n, and taking di = 1/

√
qi , i = 1, . . . , n − 1, we have D(q) is the

minimizer iff m � 1/
√

qn � M where

M =
n−1∑
i=1

1√
qi

, m = max

(
0,2 max

i=1,...,n−1

1√
qi

− M

)
.

This may be stated more succinctly as D(q) is the optimizer for D(q) − eeT iff

2 max
i=1,...,n

1√
qi

�
n∑

i=1

1√
qi

.

Lemma 10. Given the non-negative numbers d1, . . . , dn, let P denote the set of all real valued,
positive semi-definite n × n matrices P = (pij ) with pii = d2

i , i = 1, . . . , n. Then the range
of the map from P to R given by P = (pij ) �→ ∑

i,j pij is [m2,M2] where M = ∑
i di and

m = max(0,2 maxi di − ∑
i di).

Proof. Since P is convex and hence a connected subset of Rn2
and the map P = (pij ) �→∑

ij pij is continuous and real valued, the range must be an interval. We have to find the end
points of this interval.

Any P ∈ P may be written as P = (vT
i vj ) for vectors v1, . . . , vn in Rn with |vi | = di . Further

the sum of the entries of P is
∑

i,j vT
i vj = (

∑
i v

T
i )(

∑
j vj ) = |∑i vi |2. Define

V = {
(v1, . . . , vn): vi ∈ Rn, |vi | = di, i = 1, . . . , n

}
.
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Then Lemma 10 follows if we determine the range of the map from V to R defined by

(v1, . . . , vn) �→ |v1 + · · · + vn|. (14)

The range is a closed interval because the domain is compact. For (v1, . . . , vn) ∈ V , we have
|v1 + · · · + vn| � |v1| + · · · + |vn| = d1 + · · · + dn and equality occurs iff the vi are non-negative
multiples of a fixed vector. Hence the right end point of the range interval is d1 + · · · + dn and is
attained only at points of the form (d1u, . . . , dnu) for some unit vector u in Rn.

Now we seek the minimizers of the map (14). Without loss of generality we may assume that
d1 = maxi di and we define m(d1, . . . , dk) and M(d1, . . . , dk) = d1 + · · · + dk to be the left and
right end points of the range of the map (v1, . . . , vk) �→ |v1 +· · ·+ vk| where the vi are restricted
to vectors in Rn with |vi | = di . Clearly dk+1 � d1 � M(d1, . . . , dk). If dk+1 � m(d1, . . . , dk)

then dk+1 is in the range of the map (v1, . . . , vk) �→ |v1 + · · · + vk| and we can find vectors
v1, . . . , vk so that |vi | = di , i = 1, . . . , k and |v1 +· · ·+vk| = dk+1. Let vk+1 = −(v1 +· · ·+vk),
note |vk+1| = dk+1. Then |v1 + · · · + vk+1| = 0 and hence m(d1, . . . , dk+1) = 0. On the other
hand, if dk+1 < m(d1, . . . , dk) then

|v1 + · · · + vk+1| � |v1 + · · · + vk| − |vk+1| � m(d1, . . . , dk) − dk+1

with equality occurring iff (v1, . . . , vk) is a minimizer giving m(d1, . . . , dk) and vk+1 = −α(v1 +
· · · + vk) where α = dk+1/m(d1, . . . , dk). In this case m(d1, . . . , dk+1) = m(d1, . . . , dk) − dk+1.
Summarizing, we have m(d1, . . . , dk+1) = max(0,m(d1, . . . , dk) − dk+1). From this one may
observe that

m(d1, . . . , dn) = max(0, d1 − d2 − d3 − · · · − dn) = max

(
0,2d1 −

n∑
i=1

di

)

which proves Lemma 10. �
6. Proof of Theorem 7

Suppose A > 0 is conveniently signed with respect to the vector ε. Let x be the unique solution
of Ax = x−1 in the same quadrant as ε. Since the entries of (aij εiεj ) have the same sign as the
entries of (aij xixj ), we may conclude that the entries of M = D(x)AD(x) are non-negative.

Further, Ax = x−1 implies that
∑n

j=1 aij xixj = 1 for each i = 1, . . . , n, and hence the row sums
of M are 1. So M is a symmetric matrix with non-negative entries and its row sums are 1. We
will show that the solution of Problem 1 for M (instead of A) is I ; hence the optimal matrix for
Problem 1 for A will be D(x−2). Note that M > 0 because A > 0.

Since the row sums of M are 1 and all entries of M = (mij ) are non-negative, we have 1 −
mii = ∑n

j=1,j =i mij = ∑n
j=1,j =i |mij | for i = 1, . . . , n, which implies that I − M is diagonally

dominant and hence I −M � 0—see [5, p. 349]. Hence I � M . Further, since the row sums of M

are 1, e is in the kernel of I − M and I = diag(eeT ). Hence from Corollary 2 and Lemma 8, I is
the optimal matrix for Problem 1 for M . This completes the proof of Theorem 7.

7. Discussion of results

Problem 1 may also be considered as the characterization of all positive definite matrices A

for which a given positive diagonal matrix D is the solution of Problem 1. One may easily show
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that this is equivalent to the characterization of all A > 0 for which I is the solution of Problem 1,
or equivalently the characterization of all ellipsoids A: xT Ax = 1 for which the optimal ellipsoid
is the unit sphere.

While we do not have a procedure to check whether I is the optimal matrix for Problem 1 for
a given A > 0, the procedure below (based on Corollary 2) will construct all A > 0 for which I

is the optimal matrix for Problem 1. Choose n unit vectors u1, . . . , un in Rn and define the n × n

matrix M = [u1, . . . , un]. Choose an orthonormal basis {v1, . . . , vk} for the range of MT (the
row space of M) and complete it to an orthonormal basis {v1, . . . , vn} for Rn. Next, choose real
numbers λ1, . . . , λn with λi = 1 for i = 1, . . . , k and 0 < λi � 1 for i = k + 1, . . . , n and take A

to be the positive definite matrix with the spectral decomposition A = ∑n
i=1 λiviv

T
i .

From the spectral decomposition we see that I � A and (I − A)MT = 0 implying
(I − A)X = 0 where X = MT M = (uT

i uj ) � 0. Further diag(X) = I = I−1 because the ui are
unit vectors. Hence Corollary 2 implies that I is the solution of Problem 1 for the A constructed
above.

Conversely, suppose I is the optimal solution of Problem 1 for a given A. From Corollary 2,
I � A, I − A is singular, and there is an X � 0 so that (I − A)X = 0 and diag(X) = I . Let
X = (uT

i uj ) for some unit vectors u1, . . . , un in Rn and we define M = [u1, . . . , un]. We claim
that (I − A)MT = 0; assuming this for the moment, the range of MT is in the eigenspace of A

corresponding to the eigenvalue 1. Choose an orthonormal basis v1, . . . , vk for the range of MT

and let vk+1, . . . , vn be the “remaining” unit length, linearly independent, eigenvectors of A.
Then A = ∑n

i=1 λiviv
T
i with λi = 1 for i = 1, . . . , k and 0 < λi � 1 for i = k+1, . . . , n (because

I � A > 0).
It remains to show that (I − A)MT = 0. We have M(I − A)MT � 0 because I � A;

also tr(M(I − A)MT ) = tr((I − A)MT M) = tr((I − A)X) = 0. So all the eigenvalues of
M(I − A)MT are zero and hence M(I − A)MT = 0. Noting that 0 = M(I − A)MT =
M

√
I − A

√
I − AMT = P T P where P = √

I − AMT , we have P = 0. Hence (I − A)MT =√
I − AP = 0.
Theorems 5, 6 and Lemma 8 generate an explicit characterization in the n = 3 case of all

A > 0 for which the optimal matrix for Problem 1 is a multiple of I (that is the optimal ellipsoid
is a sphere). For a 3 × 3 matrix A > 0, the optimal ellipsoid will be a sphere iff one of the
following holds:

• A is a multiple of I ;
• the eigenspace corresponding to the largest eigenvalue of A is one-dimensional and v2 = e

for some vector v in this eigenspace;
• the eigenspace corresponding to the largest eigenvalue of A is two-dimensional and if u =

[u1, u2, u3]T is the eigenvector corresponding to the other/smallest eigenvalue of A, then
2 maxi |ui | � ∑

i |ui |.
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