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Abstract

The probability distribution of the number of players in the last round of a matching problem is analyzed
and the existence of the limiting distribution is proved by using convolution method.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The matching problem or the “Hats Problem” goes back to at least 1713 when it was pro-
posed by the French mathematician Pierre de Montmort in his book [9] on games of gambling
and chance, Essay d’Analyse sur les Jeux de Hazard (see also [11]). Although it has many for-
mulations, the most common one is as follows:

Suppose that each of n men at a party throws his hat into the center of the room. The hats are
first mixed up, and then each man randomly selects a hat. What is the probability that exactly
k of the men select their own hats? And what is the expected number of people that select their
own hats?

* Corresponding author.
E-mail addresses: wli@math.udel.edu (W.V. Li), fliu@desu.edu (F. Liu), xshi@desu.edu (X. Shi).

1 Supported in part by NSF grant DMS-0505805.
2 Supported in part by ARO (DAAD 19-03-1-0375).
3 Supported in part by ARO (DAAD 19-03-1-0375).
0022-247X/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.11.024



1374 W.V. Li et al. / J. Math. Anal. Appl. 323 (2006) 1373–1382
There are several approaches such as the inclusion–exclusion principle, recurrence relations,
binomial inversion, to find the distribution of the so called Montmort random variable Xn, the
number of matches with n men. These approaches can be found, for example, in [10, pp. 125–
127] and [4]. See more details in the next section. A celebrated paper of Kaplansky [7] first
showed that Xn has an approximate Poisson distribution. Takács [12] gave an extensive history
for this single round version of the matching problem. The problem of a multi-round matching
is as follows:

Suppose that those choosing their own hats depart, while the others put their selected hats in
the center of the room, mixed them up, and then reselect. Also, suppose that this process continues
until each individual has his own hat. Assume we start with n men. What is the expected number
τn of rounds that are necessary?

Detailed analysis can be found in [10, p. 110], see also Section 2 for more detail. The purpose
of this note is to analyze the following questions in the multi-round matching problem:

What is the expected number of men, Ln, on the last round? And what is the limiting distrib-
ution of Ln as n → ∞?

Note that the last round is the round that all remaining players obtained their own hats. This
requires us to determine the distribution of the stopped outcome and hence it can be viewed
as conditioning on the future. There are many problems of interests that involve the moments
(outcomes) of the last events at a stopping time, and they are in general hard problems even in
determination of the expected values (see [13, p. 162], for a case of independent random walks).

We will show in Section 3 that the limiting distribution of Ln exists and the expectation E(Ln)

converges to a constant l ≈ 2.26264703816. The exact value of the constant l is still unknown.
Let pn be the probability that any particular individual man (among n men) is in the last round.
Then we have pn = E(Ln)/n by taking the expectation on the relation Ln = ∑n

i=1 1Ai
, where

Ai is the event that the ith man is in the last round. Thus pn = E(Ln)/n ∼ l/n as n → ∞ is the
asymptotic probability of winning (a winner is defined to be one in the last round), and the fair
pay off for a winner is 1/pn ∼ n/l ≈ n/2.262647 unit if each man pays a unit to play.

The remaining of the paper is organized as follows. In Section 2, we provide mathematical
formulation of the problem together with some remarkable properties of the Montmort random
variable Xn, and we give the recursive relations for the expectation E(Ln) and estimate the
distribution qn,m = P(Ln = m). We prove our main result in Section 3 by using convolution
method. In Section 4, we provide a table for the distribution of Ln for 2 � n � 15 and numerical
approximations of the limiting values. Related problems, questions and remarks are collected at
the end of Section 4.

2. Recursive relations

Mathematically, we are dealing with random permutation of n elements and the Montmort
random variable Xn is the number of fixed elements in a random permutation. Its distribution is
well known and is given by

pn,k = P(Xn = k) = 1

k!
n−k∑
i=0

(−1)i
1

i! , k = 0,1, . . . , n. (2.1)

Feller [3, p. 231] showed that both the mean and the variance of Xn are equal to one for all
n � 2. He also derived the Poisson approximation of rate λ = 1 for Xn. Some rather remarkable
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properties of Xn were derived in [1], see also [5,6]. It is shown that the kth moment E(Xk
n) is the

number of ways of putting k different things into at most min(k, n) indistinguishable cells, with
no cell empty, i.e.,

E
(
Xk

n

) =
min(k,n)∑

i=1

S(k, i)

where S(k, i) is the Stirling number of the second kind, i.e., the number of ways of partitioning
a set of k elements into i nonempty sets (i.e., set blocks). In particular, every moment of every
Xn is a positive integer and E(Xk

n) are the same for all k, 1 � k � n, with n fixed. Also, it is easy
to see that the k-factorial moment of Xn is one for 1 � k � n and zero for k > n, i.e.,

E
(
Xn(Xn − 1) · · · (Xn − k + 1)

) =
{

1 for 1 � k � n,

0 for k > n.

More detailed and recent study on generalized matching, based on the Stein’s method of ex-
changeable pairs, is given in [2]. In particular, we know∥∥L(Xn) −L

(
Poisson(1)

)∥∥
TV � 2n

n!
where L(·) is the probability law for the random variable and ‖·‖TV is the total variation norm for
measure. For the multi-round matching problem, the expected number of rounds τn is E(τn) = n,
assuming we start with n men, see [10, p. 110].

Next we derive recursive relations for the expectation E(Ln) and the distribution qn,m =
P(Ln = m), where Ln is the number of people in the last round in the multi-round matching
problem, assuming we start with n men. Let ln = E(Ln) and Xn be the number of matchings in
the first round. Then we have by using conditional expectation,

ln =
n∑

k=0

E(Ln | Xn = k) · P(Xn = k) = lnpn,0 + npn,n +
n−1∑
k=1

ln−k · pn,k

which can be rewritten as

ln(1 − pn,0) = npn,n +
n−1∑
k=1

lkpn,n−k.

From (2.1) we have the recursive relation

ln ·
n∑

i=1

(−1)i+1 1

i! = 1

(n − 1)! +
n−1∑
k=1

lk

(n − k)!
k∑

i=0

(−1)i
1

i! (2.2)

with l0 = 0, l1 = 1, l2 = 2, l3 = 9/4, l4 = 34/15, l5 = 43/19, l6 = 3912/1729. It is easy to show
that ln converges to l = 2.2626470381671 . . . very quickly. See Section 4 for more discussion.

Next we turn to the distribution function of Ln. Let qn,m = P(Ln = m), 2 � m � n, be the
distribution function of Ln. Then by conditioning on Xn, the number of matchings in the first
round, we have for 2 � m < n,

qn,m =
n−m∑
k=0

P(Ln = m | Xn = k) · P(Xn = k) = qn,m · pn,0 +
n−m∑
k=1

qn−k,m · pn,k

and
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qn,n = P(Ln = n | Xn = 0) · P(Xn = 0) + P(Ln = n | Xn = n) · P(Xn = n)

= qn,n · pn,0 + 1

n! .
Thus we obtain the recursive relation

qn,m = (1 − pn,0)
−1

n−1∑
k=m

qk,m · pn,n−k, 2 � m < n,

qn,n = 1

(1 − pn,0)n! = 1

n!∑n
i=1(−1)i−1 1

i!
(2.3)

with q2,2 = 1, q3,2 = 3/4, q3,3 = 1/4, q4,2 = 4/5, q4,3 = 2/15, q4,4 = 1/15.
Finally we can state our main results.

Theorem 2.1. The random variables Ln converges in distribution, i.e.,

lim
n→∞qn,m = qm > 0, m � 2,

and limn→∞ E(Ln) = l = ∑∞
m=2 mqm.

3. Convolution limit

We first show the following lemma for the existence of a limit of convolutions.

Lemma 3.1. Assume the sequence hn converges to a finite real number h as n → ∞ and the
series

∑∞
i=1 |gi | converges. Then the convolution sequence

∑n
i=1 gihn−i converges.

Proof. For any given ε > 0, there exists a positive integer N such that for any m > n � N ,
|hn − h| � ε, |hm − hn| � ε,

∑m
i=n+1 |gi | � ε. Hence for any m > n � 2N ,∣∣∣∣∣

m∑
i=1

gihm−i −
n∑

i=1

gihn−i

∣∣∣∣∣
�

n−N∑
i=1

|gi | · |hm−i − hn−i | +
n∑

i=n−N+1

|gi | · |hm−i − hn−i | +
m∑

i=n+1

|gi | · |hm−i |

� ε ·
n−N∑
i=1

|gi | + 2M

n∑
i=n−N+1

|gi | + M

m∑
i=n+1

|gi | � ε ·
∞∑
i=1

|gi | + 3Mε (3.1)

where M = maxi�0 |hi | < ∞. �
Proof of Theorem 2.1. Let ln be recursively defined as in (2.2). We first show ln converges. The
goal is to rewrite ln as a convolution. We start with writing our recursive equation (2.2) into a
convolution form with error terms. Denote the tail of the Taylor series expansion of the function
e−x at x = 1 by

an =
∞∑

i=n+1

(−1)i
1

i! =
1∫

(−1)n+1(1 − t)n

n! e−t dt.
0
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Then for any integer n � 1,

|an| � 1

(n + 1)! . (3.2)

Using the Taylor expansion e−1 = ∑∞
i=0(−1)i 1

i! , we can rewrite (2.2) as

ln
(
1 − e−1 + an

) = 1

(n − 1)! +
n−1∑
k=1

lk

(n − k)! · (e−1 − ak

)
which gives us

ln = 1

e − 1

n−1∑
k=1

lk

(n − k)! + gn, n � 2, (3.3)

where

gn = e

e − 1

(
1

(n − 1)! −
n∑

k=1

aklk

(n − k)!

)
.

Next we show |gn| is very small for large n. Obviously, we know lk � k for any k since the
number of people on the last round cannot be more than the total number of people we started
with. Using (3.2), it holds for any n � 1,

(
1 − e−1)|gn| � 1

(n − 1)! +
n∑

k=1

k

(k + 1)!(n − k)!

= 1

(n − 1)! + 1

n!
n∑

k=0

n!
k!(n − k)! − 1

(n + 1)!
n∑

k=0

(n + 1)!
(k + 1)!(n − k)!

= 1

(n − 1)! + 2n

n! − 2n+1 − 1

(n + 1)! . (3.4)

Therefore, we have
∞∑

n=1

|gn| < ∞. (3.5)

To write ln explicitly as a convolution, we use the generating function
∑∞

n=1 lnx
n which con-

verges for |x| < 1 due to the fact that ln � n. From (3.3), we have

∞∑
n=1

lnx
n = 1

e − 1

∞∑
n=1

xn
n−1∑
k=1

lk

(n − k)! +
∞∑

n=1

gnx
n

= 1

e − 1

∞∑
k=1

lk

∞∑
n=k+1

1

(n − k)!x
n +

∞∑
n=1

gnx
n

= ex − 1

e − 1

∞∑
k=1

lkx
k +

∞∑
n=1

gnx
n.

Solving for the generating function
∑∞

n=1 lnx
n from above, we obtain



1378 W.V. Li et al. / J. Math. Anal. Appl. 323 (2006) 1373–1382
∞∑
n=1

lnx
n = 1 − e−1

1 − ex−1

∞∑
n=1

gnx
n = (

1 − e−1) ∞∑
k=0

ek(x−1)

∞∑
j=1

gjx
j

= (
1 − e−1) ∞∑

k=0

e−k

∞∑
i=0

xiki

i!
∞∑

j=1

gjx
j

= (
1 − e−1) ∞∑

i=0

hix
i

∞∑
j=1

gjx
j = (

1 − e−1) ∞∑
n=1

n∑
i=1

gihn−ix
n,

where

hn = 1

n!
∞∑

k=0

kne−k. (3.6)

Thus, we obtain

ln = (
1 − e−1) n∑

i=1

gihn−i , (3.7)

which is in a convolution form.
To show the convergence of the sequence hn defined in (3.6), we note that f (x) = xne−x

is strictly increasing in the interval [0, n] and strictly decreasing in the interval [n,∞), for any
integer n � 1. Thus using Stirling’s formula for nne−n, we have for n large,

∞∑
k=0

kne−k =
n−1∑
k=0

kne−k + nne−n +
∞∑

k=n+1

kne−k

�
∞∫

0

xne−x dx + n!√
2nπ

= n!(1 + (2nπ)−1/2). (3.8)

Similarly, we have

∞∑
k=0

kne−k =
n∑

k=0

kne−k − nne−n +
∞∑

k=n

kne−k

�
∞∫

0

xne−x dx − n!√
2nπ

= n!(1 − (2nπ)−1/2). (3.9)

Combining the above estimates together, we see

lim
n→∞hn = 1. (3.10)

And thus the limit of ln exists by Lemma 3.1, (3.7), (3.5) and (3.10).
Next we follow the same idea as above to show the existence of the limit of qn,m as n → ∞

for fixed m � 2. The recursive relation (2.3) can be rewritten as

qn,m = (e − 1)−1
n−1∑ qk,m

(n − k)! + gn,m, 2 � m � n, (3.11)

k=m
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where

gn,m = −(
1 − e−1)−1

n∑
k=m

akqk,m

(n − k)! .

Using (3.2) and qn,m � 1, it holds for n � m � 2,

(
1 − e−1)|gn,m| �

n∑
k=m

1

(k + 1)!(n − k)! �
n+1∑
k=0

1

k!(n + 1 − k)! = 2n+1

(n + 1)! .

Therefore, for any fixed m � 2, the series
∑∞

n=2 |gn,m| converges. To write qn,m explicitly as a
convolution for fixed m � 2, we use the generating function

∑∞
n=m qn,mxn which converges for

|x| < 1 since qn,m � 1. From (3.11), we have

∞∑
n=m

qn,mxn = 1

e − 1

∞∑
n=m

xn

n−1∑
k=m

qk,m

(n − k)! +
∞∑

n=m

gn,mxn

= 1

e − 1

∞∑
k=m

∞∑
n=k+1

qk,m

(n − k)!x
n +

∞∑
n=m

gn,mxn

= ex − 1

e − 1

∞∑
k=m

qk,mxk +
∞∑

n=m

gn,mxn.

Solving for the generating function
∑∞

n=m qn,mxn and then expanding it similar to the arguments
used for ln, we obtain

∞∑
n=m

qn,mxn = 1 − e−1

1 − ex−1

∞∑
n=m

gn,mxn = (
1 − e−1) ∞∑

n=m

n∑
i=m

gi,mhn−ix
n,

where hi is defined in (3.6). Thus, we obtain for n � m � 2,

qn,m = (
1 − e−1) n∑

i=m

gi,mhn−i .

Therefore, similar to the argument for ln, qn,m has a limit as n → ∞ for each m � 2. �
4. Remarks and related problems

Our argument of showing the existence of the limit can also provide an estimate of order n−1/2

on the speed of convergence. We only consider the speed of ln = E(Ln) to its limit l here since
the other cases are similar.

Proposition 4.1. |ln − l| = O(n−1/2).

Proof. By taking m → ∞ in the estimates (3.1) and using the basic facts (3.4), (3.8) and (3.9),
we have
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|ln − l| =
∣∣∣∣∣

n∑
i=1

gihn−i − l

∣∣∣∣∣
�

n−N∑
i=1

|gi ||hn−i − 1| +
n∑

i=n−N+1

|gi ||hn−i − 1| + M

∞∑
i=n+1

|gi |

� max
N�k�n−1

|hk − 1| ·
n−N∑
i=1

|gi | + e−1
n∑

i=n−N+1

|gi | +
(
1 + e−1) ∞∑

i=n+1

|gi |

� (2Nπ)−1/2 ·
∞∑
i=1

2i

i! + (
1 + 2e−1) ∞∑

i=n−N+1

2i

i!

�
(
e2 − 1

)
(2Nπ)−1/2 + (

1 + 2e−1) 2n−N

(n − N)!
where M = maxi�0 hi � 1 + e−1. Taking N = n − logn, we see that

|ln − l| = O
(
n−1/2). �

Furthermore, from the computation for ln, see also Table 1 for qn,m, we conjecture that the
convergence is at geometric rate.

Next we mention a martingale associated with the problem. Let Rk be the number of men
after the kth round. Then R0 = n and E(Rk+1 | Rk) = Rk − 1. Thus

Mk(n) = Rk − (n − k)

is a martingale. Let

τn = inf{k: Rk = 0}
be the number of rounds played. Then optimal stopping theorem implies E(Mτ ) = E(M0) = n,
i.e., E(τn) = n. Note that the martingale Mk(n) is in triangular arrays. It is nature to consider
a functional central limit theorem and the techniques used in Li and Pritchard [8] are helpful.

Table 1
Table of qn,m

n m = 2 3 4 5 6 7 8

2 1
3 0.75 0.25
4 0.8 0.133333 0.0666667
5 0.802632 0.144737 0.0394737 0.0131579
6 0.801966 0.145518 0.0426836 0.00763447 0.0021978
7 0.801877 0.145377 0.0428913 0.00826109 0.00127964 0.000313873
8 0.801888 0.145353 0.0428509 0.00830217 0.00138452 0.000182657 3.92357e−005
9 0.801890 0.145355 0.0428442 0.00829432 0.00139138 0.00019763 2.28344e−005

10 0.801890 0.145356 0.0428448 0.00829301 0.00139006 0.00019861 2.47063e−005
11 0.801890 0.145356 0.0428450 0.00829313 0.00138985 0.000198422 2.48288e−005
12 0.801890 0.145356 0.0428450 0.00829316 0.00138987 0.000198391 2.48053e−005
13 0.801890 0.145356 0.0428450 0.00829316 0.00138987 0.000198394 2.48014e−005
14 0.801890 0.145356 0.0428450 0.00829316 0.00138987 0.000198395 2.48017e−005
15 0.801890 0.145356 0.0428450 0.00829316 0.00138987 0.000198395 2.48018e−005
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It would be also useful to find other martingales associated with the problem. Other problems
along this line are central limit theorems for τn, upper and lower tail probabilities for τn, etc.

There are also many other generalizations of the one round matching, see Feller [3, p. 102]
for several multi-round matchings. All of them can be generalized to the last round problem also
and our convolution method seems apply to these problems.

Finally, we mention a sort of complementary problem, the so called Christmas gift problem.
Consider the Christmas party game where each person from 1 to n brings a gift. Slips with
numbers 1,2, . . . , n are placed in a hat. Everyone randomly selects a slip at the same time and
then receives the gift brought by the person corresponding to the number. However, if someone
draws her/his own number, she/he puts the slip back into the hat, and redraw with those remain.
Also, suppose that this process continues until each individual has a gift from someone else or
there is only one slip in the hat. What is the probability Qn that there is only one slip remains in
the hat? Let En be the event that there is only one slip in the hat (the case that the game cannot
finish). Then we have the following recursive formula:

Qn = P(En) =
n∑

k=0

P(En | Xn = k)pn,k =
n∑

k=1

Qkpn,k (4.1)

with Q1 = 1,Q2 = 0,Q3 = 3/5,Q4 = 6/23. It is easy to see the limit

Q := lim
n→∞Qn = lim

n→∞

n∑
k=1

Qk

k!
(
e−1 − an−k

) = e−1
∞∑

k=1

Qk

k! ,

and the convergence rate

|Qn − Q| � 2n+1 + 1

(n + 1)!
since ∣∣∣∣∣

n∑
k=1

Qkan−k

k!

∣∣∣∣∣ �
n∑

k=1

1

(n − k + 1)!k! � 2n+1

(n + 1)! .

Note also that Qn in (4.1) satisfies the generating functions relation
∞∑

n=1

Qnx
n = (1 − x)−1e−x

∞∑
n=1

Qn

n! xn.
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