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A Functional LIL for Stochastic Integrals and the Lévy
Area Process
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A functional law of the iterated logarithm is obtained for processes given by
certain stochastic integrals. This extends earlier results by Shi(12) and Rémil-
lard(10) who established analogues of the classical limit results of Chung(4)

for a variety of processes, including Lévy’s stochastic area process. The func-
tional aspects of our results are motivated by a paper of Wichura(13) on
Brownian motion. Proofs depend on small ball probability estimates, and
yield the small ball probabilities of the weighted sup-norm for the processes
given by these stochastic integrals.
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1. INTRODUCTION

If {X(t) : t � 0} is a symmetric stable process of index α ∈ (0,2] with sta-
tionary independent increments such that with probability one the sample
paths are in D[0,∞), and X(0)=0, then for t � 0, n � 1, we define M(t)=
sup0� s � t |X(s)|, and

ηn(t)=M(nt)/(cαn/LLn)1/α,
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where the constant 0<cα <∞ is given by

cα =−limε→0+εα log P( sup
0� s �1

|X(s)| � ε)

and LLn= max(1, log(log n)). Throughout M denotes the space of func-
tions f : [0,∞) → [0,∞] such that f (0) = 0, f is right continuous on
(0,∞), non-decreasing, and limt→+∞ f (t)=∞, and we define

Kα =
{
f ∈M :

∫ ∞

0
f −α(t)dt � 1

}
.

The topology on M is the topology of weak convergence, i.e. pointwise
convergence at all continuity points of the limit function. This topology is
metrizable and separable on M and if {fn} is a sequence of points in M,
then C({fn}) denotes the cluster set of {fn}, i.e. all possible subsequential
limits of {fn} in the weak topology. If A⊆M, we write {fn}�A if {fn} is
relatively compact in M and C({fn})=A. The functional law of the iter-
ated logarithm obtained in Ref. 3 proves that

P({ηn}�Kα)=1.

If {X(s) : s � 0} is a sample continuous γ -fractional Brownian motion with
X(0)=0 and 0<γ <2, then a similar result holds, and in(8) we proved

P({ηn}�Kγ )=1,

where

ηn(t)=M(nt)/(cγ n/LLn)γ/2,

Kγ =
{
f ∈M :

∫ ∞

0
f −2/γ (s)ds � 1

}

and

cγ =− lim
ε→0+

ε2/γ log P( sup
0� s �1

|X(s)| � ε).

Perhaps {M(t) : t � 0} and {X(t) : t � 0} should also be indexed by α or γ

as appropriate, but we chose not to do so to simplify the notation.
Both of these functional laws of the iterated logarithm depend on

suitable scaling and asymptotic independence properties for the process
{X(t) : t � 0}, and are refinements of Chung’s LIL for Brownian motion.
Furthermore, although quite similar in statement, they have substantially
different proofs. There are also remarkably similar weighted occupation
measure applications in both settings. These follow from the correspond-
ing functional LIL and the relevant scaling property. Hence it seemed to



A Functional LIL for Stochastic Integrals 263

be of interest to see if there were similar results for other classes of pro-
cesses, and here we examine the situation when {X(t) : t � 0} is given by
stochastic integrals of the form

X(t)=
∫ t

0
〈AW(s), dW(s)〉, t � 0, (1.1)

where A is a real nonzero skew symmetric d by d matrix and {W(t) : t � 0}
is standard sample continuous Brownian motion in Rd.

We were first motivated to study these processes by the interesting
paper,(10) where Rémillard proved an analogue of Chung’s LIL in this set-
ting. That is, in Ref. 10 it was shown that there exists a constant a(A)∈
(0,∞) such that with probability one

lim
t→∞

(LLt/t) sup
0� s � t

∣∣∣∣
∫ s

0
〈AW(u), dW(u)〉

∣∣∣∣=−a(A).

Here we refine this result obtaining a functional version which is an ana-
logue of that for the stable processes and fractional Brownian motions.
Our proofs involve methods quite different from those in Rémillard, who
exploited the Markov nature of the problem, and first identified a(A)

analytically via a variational formula, and eventually in terms of the
eigenvalues of A. In particular, we identify the limiting value in our theo-
rems immediately in terms of the eigenvalues of A by using the represen-
tation of {X(t) : t � 0} determined in Section 3.

Another point of interest, which developed as we studied these sto-
chastic integrals, is their relationship to Lévy’s stochastic area process. The
Lévy stochastic area process is important in its own right and arises imme-
diately if {W(t) : t � 0} is standard Brownian motion in R2 and A is the 2
by 2 skew symmetric matrix with −1/2 above the diagonal of zeros and
1/2 below the diagonal. However, this is only the beginning, and we will
see that {X(t) : t � 0} as given in (1.1) can always be written as a lin-
ear combination of independent processes of this type, and it is this fact
that we exploit in part of the proof. Linear combinations of independent
Lévy stochastic area processes also arise as limits in a generalization of
a functional central limit theorem for certain stochastic integrals, so they
are important from that point of view as well. Theorem 2.1 of the paper
by S. Janson and M.J. Wichura(7) contains such a result, and it is inter-
esting to point out that the functional LIL in Refs. 3 and 8 for the spe-
cial case of Brownian motion appeared in an earlier unpublished paper of
Wichura.(13) Wichura’s proof for the Brownian motion case was also built
on diffusion process techniques and is entirely different than the meth-
ods in Refs. 3 and 8. It is important to mention that this is not merely
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a matter of choice, but of necessity at this time. The papers Refs. 3 and 8
also contain further background material and applications. In particular,(3)

describes the topology of M in more detail.
The paper by Z. Shi(12) also obtains Chung’s LIL for Lévy’s stochas-

tic area process, and here it is proved via methods that are from stochas-
tic analysis. This approach motivates the representation for {X(t) : t � 0}
obtained in Section 3 and it is this representation which is useful for many
of the probability estimates we use throughout the paper. Nevertheless,
the defining formulas for {X(t) : t � 0} in terms of stochastic integrals are
also used in an important way in our proof of Proposition 4 in Section 5.
Hence in our approach both representations are exploited.

2. STATEMENT OF RESULTS

Let {X(t) : t � 0} be given by stochastic integrals of the form

X(t)=
∫ t

0
〈AW(s), dW(s)〉, t � 0, (2.1)

where A is a real nonzero skew symmetric d by d matrix and {W(t) : t � 0}
is standard sample continuous Brownian motion in Rd . Let M(t) =
sup0� s � t |X(s)|, and assume M is as in the introduction, and for t �
0, n � 1, define

ηn(t)=M(nt)/(cAn/LLn), (2.2)

where the constant 0 < cA < ∞ is uniquely determined by A as specified
below. Then the following holds.

Theorem 1. Let {X(t) : t � 0} be given by (2.1) with A a real non-
zero skew symmetric matrix. Then there exist unique strictly positive con-
stants α1, . . . , αr , 1 � r � d/2, depending only on A, such that for cA =
(π/2)(

∑r
j=1 αj ) we have

P({ηn}�K)=1, (2.3)

where

K =
{
f ∈M :

∫ ∞

0
f −1(s)ds � 1

}
. (2.4)

Remark. We will see from Section 3 that the non zero eigenvalues of
A, repeated with necessary multiplicities, are ±α1i, . . . ,±αri,1 � r � d/2,
and hence α1, . . . , αr , are uniquely determined by A and sometimes easily
computible.
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Two immediate corollaries are the following which apply when {X(t) :
t � 0} is Levy’s area process, or more generally as in (2.1). Corollary 1
is known from Ref. 12 and Corollary 2 from Ref. 10. They are included
to motivate the form of the occupation measure results that follow from
Theorem 1.

Corollary 1. Let {ηn} be as in (2.2) with A skew symmetric 2 by 2
matrix with −1/2 above the diagonal of zeros and 1/2 below the diagonal.
Then

X(t)= (1/2)

∫ t

0
(B1(s)dB2(s)−B2(s)dB1(s)) (2.5)

is Levy’s stochastic area process and

P( lim
n→∞

ηn(1)= lim
n→∞

sup
0� t �1

|X(nt)|LLn/(cAn)=1)=1, (2.6)

where cA =π/4.

Remark. cA =π/4 is consistent with the result from Ref. 12 as there
the stochastic area process is twice ours.

Corollary 2. Let {X(t) : t � 0} be given by (2.1) with A a real non-
zero d by d skew symmetric matrix and {W(t) : t � 0} a standard sample
continuous Brownian motion in Rd. Then there exist unique strictly posi-
tive constants α1, . . . , αr ,1 � r � d/2, depending only on A, such that for
cA = (π/2)(

∑r
j=1 αj ) we have

P( lim
n→∞

ηn(1)= lim
n→∞

sup
0� t �1

|X(nt)|LLn/(cAn)=1))=1. (2.7)

Occupation measure results similar to those in Refs. 3 and 8 can also
be obtained for the maximal process {M(t) : t � 0} derived from the X

process when X is given as in (2.1). These applications are very much in
the spirit of those for Strassen’s functional law of the iterated logarithm,
but the details are quite different. Furthermore, it should be observed that
these two functional limit theorems, even for Brownian motion, involve
very different aspects of the process. What is so surprising is that the max-
imal process for the stable processes of Ref. 3, the fractional Brownian
motions of Ref. 8, and the processes given by (2.1) have these very sim-
ilar occupation measure results.

To motivate these results, note that Corollary 2 implies that with
probability one limn→∞ηn(1)= 1, and hence it is natural to ask how fast
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does the function ηn(·) get away from the zero function, say on [0,1], or
how many samples ηn(1), n � t , fall in the interval [0, c], c � 1?

Several measures of these quantities are examined in Refs. 3 and 8,
but here we only include results for the weighted occupation measures

�c(t)= t−1
∫ t

0
I[0,c](ηs(1)θ(s/t))ds, (2.8)

where c � 1, θ maps (0,1] into [1,∞) with θ(1)=1, ηs(u)=M(su)/(cAs/LLs)

for s >0, u � 0, and η0(u)=0 for all u � 0. The interested reader can consult
Refs. 3 and 8 for other relevant measures, and the necessary motivation for
their analogues in this setting. Of course, the choice of the weight function θ

with θ(1)=1 results from (2.7).
We also assume

θ(s) is non-increasing on (0,1] (2.9)

and define the function

h(s)= θ(s)+
∫ 1

s

(θ(u)/u)du, 0<s � 1. (2.10)

Note that if θ is continuous on (0,1] and (2.9) holds with θ(1)= 1, then
h(s) is strictly decreasing and continuous on (0,1]. Furthermore, under
these conditions it is easy to see that the range of h(s) is all of [1,∞).
The functions θ(s)=1, θ(s)= k − (k −1)s, k �1, θ(s)= log(e/s), and θ(s)=
s−β+1, where β > 1, are interesting weights which satisfy the condition
(2.9) and θ(1) = 1. Now we can state our weighted occupation measure
result for �c(t).

Theorem 2. Let θ : (0,1] → [1,∞) such that θ(1) = 1. In addition,
assume (2.9) and θ is continuous on (0,1]. Then h(s) defined as in (2.10)
is strictly decreasing and continuous from (0,1] onto [1,∞), and for each
c�1 we have with probability one that

lim sup
t→∞

�c(t)=1− sc, (2.11)

where s = sc is the unique solution to h(s)= c on the interval (0,1].

Remark. If h(·) is defined as in (2.10) with θ(1)=1 and θ satisfying
(2.9), then h(·) is strictly decreasing and continuous from (0,1] to [1,∞)

if and only if θ is continuous on (0,1]. Hence the conditions on h(·) in
Ref. 8 are the same as those in Theorem 2. The reader should also note
that the conditions on θ in (2.9) are weaker than those in Ref. 8, and
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this is because in Section 7 we are able to improve Lemma 4.2 of Ref. 8
somewhat.

Examples. If θ(s) = k − (k − 1)s for 0 � s � 1 and k � 1, then writ-
ing θ(s) = 1 + (k − 1)(1 − s) it is easy to see that h(s) = 1 − k log s. Hence
by solving h(s)=c for 0<s � 1 and c�1, we get s = sc =exp{−(c−1)/k},
and thus with probability one,

lim sup
t→∞

�c(t)=1− exp{−(c−1)/k}

for c�1.

If θ(s) = log(e/s) on (0,1], then for 0 < s � 1, h(s) = 1 − 2 log s +
(log s)2/2. Solving h(s)=c, for 0<s � 1 and c�1, we get s = sc =exp{2−
2
√

1+ (c−1)/2}, and hence with probability one

lim sup
t→∞

�c(t)=1− exp{2−2
√

1+ (c−1)/2}

for c�1.
Let θ(s) = s−β+1 where β > 1. Then s = sc = ([1 + c(β − 1)]/β)1/(1−β)

and with probability one

lim sup
t→∞

�c(t)=1− ([1+ c(β −1)]/β)1/(1−β).

Theorem 2 is proved in Section 7, and requires that the parameter s in
{ηs(·)} converge to infinity continuously rather than through the integers.
In particular, {ηs(·)} must satisfy (5.1)–(5.3) as s → ∞, but this follows
from easy modifications of what is done in Section 5 and the related mate-
rial in Ref. 3. Hence these details are not included here.

3. A REPRESENTATION FOR {X(t):t�0}
First we prove some lemmas. The first shows how the {αj } are related

to A, and is the key step in showing how {X(t) : t � 0} can be written
as a linear combination of independent Lévy stochastic area processes. Of
course, when A is skew symmetric it is obvious that {X(t) : t �0} is a lin-
ear combination of such processes, but the independence requires a proof.
It is also worth mentioning that the eventual identification of the constant
cA in terms of the eigenvalues of A depends on some stochastic analysis
facts that appeared in the context of this sort of problem in Ref. 12, and
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is quite different from what is done in Ref. 10 to identify a(A). The rep-
resentation obtained in this section allows us to make the probability esti-
mates obtained in Section 4, which eventually allow us to identify cA in
terms of the eigenvalues of A.

Lemma 3.1. Let A be a real nonzero d by d skew symmetric matrix.
Then there exists a d by d orthogonal matrix Q such that QtAQ is a
block diagonal matrix where each block is a 1 by 1 zero matrix or a 2 by
2 matrix of the form

[
0 −α

α 0

]

and α >0. Futhermore, if for 1� r �d/2 the matrices

[
0 −αj

αj 0

]

are the 2 by 2 matrices in the block diagonal form for A, then α1, . . . , αr >

0 are unique.

Proof. Consider the matrix A as a linear operator for Rd to Rd .
Then A is a normal nonzero linear operator, and hence there is an ortho-
normal basis {qj : 1 � j � d} of Rd with respect to which A has a block
diagonal matrix where each block is a 1 by 1 matrix or a 2 by 2 matrix
of the form

[
β −α

α β

]

with α > 0, (see Ref. 1, p. 134). In particular, if C is the matrix of A with
respect to this orthonormal basis, then C =QtAQ where Q is the orthogo-
nal matrix whose columns are the orthonormal basis {qj : 1 � j � d} in the
canonical basis coordinates. Furthermore, Ct = (QtAQ)t =QtAt(Qt)t =−C

since At =−A by the skew symmetry of A and that Q is orthogonal. Hence
C is skew symmetic, and since A is nonzero, so also is C nonzero. Hence C

has zeros on its diagonal and C =QtAQ is as indicated.
To see that the {αj : 1 � j � r} are unique observe that the nonzero

eigenvalues of the block diagonal matrix C, repeated with necessary mul-
tiplicities, are {±α1i, . . . ,±αri}. Since A is similar to C, these are the non-
zero eigenvalues of A as well, and hence the uniqueness is proved.
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Lemma 3.2. If X(t) = ∫ t

0 〈AW(s), dW(s)〉, t � 0, where A is a real
nonzero skew symmetric d by d matrix and {W(t) : t �0} is standard sam-
ple continuous Brownian motion in Rd , then there exist strictly positive
constants {αj : 1 � j � r}, with 1 � r � d/2, uniquely determined by A,
such that with probability one

X(t)=
r∑

j=1

2αjAj (t), (3.1)

where A1, . . . ,Ar are independent Lévy stochastic area processes.

Proof. Let C = QtAQ be as in Lemma 3.1 with the 2 by 2 block
matrices of the form

[
0 −αj

αj 0

]

for j =1, . . . , r. Then, for t �0, we have X(t)= ∫ t

0 〈QCtQtW(s), dW(s)〉=∫ t

0 〈CŴ(s), dŴ (s)〉, where C has block diagonal form as given in Lemma
3.1 and {Ŵ (t) : t � 0} = {QtW(t) : t � 0} is a standard sample continuous
Brownian motion due to the orthogonal invariance of Brownian motion.
Thus Lemma 3.2 follows with A1, . . . ,Ar independent Lévy stochastic
area processes as claimed.

Applying Lemma 3.2 we henceforth may assume for some integer
r,1 � r � d/2, that we have

X(t)=
r∑

j=1

αi

∫ t

0
(B2j−1(s)dB2j (s)−B2j (s)dB2j−1(s))

and

W̃ (t)= (B1(t),B2(t), . . . ,B2r (t),B(t))

is a standard sample continuous Brownian motion in R2r+1. The next step
of the proof uses this fact to show the process {X(t) : t � 0} is equivalent
to the the process

X̃(t)=B


 r∑

j=1

α2
j

∫ t

0
(B2

2j−1(s)+B2
2j (s))ds


 , t �0,
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where B is the (2r +1)st coordinate of W̃ . In particular, this implies B is
independent of the random clock

c(t)=
r∑

j=1

α2
j

∫ 2

0
(B2

2j−1(s)+B2
2j (s))ds, t �0,

which is a fact we will exploit later. As mentioned previously, the proof of
this representation uses an argument from the very nice paper.(12)

Lemma 3.3. Let W̃ (t)= (B1(t),B2(t), . . . ,B2r (t),B(t)) be a standard
sample continuous Brownian motion on R2r+1 with {X(t) : t � 0} as in
(3.1) and A1, . . . ,Ar independent Lévy area processes. Then the law of the
process

X̃(t)=B


 r∑

j=1

α2
j

∫ t

0

(
B2

2j−1(s)+B2
2j (s)

)
ds


 , t �0, (3.2)

is equivalent to that for {X(t) : t �0}.

Proof. Assume the process X is given as in (3.1) where A1, . . . ,Ar

are independent Lévy area processes. Then the argument of Ref. 12,
depending on stochastic analysis results from Refs. 6 and 11, implies there
are Brownian motions B̃1, . . . , B̃r and random clocks C̃1, . . . , C̃r such that
these processes are all independent, the processes {B̃j (C̃j (t)) : t � 0},1 �
j � r, have the same joint (product)law as A1, . . . ,Ar , and the joint(prod-
uct)law of {C̃1, . . . , C̃r} is the same as that of {C1, . . . ,Cr}, where

Cj (t)= 1
4

∫ t

0
(B2

2j−1(s)+B2
2j (s))ds, t �0

for j =1, . . . , r.
Thus the law of {X(t) : t � 0} is the same as that of {Z(t) =∑r

j=1 2αj B̃j (C̃j (t)) : t �0}, and the conditional law of the Z process given
C̃1, . . . , C̃r is the same as that of a mean zero Gaussian process with inde-
pendent increments and variance at time t equal to

∑r
j=1 4α2

j C̃j (t). The
conditional probability law of the process X̃ given C1, . . . ,Cr is identi-
cal, as {B(t) : t � 0} is independent of {∑r

j=1 α2
j

∫ t

0 (B2
2j−1(s) + B2

2j
(s))ds :

t � 0}. Since the clocks C̃1, . . . , C̃r have the same product law as that of
C1, . . . ,Cr we thus have by integrating out the clocks that Lemma 3.3 is
proved.
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4. SOME PROBABILITY ESTIMATES

Let {X(t) : t �0} be given by the stochastic integrals in (2.1) where A

is a real nonzero skew symmetric d by d matrix. Applying Lemmas 3.1–3.3
we have strictly positive constants α1, . . . , αr ,1 � r � d/2, depending only
on A, such that the process

X̃(t)=B


∫ t

0

r∑
j=1

α2
j

(
B2

2j−1(s)+B2
2j (s)

)
ds


 , t �0 (4.1)

has the same probability law as {X(t) : t �0} and B1, . . . ,B2r ,B are inde-
pendent Brownian motions.

Here we provide the necessary probability estimates for the results
of this paper. These estimates are similar to those obtained for the sta-
ble processes in Ref. 3, and for fractional Brownian motion in Ref. 8. A
main new feature here is to use the representation in (4.1), where time is
now given by a random clock and, although the final estimates are sim-
ilar, modifications need to be made in their proofs. It is in the proof of
the lower bound results where the modifications are most pronounced. It
is also interesting to note that the proof of the upper bound results here,
and in Refs. 3 and 8, all depend on a iterative scheme. Key to this scheme
here is inequality (4.4) below, which extends Lemma 1 of Ref. 12 in an
obvious way. Once one has (4.4), the upper bounds of Proposition 1 fol-
low via Lemma 4.1, which depends on the results in Ref. 9 and the expo-
nential Tauberian theorem.

The upper bounds for our probability estimates are given in the fol-
lowing proposition.

Proposition 1. Let {X(t) : t � 0} be as in (2.1), and assume M(t) =
sup0� s � t |X(s)|, for t �0. Fix sequences {ti}mi=0, {ai}mi=1 such that 0= t0 <

t1 < · · ·<tm,0 � ai <bi for i =1, . . . ,m, and b1 � b2 � · · · � bm. Then for
all m�1

lim
ε→0+

ε log P(aiε � M(ti) � biε, i =1, . . . ,m)

� −π

2


 r∑

j=1

αj


 m∑

i=1

(
ti − ti−1

)
/bi, (4.2)

where α1, . . . , αr ,1 � r � d/2, are strictly positive numbers uniquely deter-
mined by A as in (4.1).
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Proof. Since the process {X(t) : t �0} has the same law as {X̃(t) : t �0}
where X̃(t) is as in (4.1), we will replace {X(t) : t �0} by {X̃(t) : t �0} in the
proof. Hence it suffices to prove (4.2) with M(t) replaced by M̃(t), where
M̃(t)= sup0� s � t |X̃(s)|, for t �0.

For j = 1, . . . ,2r, let {Bj (t) : t � 0} be the independent Brownian
motions of (4.1), and for t �0 set

c(t)=
r∑

j=1

α2
j

∫ t

0

(
B2

2j−1(s)+B2
2j (s)

)
ds. (4.3)

Then, given {ti}mi=0, {ai}mi=1, {bi}mi=1 as indicated, the first step of the proof
is to show that

p(aiε � M̃(ti) � biε, i =1, . . . ,m)

� (4/π)mE

(
exp

{
−π2

8
ε−2

m∑
i=1

b−2
i 
ic

})
(4.4)

where 
ic= c(ti)− c(ti−1) for i =1, . . . ,m.
To verify (4.4) let Pc denote the conditional probability P(·|c) and

define Ai ={supti−1 � s<ti
|X̃(s)| � biε} for i =1, . . . ,m. Then it follows eas-

ily that

P(aiε � M̃(ti) � biε, i =1, . . . ,m) � P(∩m
i=1Ai)

and letting µc, tm−1 denote P(X̃(tm−1)ε · |c) we have that

Pc(∩m
i=1Ai)

=
∫

R

Pc(∩m−1
i=1 Ai, sup

tm−1 � s<tm

|X̃(s)− X̃(tm−1)+x| � bmε|X̃(tm−1)=x)dµc,tm−1(x)

=
∫

R

Pc( sup
tm−1 � s<tm

|X̃(s)− X̃(tm−1)+x| � bmε)Pc(∩m
i=1Ai |X̃(tm−1 =x)dµc,tm−1(x),

since suptm−1 � s<tm
|X̃(s) − X̃(tm−1) + x| is Pc independent of X̃(tm−1)

and ∩m
i−1Ai by the Pc independent increments of {X̃(t) : t � 0}. Since

{X̃(s) : s �0} is a centered Gaussian process with respect to Pc, we have by
Anderson’s inequality that

Pc

(
sup

tm−1 � s<tm

|X̃(s)− X̃(tm−1)+x| � bmε

)

� Pc( sup
tm−1 � s<tm

|X̃(s)− X̃(tm−1)| � bmε)

=Pc( sup
0� s �1

|B(s)| � bmε/(	mc)1/2),
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where the equality follows by the scaling property of Brownian motion
and the homogeneity of its increments. Thus

Pc(∩m
i=1Ai) � Pc(∩m−1

i=1 Ai)Pc( sup
0� s �1

|B(s)| � bmε/(
mc)1/2)

and iterating this estimate we see that

Pc(∩m
i=1Ai) �

m∏
i=1

Pc( sup
0� s �1

|B(s)| � biε/(
ic)
1/2).

Hence by (1.5.2) of Ref. 5, p. 43 we see

Pc(∩m
i=1Ai) � (4/π)m exp

{
−π2

8
ε−2

m∑
i=1

b−2
i 
ic

}
,

and taking expectations we thus have (4.4).
Our next step is to understand the righthand term in (4.4) by use

of the exponential Tauberian theorem. That is, we prove the following
lemma.

Lemma 4.1. Let 0 < d1 � d2 � · · · � dm and suppose c(t) is as in
(4.3). Let 0= t0 <t1 <t2 < · · ·<tm and 
ic= c(ti)− c(ti−1) for i =1, . . . ,m.
Then

lim
λ→∞

λ−1/2 log E

(
exp

{
−λ

m∑
i=1


ic/d
2
i

})

=−21/2


 r∑

j=1

αj


 m∑

i=1

(ti − ti−1)/di (4.5)

and

lim
ε→0+

εlog P

(
m∑

i=1


ic/d
2
i � ε

)
=−


 r∑

j=1

αj




2(
m∑

i=1

(ti − ti−1)/di

)2/
2. (4.6)

Proof. Applying Theorem 6.4 of Ref. 9 with ρ(t)=∑m
i=1 d−1

i I[ti−1−ti ](t)

for t �0, we have for each α >0 and j =1, . . . ,2r that

lim
ε→0+

εlog P

(
α2

m∑
i=1

d−2
i

∫ ti

ti−1

B2
j (s)ds � ε

)
=−α2

8

(
m∑

i=1

(ti − ti−1)/di

)2

. (4.7)
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Hence by the exponential Tauberian theorem as in Ref. 2, p. 254 we have
that as λ→∞

log E

(
exp

{
−λα2

m∑
i=1

d−2
i

∫ ti

ti−1

B2
j (s)ds

}
∼−2−1/2α

(
m∑

i=1

(ti − ti−1)/di

)
λ1/2

(4.8)

for j = 1, . . . ,2r. Hence by the independence of the Brownian motions
(4.8) easily implies (4.5). Applying the exponential Tauberian theorem
again we see that (4.5) gives (4.6). Hence Lemma 4.1 holds.

To finish the proof of Proposition 1 we apply (4.5) to (4.4) with
λ= π2

8 ε−2 and {bi}={di}. This yields (4.2) and Proposition 1 holds.
Now we turn to the lower bounds which are companions for the

upper bounds of Proposition 1.

Proposition 2. Fix sequences {ti}mi=0, {ai}mi=1, {bi}mi=0 such that 0= t0 <
t1 < · · · < tm and 0 = b0 � a1 < b1 � a2 < b2 � · · · � am < bm and assume
{c(t) : t � 0} is as in (4.3). Then for γ > 0 we take 0 < δ < γ such that
ai(1+ δ)<bi(1− δ) for i =1, . . . ,m and we set di(δ)=ai(1+ δ) or di(δ)=
bi(1 − δ) for i = 1, . . . ,m. Let G denote all possible sequences {di(δ)}mi=1
with at least one di(δ)=ai(1+ δ) for some i =1, . . . ,m. Then

P(aiε � M(ti) � biε,1 � i � m, |X(tm)| � bmγ ε)

� (2/π)mE

(
exp

{
−π2

8
ε−2

m∑
i=1

(bi(1− δ))−2
ic

}
m∏

i=1

Pc

(
|B(1)| � 
ibδε

(
ic)1/2

))

−(4/π)m
∑

{di (δ)}∈G

E

(
exp

{
−π2

8
ε−2

m∑
i=1

(di(δ))
−2
ic

})
, (4.9)

where 
ic= c(ti)− c(ti−1) and 
ib=bi −bi−1 for i =1, . . . ,m.

Proof. Replacing the X and M processes by {X̃(t) : t �0} and {M̃(t) :
t �0} as in Proposition 1, we define

Bi ={aiε � sup
ti−1 � s � ti

|X̃(s)| � biε, |X̃(ti)| � biδε}

for i =1, . . . ,m. Then

{aiε � M̃(ti) � biε,1 � i � m, |X̃(tm)| � bmγε}⊇∩m
i=1Bi (4.10)
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and if for i =1, . . . ,m we define

Ai =
{
ai(1+ δ)ε � sup

ti−1 � s � ti

|X̃(s)− X̃(ti−1)|

� bi(1− δ)ε, |X̃(ti)− X̃(ti−1)| � 
ibδε

}
,

it follows that with Pc(·)=P(·|c) we have

Pc(∩m
i=1Bi) � Pc(∩m−1

i=1 Bi ∩Am)

= Pc(∩m−1
i=1 Bi)Pc(Am)

�
m∏

i=1

Pc(Ai), (4.11)

where the last inequality follows by iteration. If 
ic>0, then

Pc(Ai)=Pc

(
ai(1+ δ)ε

(
ic)1/2
� sup

0� s �1
|B(s)| � bi(1− δ)ε

(
ic)1/2
, |B(1)| � 
ibδε

(
ic)1/2

)

and by Sidák’s lemma we therefore have

Pc(Ai)� (fi −gi)Pc

(
|B(1)| � 
ibδε

(
ic)1/2

)
, (4.12)

where fi=Pc

(
sup0� s �1 |B(s)|� bi (1−δ)ε

(
i c)
1/2

)
and gi=Pc

(
sup0� s �1 |B(s)|� ai (1+δ)ε

(
i c)
1/2

)
for

i =1, . . . ,m. Of course, fi and gi depend on ai, bi, δ and 
ic, but we sup-
press that. Combining (4.11) and (4.12) we therefore have

P(∩m
i=1Bi) � E

(
m∏

i=1

Pc(Ai)

)

� E

(
m∏

i=1

(fi −gi)Pc

(
|B(1)| � 
ibδε

(
ic)1/2

))

� E

(
m∏

i=1

fiPc

(
|B(1)| � 
ibδε

(
ic)1/2

))

−
∑

{hi }mi=1∈H

E

(
m∏

i=1

hiPc

(
|B(1)| � 
ibδε

(
ic)1/2

))

� E

(
m∏

i=1

fiPc

(
|B(1)|� 
ibδε

(
ic)1/2

))
−

∑
{hi }∈H

E

(
m∏

i=1

hi

)
, (4.13)
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where H ={{hi}mi=1 :hi =fi or gi and at least one hi =gi}. Furthermore, if

ic=0 for some i, then Pc(Ai)=0, fi =gi , and (4.13) is still valid.

Since

(2/π) exp

{
−π2

8
x−2

}
� P( sup

0� s �1
|B(s)| � x) � (4/π) exp

{
−π2

8
x−2

}

for all x >0, it follows for 
ic�0 that

m∏
i=1

fi � (2/π)m exp

{
−π2

8
ε−2

m∑
i=1

(bi(1− δ))−2
ic

}
. (4.14)

Now for each {hi}∈H there corresponds one and only one {di(δ)}∈G and
hence for this {di(δ)} we have

E

(
m∏

i=1

hi

)
� (4/π)mE

(
exp

{
−π2

8
ε−2

m∑
i=1

d−2
i (δ)
ic

})
. (4.15)

Combining (4.10), (4.13), (4.14), and (4.15) we have (4.9) holding. Hence
Proposition 2 is proved.

In order to obtain lower bound analogue for (4.2) we need several
additional lemmas.

Lemma 4.2. For each {hi} ∈H and uniquely corresponding {di(δ)} ∈
G we have for δ >0 that

lim
ε→0+

ε log E

(
m∏

i=1

hi

)
� −π

2


 r∑

j=1

αj



(

m∑
i=1

(ti − ti−1)/di(δ)

)
. (4.16)

Proof. Using (4.15) we see

log E

(
m∏

i=1

hi

)
� log E

(
exp

{
−π2

8
ε−2

m∑
i=1

d−2
i (δ)
ic

})
+ log

(
4
π

)m

and hence by (4.5) of Lemma 4.1, with λ= (π2/8)ε−2, we have (4.6).
Our next lemma is a variation on the lower bound in the proof of the

exponential Tauberian theorem which we need.
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Lemma 4.3. Let {βi}mi=1 and {γi}mi=1 be sequences of strictly positive
real numbers and assume {ηi}mi=1 are non-negative random variables such
that for some α >0 and V (β1, . . . , βm)>0 we have

lim
ε→0+

εα log P

(
m∑

i=1

ηi/βi � ε

)
=−V (β1, . . . , βm). (4.17)

If G is a normal random variable with mean zero and variance one, then

limλ→∞λ−α/(α+1) log E

(
exp

{
−λ

m∑
i=1

ηi/βi

}
m∏

i=1

P(|G| � γi(ηiλ)−1/2)

)

� −(α +1)α−α/(α+1)V (β1, . . . , βm)1/(α+1). (4.18)

Proof. First observe that for every L > 0, there exists cL > 0 such
that

E

(
exp

{
−λ

m∑
i=1

ηi/βi

}
m∏

i=1

P(|G| � γi(ηiλ)−1/2)

)

� E

(
exp

{
−λ

m∑
i=1

ηi/βi

}
I

(
m∑

i=1

ηi/βi � L

)
n∏

i=1

P(|G| � γi(ηiλ)−1/2)

)

� (cL/λ1/2)mE

(
exp

{
−λ

m∑
i=1

ηi/βi

}
I

(
m∑

i=1

ηi/βi � L

))

= (cL/λ1/2)m
∫ L

0
e−λxdµ(x), (4.19)

where µ=L(
∑m

i=1 ηi/βi). The existence of cL in (4.19) follows easily since∑m
i=1 ηi/βi � L implies inf1� i �mγi/η

1/2
i � inf1� i �m

γi

(βiL)1/2 >0 under the
positivity assumptions on {βi}mi=1, {γi}mi=1, and {ηi}mi=1. Thus for ξ >0 and
θ =λ−1/(α+1)ξ−1/α we have

limλ→∞λ−α/(α+1) log
∫ L

0
e−λxdµ(x)

� limλ→∞λ−α/(α+1) log
∫ θ

0
exp{−λx)dµ(x)

� limλ→∞λ−α/(α+1)[−θλ+ log µ((0, θ ])]

� −ξ−1/α −V (β1, . . . , βm)ξ

� −(1+α)V (β1, . . . , βm)1/(α+1)α−α/(α+1), (4.20)
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where the last inequality holds by setting ξ = (V (β1, . . . , βm)α)
− α

(α+1) .
Combining (4.19) and (4.20), Lemma 4.3 now follows.

Lemma 4.4. Under the previous conditions

lim
ε→0+

ε log E

(
m∏

i=1

fiPc

(
|B(1)| � 
ibδε

(
ic)1/2

))

� −π

2


 r∑

j=1

αj



(

m∑
i=1

(ti − ti−1)/(bi(1− δ))

)
. (4.21)

Proof. Since
∏m

i=1 fi � (2/π)m exp{−(π2/8)ε−2∑m
i=1(bi(1−δ))−2
ic},

by (4.14), (4.21) follows from (4.6) and Lemma 4.3, (4.18), with
λ = ε−2π2/8, α = 1, ηi = 
ic,βi = (bi(1 − δ))2 for i = 1, . . . ,m, and
V (x2

1 , . . . , x2
m) = (

∑r
j=1 αj )

2(
∑m

i=1(ti − ti−1)/(xi))
2/2 for {xi}mi=0 a positive

sequence.

Proposition 3. Assume the condition in Proposition 2. Then for all
m � 1

lim
ε→0+

ε log P(aiε � M(ti) � biε, i =1, . . . ,m)

� −π

2


 r∑

j=1

αj


 m∑

i=1

(ti − ti−1)/bi . (4.22)

Proof. Combining (4.16) and (4.21) and that

m∑
i=1

(ti − ti−1)/(bi(1− δ))<

m∑
i=1

(ti − ti−1)/di(δ)

for all δ >0 we have the limit as ε →0+ of

E

(
exp

{
−π2

8
ε−2

m∑
i=1

(di(δ))
−2
ic

})

divided by

E

(
exp

{
−π2

8
ε−2

m∑
i=1

(bi(1− δ))−2
ic

}
m∏

i=1

Pc

(
|B(1)| � 
ibδε

(
ic)1/2

))

is zero for each {di(δ)}∈G.
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Thus (4.9), Lemma 4.4, and that log(A−B)= log A+ log(1−B/A) eas-
ily yields (4.22) with

∑m
i=1(ti − ti−1)/bi replaced by

∑m
i=1(ti − ti−1)/(bi(1− δ)).

Since δ >0 is arbitrary and does not appear in the left-hand term of (4.22), the
limit as δ →0+ yields (4.22).

5. PROOF OF THEOREM 1

Given the probability estimates of Proposition 1 and 3, the proof of
Theorem 1 follows once one establishes the following three facts. That is,
we need to prove

P(C({ηn})⊆K)=1, (5.1)

P({ηn} is relatively compact in M)=1 (5.2)

and

P(K ⊆C({ηn}))=1. (5.3)

The topology on M is given by weak convergence as described above,
and is discussed in detail in Ref. 3. As mentioned previously, the weak
topology M is separable and metric, and a subset F of M is relatively
compact if for every � > 0 there exists t0 = t0(�) such that t � t0 implies
inf
f ∈F

f (t) � �. The proofs of (5.1) and (5.2) follow as for their analogues

in Ref. 3. Hence we do not include the details, but turn to (5.3), whose
proof is different in this setting.

Proposition 4. P(K ⊂C({ηn}))=1.

Proof. Following the argument for the analogue in Ref. 3 it suffices
to show that for every f ∈K which is strictly increasing where it is finite,
and satisfying

�(f )=
∫ ∞

0
(f (t))−1 dt <1,

we have for every weak neighborhood Nf of f that

P(ηn ∈Nf i.o.)=1. (5.4)

The fact that f ∈K can be taken strictly increasing where it is finite can
be handled by replacing f by f̃ (t)=f (t)+βt where β is sufficiently small
in the argument in Ref. 3.
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Let t∗f = sup{t : f (t) < ∞}. Then t∗f = ∞ or 0 � t∗f < ∞. If t∗f = ∞,
then a typical weak neighborhood of f is of the form N =∩m

j=1�j where
0<t1 < · · ·<tm

�j ={g :f (tj )− θ <g(tj )<f (tj )+ θ} (5.5)

and θ >0. If 0<t∗f <∞, then a typical weak neighborhood of f is of the
form

Nf =
( m⋂

j=1

�j

)
∩
( s⋂

k=1

Rm+k

)
, (5.6)

where 0 = t0 < t1 < · · · < tm < t∗f � tm+1 < · · · < tm+s , �j is as in (5.5), and
Rm+k ={g : g(tm+k)>mk}. When t∗f = 0, then a typical neighborhood of f

is of the form

Nf =
s⋂

k=1

Rk,

where Rk ={g(tk)>mk}.
Assuming �(f )<1 and f is strictly increasing, we consider only the

case t∗f = ∞ (the other cases being much the same). Then Nf =⋂m
j=1 �j

where �j is as in (5.5), and we turn to verifying (5.4).
Let nk =kk and define for k � 1 the processes

Xk(s)=
∫ s+n2k−1

n2k−1

〈A(W(u)−W(n2k−1)), dW(u)〉 s � 0. (5.7)

Of course, if s � 0, then we define Xk(s)=0. Then the law of {Xk(s) : s �0}
is the same as that of {X(s) : s � 0}, and

Xk(s) =X(s +n2k−1)−X(n2k−1)

−〈AW(n2k−1),W(s +n2k−1)−W(n2k−1)〉, s � 0. (5.8)

Hence for n2ks � n2k−1 we have

X(n2ks)−Xk(n2ks −n2k−1) = X(n2k−1)

+〈AW(n2k−1),W(n2ks)−W(n2k−1)〉,
and for 0 � n2ks � n2k−1 we have

X(n2ks)−Xk(n2ks −n2k−1)=X(n2ks),

which implies

sup
0� s<tm

|X(n2ks)−Xk(n2ks −n2k−1)| � I1,k + I2,k, (5.9)
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where

I1,k = sup
0� s �n2k−1/n2k

|X(n2ks)|=M(n2k−1) (5.10)

and

I2,k= sup
n2k−1/n2k�s�tm

|X(n2k−1)+〈AW(n2k−1),W(n2ks)−W(n2k−1)〉|. (5.11)

Next we define the maximal process {Mk(t) : t � 0} in terms of the Xk pro-
cess, shifted somewhat. That is, we define

Mk(t)= sup
0� s � t

|Xk(n2ks −n2k−1)|, t � 0

and since Xk(s)=0 for s � 0 we see that

Mk(t)= sup
n2k−1/n2k � s � t

|Xk(n2ks −n2k−1)|, t � 0. (5.12)

In particular, since the law of {Xk(t) : t � 0} is the same as that of {X(t) :
t � 0}, we have the law of {Mk(t) : t � 0} equal to the law of {M(n2k(t −
n2k−1/n2k)) : t � 0}, where we understand M(s)=0 for s � 0. In addition,
we then have from (5.9) to (5.11) that

sup
1� i �m

|Mk(ti)−M(n2kti)| � I1,k + I3,k, (5.13)

where

I3,k =M(n2k−1)

+ sup
n2k−1/n2k � s � tm

|〈AW(n2k−1),W(n2ks)−W(n2k−1)〉|. (5.14)

Next define an = cAn/LLn where cA =π/2
∑r

j=1 αj as in Theorem 1,
and let

Ak ={M(n2kti)/an2k
∈�i, i =1, . . . ,m},

Bk ={Mk(ti)/an2k
∈ (f (ti)− θ/2, f (ti)+ θ/2), i =1, . . . ,m}, (5.15)

and

Ck ={ sup
1� i �m

|Mk(ti)−M(n2kti)|/an2k
� θ/2}

for k = 1,2, . . . , and θ > 0. From (5.7) we easily see the {Bk : k � k0} are
independent events for k0 sufficiently large because the increments of the
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Brownian motion are independent and n2k−1 � n2ktm � n2k+1 for all k

sufficiently large. In addition we have

Bk ⊆Ak ∪Ck

and hence P(Ak i.o.)=1 if we show P(Bk i.o.)=1 and P(Ck i.o.)=0.
Hence the proof of Proposition 4 will follow from the next two

lemmas.

Lemma 5.1. P(Ck i.o.)=0.

Proof. It suffices to show
∑∞

k=1 P(Ck) < ∞, and using (5.12)–(5.14)
we need only show for every δ >0 that

∞∑
k=1

P(M(n2k−1)>δan2k
)<∞ (5.16)

and
∞∑

k=1

P

(
sup

εk � s � tm

|〈AW(n2k−1),W(n2ks)−W(n2k−1)〉|>δan2k

)
<∞, (5.17)

where εk =n2k−1/n2k.
Now define bk =n2k/(n2k−1LLn2k). Then

P(M(n2k−1)>δan2k
) = P(M(1)>δcAbk)

= P( sup
0� s �1

|B(c(s))|>δcAbk)

and since

P( sup
o� s �1

|B(c(s))|>x) � 4P(B(c(1))>x)

� 4E(B2(c(1)))/x2

= 4E(c(1)E(B2(1)|c))/x2

= 4E(c(1))/x2,

we have

P(M(n2k−1)>δan2k
) � 4E(c(1))/(δcAbk)

2

= O(LK/k2).

Thus (5.16) holds.
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To verify (5.17) set

pk =P

(
sup

εk � s � tm

|〈AW(n2k−1),W(n2ks)−W(n2k−1)〉|>δan2k

)

and then observe that by the independent increments of {W(s) : s � o} we
have

pk =
∫

Rd

P

(
sup

εk � s � tm

|〈y,W(n2ks)−W(n2k−1)〉|>δan2k

)
dPAW(n2k−1)(y)

� 4
∫

Rd

P
(|〈y,W(n2ktm)−W(n2k−1)〉|>δan2k

)
dPAW(n2k−1)(y)

� 4 exp
{−λδan2k

}∫
Rd

E
(
e〈y,Zk〉

)
dPAW(n2k−1)(y),

where Zk =W(n2ktm)−W(n2k−1). Therefore

pk � 4 exp
{−λδan2k

}
E
(

exp
{
λ2(n2ktm −n2k−1)n2k−1|AW(1)|2/2

})

and setting ξk =λ2(n2ktm −n2k−1)n2k−1|A|2 we have

pk � 4 exp{−λδan2k
}
∫

Rd

exp{ξk|y|2/2−|y|2/2}dy.

Hence letting λ= (2(n2ktm −n2k−1)|A|2)−1/2 we see

pk � 4 exp{−δ(2(n2ktm −n2k−1)n2k−1|A|2/2)−1/2cAn2k/LLn2k}
×
∫

Rd

exp{−|y|2/4}dy

� 4 exp{−Ck1/2/Lk}

for some strictly positive constant C. Thus (5.17) holds and Lemma 5.1 is
proven.
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Lemma 5.2. P(Bk i.o.)=1.

Proof. since the {Bk :k � k0} are independent for some k0 sufficiently
large, it suffices to show

∑∞
k=1 P(Bk)=∞.

Recalling εk =n2k−1/n2k and that {X(t) : t � 0} and {Xk(t) : t � 0} are
equal in law, we see

P(Bk)=P(M(ti − εk)∈ cA(LLn2k
)−1Ei(θ/2),1 � i � m),

where Ei(θ/2) = (f (ti) − θ/2, f (ti) + θ/2),1 � i � m. Therefore P(Bk) is
greater than or equal to P(M(ti)∈ cA(LLn2k)

−1Ei(θ/4),1 � i � m) minus
the quantity P(sup1� i �m |M(ti)−M(ti − εk)| � cAθ/(4LLn2k)), so it suf-
fices to prove

∑
k �1

P(M(ti)∈ cA(LLn2k)
−1Ei(θ/4), i =1, . . . ,m)=∞ (5.18)

and
∑
k �1

P( sup
1� i �m

|M(ti)−M(ti − εk)| � cAθ/(4LLn2k)<∞ (5.19)

for all θ >0.
Since P(sup1� i �m |M(ti) − M(ti − εk)| � x) �

∑m
i=1 P(|M(ti)−

M(ti − εk)| � x) for all x > 0, to prove (5.19) it suffices to show that for
all t >0, δ >0.

∑
k �1

P(|M(t)−M(t − εk)|>δ/(LLn2k))<∞. (5.20)

Now M(t) = max{M(t − εk), supt−εk � s � t |X(t − εk) + (X(s) − X(t − εk))|}
and since M(t) � M(t − εk) because εk � 0 we easily see that

M(t) � M(t − εk)+ sup
t−εk � s � t

|X(s)−X(t − εk)|.

Therefore (5.19) follows if we show for all t >0, δ >0 that
∑
k �1

P( sup
t−εk � s � t

|X(s)−X(t − εk)|>δ/(LLn2k))<∞. (5.21)

To verify (5.21) recall by Lemma 3.3 (see (3.4)) that {X(t) : t � 0} is equal
in law to {B(c(t)) : t � 0}, where the clock process {c(t) : t � 0}, is given by
(4.3) and {B(t) : t � 0}, is a standard one-dimensional sample continuous
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Brownian motion independent of the clock process. Hence by Markov’s
inequality for all x >0 we have

P

(
sup

t−εk �s�t

|X(s)−X(t −εk)|>x

)
�E

(
sup

t−εk �s�t

|X(s)−X(t −εk)|4
)/

x4

=E

(
E

(
sup

t−εk �s�t

|B(c(s))−B(c(t −εk))|4|c
))/

x4

=E
(
|c(t)−c(t −εk)|2

)
E

(
sup

0�s�1
B4(s)

)/
x4

� 12E



∣∣∣∣∣∣
∫ t

t−εk

r∑
j=1

α2
j (B

2
2j−1(s)+B2

2j (s))ds

∣∣∣∣∣∣
2


/

x4.

Setting mr =�r
k=1α

4
k we easily see by applying Jensen’s inequality to obtain

the second inequality below that

P

(
sup

t−εk � s � t

|X(s)−X(t − εk)|>x

)

�12m2
r ε

2
kE



∣∣∣∣∣∣
∫ t

t−εk

r∑
j=1

α2
j

mr

(
B2

2j−1(s)−B2
2j

(s)
)

2
ds

εk

∣∣∣∣∣∣
2

/

x4

�12x−4m2
r ε

2
k

∫ t

t−εk

∑r
j=1 α4

j

mr

(3s2 +3s2)

2
ds

εk

=12x−4m2
r εk(t

3 − (t − εk)
3)

=12x−4m2
r ε

2
k (3t2 −3εkt + ε2

k ).

Since t >0 is fixed and δ>0 is arbitrary with εk =n2k−1/n2k, we see (5.21)
holds, and hence as indicated above (5.19) follows.

Thus it remains to verify (5.18). To check this recall Proposition 3 to
obtain

limk→∞
cA

LLn2k

log P(M(ti)∈ cA(LLn2k)
−1Ei(θ/4),1 � i � m)

� −cA

m∑
i=1

(ti − ti−1)/(f (ti)+ θ/4)

� −cA

∫ ∞

0
(f (s)+ θ/4)−1ds,
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where in the second inequality we use that f (·) is increasing on [0,∞).
Since

∫∞
0 f (s)−1ds <1, if necessary we can choose θ >0 sufficiently small

so that
∫∞

0 (f (s) + θ/4)−1ds < 1 − δ for some δ ∈ (0,1). Thus for k suffi-
ciently large we see

P(M(ti)∈ cA(LLn2k)
−1Ei(θ/4),1 � i � m) � exp{−LLn2k(1− δ/2)}.

Since nk =kk, we thus have (5.18) holding and Lemma 5.2 is proven.
This completes the proof of Proposition 4, and hence Theorem 1 is

proven.

6. PROOF OF COROLLARIES

If limn→∞ M(n)(ω)LLn/(cAn) = d(ω) < 1 on a set �0 with P(�0)>0,
then limn→∞ M(nt)(ω)LLn/(cAn) � d(ω)< 1 for all t ∈ [0,1] and ω ∈�0. If
�1 ={ω :C({ηn(ω)}) is relatively compact in M}, thenP(�0 ∩�1)=P(�0)>0
and for ω ∈�0 ∩�1 there is a subsequence {nk}= {nk(ω)} such that for some
f (·)=f (ω)(·)∈K the sequence {ηnk(ω)} converges weakly to f and

lim
nk(ω)→∞

M(nk(ω))(ω)LLnk(ω)/(cAnk(ω))=d(ω)<1.

Since f is non-decreasing we then have for all but possibly countably
many t that f is continuous at t , so at such t we have

lim
nk(ω)→∞

ηnk(ω)(t)(ω)=f (t) � lim
nk(ω)→∞

ηnk(ω)(1)(ω)=d(ω)<1.

Thus
∫∞

0 f (s)−1ds �
∫ 1

0 f (s)−1ds > 1, which contradicts f ∈ K. Hence
d(ω) � 1.

If d is any number strictly bigger than one, define f (t) = d for 0 �
t < 1 + δ and f (t) = +∞ for 1 + δ � t < ∞. Then for δ sufficiently small
we have f ∈K. Hence with probability one there is a subsequence {nk}=
{nk(ω)} such that {ηnk

(ω)} converges weakly to f , and the fact that f is
also continuous at t =1 implies

lim
nk(ω)→∞

ηnk(ω)→∞(1)(ω)=f (1)=d.

Hence with probability one, limn→∞ηn(1) � d, and since d > 1 was
arbitrary this implies with probability one that limn→∞ηn(1) � 1. Com-
bining this with the fact that this liminf must be at least one proves both
corollaries.
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7. PROOF OF THEOREM 2

The proof requires two lemmas. The first is a slight modification of
Lemma 4.1 in Ref. 3, and its proof easily follows the ideas in Ref. 3.
Hence we omit these details. The second is an extension of Lemma 4.2
in Ref. 8, which allows us to cover a broader class of weight fuctions θ

in Theorem 2. In particular, assumption (2.9) is now weaker that its com-
panion assumption (1.11) in Ref. 8.

Lemma 7.1. Let Fc(f )= ∫ 1
0 I[0,c](f (u)r(u))du, and

Gc(t)=
∫ 1

0
I[0,c]

(
ηt (u)r(u)

(
LLtu

LLt

))
du,

where r : (0,1]→ [0,∞) is measurable. Then for each c>0, with probability
one

lim
t→∞Gc(t) � sup

f ∈K

Fc(f ). (7.1)

Furthermore, we have equality in (7.1) whenever supf ∈k Fc(f ) is left con-
tinuous at c.

Lemma 7.2. Let g be real-valued, non-negative, and continuous on
(0,1] with 0 <g(1)< 1. If tg(t) is non-negative on (0,1] and lim

t↓0
tg(t)> 0,

then

sup
f ∈K0

∫ 1

0
I{t :f (t)�g(t)}(x)dx =1−u0, (7.2)

where K0 is the set of non-negative, non-increasing, right-continuous func-
tions f on (0,1] with

∫ 1
0 f (t)dt � 1, and u0 satisfies

u0g(u0)+
∫ 1

u0

g(u)du=1. (7.3)

Proof. If limt↓0 tg(t)> 1, then Lemma 7.2 follows from Lemma 4.2
in Ref. 8. If limt↓0 tg(t) = δ, where 0 < δ � 1, then we take 0 < ε0 < 1
such that ε0g(ε0) > 2δ/3. Let j (t) = tg(t) for 0 < t � 1 and set j (0)= δ.
Then j is continuous and non-increasing on [0,1], and we define for 0 <

ε � ε0 the functions jε(t) where jε(t) = j (t) for ε < t � 1 and jε(t) =
max{j (ε)kε(t), j (t)}, where kε(t)=1+2(1− t/ε)/δ on [0, ε].

Then jε(t) � j (t) on [0,1], and it is also non-increasing and con-
tinuous there. Furthermore, jε(0) = max{j (ε)kε(0), j (0)} � max{j (ε0)(1 +
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2/δ), δ} � 2δ(1 + 2/δ)/3 > 4/3. Since jε(t) � j (t) on [0,1], we thus have
gε(t)= jε(t)/t � g(t) on (0,1] and also that limt↓0 tgε(t) � 4/3. In partic-
ular, we also have gε(1)=g(1)<1, so Lemma 4.2 of Ref. 8 applies to gε .

To finish the proof let

�(g)= sup
f ∈K0

∫ 1

0
I{t :f (t)�g(t)}(x)dx

and for s ∈ (0,1] define

λ(s)= sg(s)+
∫ 1

s

g(u)du

and

λε(s)= sgε(s)+
∫ 1

s

gε(u)du.

Then by Lemma 4.2 of Ref. 8 we see that �(gε)=1−uε , where uε is
the solution to λε(s)=1 in (0,1].

Since gε � g on [0,1], it follows immediately that �(gε) � �(g). How-
ever, since gε =g on [ε,1], we see that

�(g) � ε + sup
f ∈K0

∫ 1

ε

I{t :f (t)�gε(t)}(x)dx. (7.4)

Thus �(g) � ε +�(gε) and also for s ∈ [ε,1] we have λ(s)=λε(s). In par-
ticular, if ε > 0 is sufficiently small, then the unique number u0 in [0,1]
which solves λ(s) = 1 is such that 0 < ε < uo � 1, and uε = u0 since for
s � ε, λ(s)=λε(s).

Thus for all ε ∈ (0, u0) we have 1 − u0 = 1 − uε = �(gε) � �(g), and
since �(g) � ε +�(gε) follows from (7.4) with �(gε)=1−uε , we see that

1−u0 � �(g) � ε + (1−u0).

Since ε > 0 is arbitrary, this implies �(g) = 1 − u0, and Lemma 7.2 is
proven.

Proof of Theorem 2. Since ηs(1) = ηt (s/t)(tLLs/sLLt) for s, t > 0,
letting u= s/t implies �c(t) as given in (2.8), satisfies

�c(t)=
∫ 1

0
I[0,c]

(
ηt (u)u−1θ(u)

(
LLtu

LLt

))
du.

Applying Lemma 7.1 with r(u)=u−1θ(u) implies lim sup
t→∞

�c(t)= sup
f ∈K

Fc(f )

with probability one, provided supf ∈K Fx(f ) is left continuous in x at c.
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When c>1, Lemma 7.2 implies

sup
f ∈K

Fc(f )= sup
f ∈K

∫ 1

0
I[0,c](f (u)u−1θ(u))du=1− sc. (7.5)

That is, if f (u)>cu/θ(u) on [0,1] then f −1(u)<θ(u)/(cu) on (0,1]. Letting
g(u)= θ(u)/(cu) on (0,1], we see from (2.9) that g satisfies the conditions
in Lemma 7.2. Hence from (7.2) we have

sup
f ∈K

∫ 1

0
I{t :f −1(t)�g(t)}(x)dx =1− sc, (7.6)

where sc is as defined in Theorem 2. However, since

{t :f −1(t) � g(t)}={t :f (t)t−1θ(t) � c},
we have (7.5) holding.

Therefore for c > 1, supf ∈K Fc(f ) = 1 − sc, and since h as given in
(2.10) is one-to-one and continous from (0,1] onto [1,∞) with h(1)=1 we
have sc continuous in c for each c > 1. Thus Lemma 7.1 and (7.5) imply
(2.11) for c>1. If c=1, then for δ >0

0 � sup
f ∈K

F1(f ) � sup
f ∈K

F1+δ(f )=1− s1+δ,

and since limδ↓0 s1+δ = s1 = 1, we have supf ∈K Fc(f ) = 0 when c =
1. Thus the upper bound in (7.1) implies with probability one that
lim supt→∞ �c(t) � 0 when c=1. However, this lim sup is clearly non-neg-
ative, so (2.11) holds even when c=1. Thus Theorem 2 is proven.
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