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Abstract. We study the large and moderate deviations for intersection local times generated
by, respectively, independent Brownian local times and independent local times of symmet-
ric random walks. Our result in the Brownian case generalizes the large deviation principle
achieved in Mansmann (1991) for the L2-norm of Brownian local times, and coincides
with the large deviation obtained by Csörgö, Shi and Yor (1999) for self intersection local
times of Brownian bridges. Our approach relies on a Feynman-Kac type large deviation for
Brownian occupation time, certain localization techniques from Donsker-Varadhan (1975)
and Mansmann (1991), and some general methods developed along the line of probability
in Banach space. Our treatment in the case of random walks also involves rescaling, spectral
representation and invariance principle. The law of the iterated logarithm for intersection
local times is given as an application of our deviation results.

1. Introduction

The mathematical notion of various intersection local times was motivated by the
models of polymer physics and quantum field theory. For an expository paper on
mathematical polymer models, see den Hollander (1996). For a survey on results
for one-dimensional polymers, see van der Hofstad and Klenke (2001). For an
introduction to polymers from a physicist’s point of view, see Vanderzande (1998).
For the latest work on attractive random polymer, see van der Hofstad and Klenke
(2001) and van der Hofstad, Klenke, and König (2002). For large deviation results
on the one-dimensional Edwards model, see van der Hofstad, den Hollander and
König (2003).

One of the basic quantity in the study is the associated Hamiltonian (energy
function)H which is a nonnegative function of the paths. The asymptotic behavior
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of the partition function (normalizing constant) E e−λH for λ > 0 is of great inter-
ests and it is directly connected with the lower tail behavior P(H ≤ ε) for ε > 0
under appropriate scaling. The upper tail behavior P(H ≥ x) is also important
and appears in certain self-attracting models with weight such as E eλH . There are
several other motivations given later for the study of the upper tails of Ht and hn,
defined in (1.4) and (1.10) respectively, which are the main subject of this paper.
Our approach is to combine abstract tools from probability in Banach space with
those existing methods developed in the large deviation theory of Donsker and
Varadhan. We mainly deal with the one-dimensional case in this paper.

Before we present our motivations and main results, we need some standard
notations. Unless mentioned otherwise, W(t);W1(t), · · · ,Wm(t) are independent
1-dimensional Brownian motions with the local times L(t, x);L1(t, x), · · · ,
Lm(t, x) (t ≥ 0, x ∈ R), respectively. We also use δx to denote the Dirac measure
at x. There are two kinds of basic intersections: Formally, the quantity

∫ ∞

−∞
Lp(t, x)dx =

∫ t

0
· · ·

∫ t

0

p−1∏
j=1

δ0
(
W(sj+1)−W(sj )

)
ds1 · · · dsp

measures the ‘amount’ of time spent by the path in p-multiple self-intersections up
to the time t for an integer p > 1; and the quantity

∫ ∞

−∞

m∏
j=1

Lj (t, x)dx =
∫ t

0
· · ·

∫ t

0

m−1∏
j=1

δ0
(
Wj+1(sj+1)−Wj(sj )

)
ds1 · · · dsm

(1.1)

measures the ‘amount’ of time that m independent Brownian trajectories intersect
together up to t . These random quantities are called intersection local times in lit-
erature. The basic idea to define them rigorously is to replace the Dirac measure by
a suitable approximation.

There are several motivations for this work. In a study of uniform empirical
process, Csáki, König and Shi (1999) established the following result, for p = 2
or p ≥ 3, on the large deviation for the self-intersection local time of Brownian
bridge:

lim
λ→∞

λ−2/(p−1) log P

{ ∫ ∞

−∞
ξp(1, x)dx ≥ λ

}
= −C2(1, p) (1.2)

where ξ(t, x) stands for the local time of a Brownian bridge and the explicit con-
stantC2(1, p) is given in (1.9). They raise the question on what to expect in the case
of Brownian motion. Through a subadditivity technique utilized in Khoshnevisan-
Lewis (1998), the large deviation for Lp-norm of Brownian local time with any
p > 1 can been obtained with right rate but without explicit constant.

For p = 2, an interesting development is made by Mansmann (1991) who
proved

lim
λ→∞

λ−1 log E exp

{√
λ

∫ ∞

−∞
L2(1, x)dx

}
= 1

6
(1.3)
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on the study of free energy of the Dirac polaron. See also Csáki-König-Shi (1999) for
a numerical correction of Mansmann’s result and Borodin (1982) for some related
results. By a standard argument via Gärtner-Ellis theorem, (1.3) is equivalent to

lim
λ→∞

λ−2 log P

{ ∫ ∞

−∞
L2(1, x)dx ≥ λ

}
= −3

2

which takes exactly same form as (1.2) in the context of Brownian bridge for
p = 2. Csáki, König and Shi (1999) intuitively explain why this is so by rep-
resenting Brownian bridge as normalized Brownian motion over one excursion.
According to their explanation, it becomes natural to expect that the large deviation
described in (1.2) holds also in the case of Brownian motion for all real number
p > 1. As a corollary of what we shall establish in this paper, this is confirmed to
be the case.

The notion of intersection local times is also connected to other problems. In
Khoshnevisan-Lewis (1998) and Csáki-König-Shi (1999), a simple connection on
upper tail behaviors has been established between 2-multiple self-intersection local
times and the so-called Brownian motion in Brownian sceneries

∫ ∞
−∞ L(t, x)B(dx)

through the equality

E exp

{
λ

∫ ∞

−∞
L(t, x)B(dx)

}
= E exp

{
λ2

2

∫ ∞

−∞
L2(t, x)dx

}
, ∀λ ∈ R

where {B(x); −∞ < x < ∞} is a two-sided Brownian motion (serving as scen-
ery) independent of W(t).

During our study, we also learned the connection to the local times of additive
Lévy (Brownian) process

ηm(I, x) =
∫
I

δx
(
W1(s1)+ · · · +Wm(sm)

)
ds1 · · · dsm x ∈ R I ⊂ [0,∞)m.

See Khoshnevisan-Xiao-Zhong (2003a, 2003b) for some recent progress related to
this subject. Indeed, one can easily see that

{
η2

(
[0, t]2, 0); t ≥ 0

}
d=

{ ∫ ∞

−∞
L1(t, x)L2(t, x)dx; t ≥ 0

}
.

A direct consequence of our work is an understanding of the upper tail behaviors
of local times of additive Brownian process in the case m = 2. The situation is
different for m ≥ 3. However, in view of the representation

ηm
(
[0, t]m, x) =

∫
· · ·

∫
x1+···+xm=x

m∏
j=1

Lj (t, xj )dx1 · · · dxm−1

it is our hope that the techniques developed in this work may be of use in the general
cases.

It is well known that the intersection behaviors have strong dimension depen-
dence. According to the work of Dvoretzky-Erdös-Kakutani (1950, 1954), given
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m independent d-dimensional Brownian motions W1(t), · · · ,Wm(t), the set of
intersection

m⋂
j=1

{x ∈ R; x = Wj(t) for some t ≥ 0}

contains points different from 0 if and only if (d − 2)m < d. The interested reader
is referred to a recent survey paper by Khoshnevisan (2003) for an elementary
proof of the above result and for an overview of various results and techniques.
A natural problem is to investigate, in the case when (d − 2)m < d, the long
term behaviors of the intersection local time given in (1.1). On the other hand,
self-intersection of a multi-dimensional Brownian path is a complicated issue in
which case the self-intersection local times can not be directly defined in any rea-
sonable way. As d = 2, the renormalized self-intersection local times are con-
structed essentially as centered self-intersection local times through an approxi-
mation procedure (see Le Gall (1992) for details). As pointed out in Westwater
(1980), even the renormalized Brownian self-intersection local times can not be
properly defined as d ≥ 3. Le Gall (1994) proves existence of non-trivial crit-
ical value for exponential integrability of renormalized 2-multiple self intersec-
tion local time of a 2-dimensional Brownian motion. We also refer the interested
reader to Le Gall (1992) and the references therein for the study of some other
aspects of intersection local times in the multi-dimensional case. Recently, König
and Mörters (2002) obtained the upper tail asymptotics for the (projected) Brown-
ian intersection local times on R

d , d ≥ 2, with application to thick points. Their
main tools are moment methods and analysis of variational formulas. After this
paper was submitted, some new results were obtained on the large deviations
and related results for the intersection local times of multi-dimensional Brown-
ian motions and random walks in Chen (2003), and for the renormalized self-
intersection local time of a 2-dimensional Brownian motion in Bass and Chen
(2003).

In this paper, we only consider the case d = 1 and self-attractions rather than
the case d = 1 and self-repellence, the Edwards model. More specifically, our first
goal is the large deviation principle for the mixed intersection local time

Ht =
∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx, t ≥ 0 (1.4)

wherem ≥ 1 is an integer and real number p > 0 satisfyingmp > 1. When p is an
integer, the above quantity measures the duration that m independent trajectories
intersect together, while each of them intersects itself p times:

∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx =

∫ t

0
· · ·

∫ t

0
ds1 · · · dsmpδ0

(
W1(s2)−W1(s1)

)

· · · δ0
(
W1(sp)−W1(sp−1)

)
δ0

(
W2(sp+1)−W1(sp)

)
· · · δ0

(
Wm(smp)−Wm(smp−1)

)
.
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By the scaling property of Brownian motions, for each t ≥ 0 and a ≥ 0,

∫ ∞

−∞

m∏
j=1

L
p
j (at, x)dx

d= a(mp+1)/2
∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx. (1.5)

Without loss of generality, we let time t = 1 in the following statement. We also
use B(·, ·) to denote the beta function.

Theorem 1.1. For each integer m ≥ 1 and real number p > 0 with mp > 1,

lim
λ→∞

λ−2mp/(mp+1) log E exp
{
λ
( ∫ ∞

−∞

m∏
j=1

L
p
j (1, x)dx

)1/mp} = C1(m, p)

(1.6)

and thus equivalently,

lim
λ→∞

λ−2/(mp−1) log P

{ ∫ ∞

−∞

m∏
j=1

L
p
j (1, x)dx ≥ λ

}
= −C2(m, p) (1.7)

where

C1(m, p) = (
m3mp−1p2mp)−1/(mp+1)

×
( √

2

(mp − 1)(mp + 1)
B

( 1

mp − 1
,

1

2

))−2(mp−1)/(mp+1)

(1.8)

and

C2(m, p) = − m

4(mp − 1)

(mp + 1

2

)(3−mp)/(mp−1)
B

( 1

mp − 1
,

1

2

)2
. (1.9)

Whenm = 1, from (1.7) we see that the self-intersection local times obey the same
large deviation described in (1.2), at least in the case p = 2 or p ≥ 3. It is natural
to ask whether or not that (1.2) holds for all p > 1, and more generally, Theorem
1.1 holds if Brownian motions are replaced by Brownian bridges.

Our second goal is to establish a moderate deviation principle for mixed intersec-
tion local times of 1-dimensional random walks with integer values. To avoid some
technical difficulties, we only deal with symmetric random walks. Except in section
4 (where we also deal with multi-dimensional random walks), S(n) = ∑n

k=1Xk ,
n = 1, 2, · · · is always a random walk generated by an integer-valued symmetric
i.i.d. sequence {Xn}n≥1 with σ 2 ≡ EX2

1 < ∞.Without compromising generality
we always assume that the smallest group that supports {S(n)}n≥1 is Z. Define the
local time

l(n, x) =
n∑
k=1

I{S(k)=x} x ∈ Z, n = 1, 2, · · · .
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Let {S1(n)}n≥1, · · · , {Sm(n)}n≥1 be m independent copies of {Sn}n≥1 with their
local times being denoted by l1(n, x), · · · , lm(n, x). When p > 0 is an integer, the
random quantity

hn =
∑
x∈Z

m∏
j=1

l
p
j (n, x) =

n∑
k1,··· ,kmp=1

I{S1(k1)=···=S1(kp)=···=Sm(k(m−1)p+1)=···=Sm(kmp)}

(1.10)

counts the number of times that up to the time n, the trajectories of m independent
random walks meet together, while each of them intersects itself p times. Then the
following weak law holds.

Theorem 1.2. Let m ≥ 1 be an integer and let p > 0 be real such that mp > 1.
Then

n−(mp+1)/2
∑
x∈Z

m∏
j=1

l
p
j (n, x)

d−→ σ−(mp−1)
∫ ∞

−∞

m∏
j=1

L
p
j (1, x)dx.

Next we turn to moderate deviation for the mixed intersection local times of
random walks. Throughout, {bn} represents a positive sequence satisfying

bn → ∞ and bn/n → 0. (1.11)

In the light of Theorem 1.2, the following result becomes natural.

Theorem 1.3. Let m ≥ 1 be an integer and let p > 0 be real such that mp > 1.
Then for any positive sequence {bn} satisfying (1.11),

lim
n→∞

1

bn
log E exp

{(bn
n

)(mp+1)/2mp
( ∑
x∈Z

m∏
j=1

l
p
j (n, x)

)1/mp}

= σ−2(mp−1)/(mp+1)C1(m, p) (1.12)

and thus equivalently,

lim
n→∞

1

bn
log P

{ ∑
x∈Z

m∏
j=1

l
p
j (n, x) ≥ n(mp+1)/2b

(mp−1)/2
n

}
= −σ 2C2(m, p)

(1.13)

where C1(m, p) and C2(m, p) are given in (1.8) and (1.9) respectively.

An important application of the large and moderate deviations we establish is to
obtain the law of the iterated logarithm. Indeed, we have

Theorem 1.4. For each integer m ≥ 1 and real number p > 0 with mp > 1,

lim sup
t→∞

t−(mp+1)/2( log log t
)−(mp−1)/2

∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx = C3(m, p) a.s.

(1.14)
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and

lim sup
n→∞

n−(mp+1)/2( log log n
)−(mp−1)/2 ∑

x∈Z

m∏
j=1

l
p
j (n, x)

= σ−(mp−1)C3(m, p) a.s. (1.15)

where

C3(m, p) =
(4(mp − 1)

m

)(mp−1)/2(mp + 1

2

)(mp−3)/2
B

( 1

mp − 1
,

1

2

)−(mp−1)

(1.16)

Let us make some comments on the results for random walks. The weak con-
vergence of intersection local times of random walks has been studied by Le Gall
(1986) and Rosen (1990) in the general dimension. In addition, it is always of inter-
est to ask for the long term behaviors of the intersection local times whenever they
have unbounded growth. It is known, for example, for m independent, identically
distributed lattice valued d-dimensional random walks with mean zero and finite
variance, their trajectories meet together infinitely often if and only if (d−2)m ≤ d.
The law of the iterated logarithm has been obtained for two critical cases “d = 4,
m = 2” in Marcus-Rosen (1997) and “d = m = 3” in Rosen (1997). For the
non-critical cases, i.e. (d − 2)m < d , a natural procedure is first to work on the
Brownian motions and then to extend achieved results to the random walks in
the spirit of invariance principle. The difficulty one has to overcome is disconti-
nuity of the functionals involved. In the case of 1-dimensional symmetric simple
random walks, Révész (1990) obtains the strong approximation

sup
x∈Z

|L(n, x)− l(n, x)| = o
(
n

1
4 +ε) a.s. (n → ∞).

in an enlarged probability space. Révész also points out the rate of approximation
is nearly best possible. His result is strong enough to extend the law of the iterated
logarithm for intersection local times from Brownian motions to symmetric simple
random walks, but not enough to extend the large deviation in Theorem 1.1 to the
moderate deviation given in Theorem 1.3, even in the case of symmetric simple
random walks. It is worth to point out that the techniques used in Révész (1990)
depend significantly on the unique structure of 1-dimensional symmetric simple
random walks and do not apply to general random walks.

Next we briefly outline some key technical points in each section. In Sec-
tion 2 we derive the large deviation (1.6) with right hand sides being variations
of a supremum which is solved in Section 7. Our method is different from the
one used in Mansmann (1991), where the Donsker-Varadhan (1974) large devia-
tion is essential. In fact, the well known Donsker-Varadhan large deviation is no
longer applicable in our investigation partially due to discontinuity of Brownian
local time as a functional defined on the space of probability measures on R

m

endowed with the topology of weak convergence. In addition, for m > 1, even the
lower semi-continuity is not available, which is crucially needed in Mansmann’s
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approach for the lower bounds. Furthermore, the proof of Theorem 1.3 demands a
new approach which can later be extended (at least partially) to the case of random
walks. A key idea in our treatment is to embed the Brownian local times into the
Banach space Lp(R) after reducing the problem to the special case when m = 1
and p > 1. The computation is based on a Feynman-Kac type large deviation
result given in Remillard (1998) for Brownian occupation times, which imme-
diately yields the desired lower bound after a deterministic comparison. On the
other hand, the upper bound is harder to establish due to the fact that the Brown-
ian local time fails to be exponentially tight when embedded into Lp(R), as we
shall point out in detail in Section 2. In the proof of the upper bound, we map
the Brownian motion into a circle, an idea developed in Donsker-Varadhan (1975)
and in Mansmann (1991), and then prove that the local time of “Brownian motion
on the circle” is exponentially tight, by a very general result due to de Acosta
(1985).

From Section 3 to 5, we work on Theorem 1.2 and Theorem 1.3 on random
walks. One of the key ideas is to rescale the space variable of the local times of
random walks, which makes it possible to apply invariance principle. In Section
3, we prove that a properly rescaled and normalized local time of a random walk
converges weakly to Brownian local time when it is viewed as a process with val-
ues in Lp(R) for p > 1. This leads directly to Theorem 1.2. In Section 4, we
obtain a Feynman-Kac type exponential estimate for the lower bound of moder-
ate deviation given in Theorem 1.3 with the aid of the spectral theory on Hilbert
space. We anticipate that Theorem 4.1 established in Section 4 may have some
interesting applications to other related problems. In Section 5, we prove Theorem
1.3. The following observation is helpful throughout: For any integer n, k ≥ 1, the
increment

∑
x∈Z

(
l(n+ k, x)− l(n, x)

)p

is independent of {S1, · · · , Sn}. In the proof of Theorem 1.1 and Theorem 1.3 in
Section 2 and Section 5, respectively, we only prove (1.6) and (1.12), since (1.7)
and (1.13) are their direct consequences through Gärtner-Ellis Theorem (see, e.g.,
Theorem 2.3.6 in Dembo-Zeitouni (1993)).

In Section 6, we prove Theorem 1.4, the strong limit laws of the iterated loga-
rithm, which are based on the large deviation given in Theorem 1.1 and the moderate
deviation in Theorem 1.3 through the Borel-Cantelli lemma. All arguments here
are more or less standard once deviation results are obtained.

In Section 7, we prove two analytic lemmas. One is a technical fact needed for
the upper bound of the large deviation given in Section 2. Another is a solution
of the variation problem presented in Section 2 and Section 5. Our solution is of
independent interest and a few ideas from Strassen (1964) are exploited.

It is interesting to point out that despite of some essential difference between
one and multi-dimensional cases, some of the ideas developed in this work has been
utilized in Bass and Chen (2003) and Chen (2003) in their study of the intersection
local times in the multi-dimensional case.
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Finally, we mention a more general problem on the deviation behaviors of

∫ ∞

−∞

m∏
j=1

L
pj
j (t, x)dx, t ≥ 0 and

∑
x∈Z

m∏
j=1

l
pj
j (n, x).

When pj are integers, the above quantities measure the duration (number) that
m independent trajectories intersect together, while the j th one intersect itself pj
times. Based on proofs of Theorem 1.1, we have for P = ∑m

j=1 pj > 1

lim sup
t→∞

1

t
log E exp

{
λ
( ∫ ∞

−∞

m∏
j=1

L
pj
j (t, x)dx

)1/P }

≤ λ2P/(P+1) ·
m∑
j=1

(
P−2pj

)2P/(P+1) ·
( √

2

P 2 − 1
B

( 1

P − 1
,

1

2

))−2(P−1)/(P+1)

.

It is plausible that the above upper bound is tight. New ideas are needed for this
general problem.

2. Large deviations for Brownian intersection local times

In view of Lemma 7.2 in section 7, we will have (1.6) (and therefore Theorem 1.1)
after we prove

lim
λ→∞

λ−2mp/(mp+1) log E exp

{
λ

( ∫ ∞

−∞

m∏
j=1

L
p
j (1, x)dx

)1/mp}

= m−(mp−1)/(mp+1) sup
g∈F

{( ∫ ∞

−∞
|g(x)|2mpdx

)1/mp

−1

2

∫ ∞

−∞
|g′(x)|2dx

}
(2.1)

where F is the set of absolutely continuous functions g on (−∞,∞) with
∫ ∞

−∞
|g(x)|2dx = 1 and

∫ ∞

−∞
|g′(x)|2dx < ∞. (2.2)

From (1.5), (2.1) is equivalent to

lim
t→∞ t

−1 log E exp

{( ∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx

)1/mp}

= m−(mp−1)/(mp+1) sup
g∈F

{( ∫ ∞

−∞
|g(x)|2mpdx

)1/mp

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}
.

(2.3)

Our starting point is the following result based on the Feynman-Kac formula (see,
e.g., Remillard (1998)):
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lim
t→∞ t

−1 log E exp

{ ∫ t

0
f

(
W(s)

)
ds

}

= sup
g∈F

{ ∫ ∞

−∞
f (x)g2(x)dx − 1

2

∫ ∞

−∞
|g′(x)|2dx

}
. (2.4)

where f can be any measurable, bounded function on (−∞,∞).
To establish the lower bound for (2.3), we first consider the special casem = 1

and real p > 1. We claim that for any a > 0 and γ > 0,

lim inf
t→∞ t−1 log E exp

{
γ

( ∫ a

−a
Lp(t, x)dx

)1/p}

≥ sup
g∈F

{
γ

( ∫ a

−a
|g(x)|2pdx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}
. (2.5)

Indeed, if we let q > 1 be the conjugate of p defined by p−1 + q−1 = 1 and let f
in (2.4) satisfy f ≡ 0 outside [−a, a] and

∫ a

−a
|f (x)|qdx = 1, (2.6)

Then
( ∫ a

−a
Lp(t, x)dx

)1/p

≥
∫ ∞

−∞
L(t, x)f (x)dx =

∫ t

0
f

(
W(s)

)
ds.

Consequently,

lim inf
t→∞

1

t
log E exp

{
γ

( ∫ a

−a
Lp(t, x)dx

)1/p}

≥ sup
g∈F

{
γ

∫ a

−a
f (x)g2(x)dx − 1

2

∫ ∞

−∞
|g′(x)|2dx

}
.

Note that the set of f satisfying the above inequality is dense in the unit sphere
of Lq [−a, a] and taking supremum on the right hand side over such f we obtain
(2.5). One can easily see how the lower bound of (2.3) follows from (2.5) in the
casem = 1 and p > 1. To extend it to the general case, we prove that, when viewed
as stochastic process taking values in the Banach space Lp[−a, a] (p > 1), the
truncated, normalized local time {t−1L(t, x); −a ≤ x ≤ a} is exponentially tight:
For any M > 0, there is a compact set KM ⊂ Lp[−a, a] such that

lim sup
t→∞

t−1 log P

{
t−1L(t, ·) �∈ KM

}
≤ −M. (2.7)

Indeed, by Lemma 3.4 of Donsker-Varadhan (1977), for any ε > 0

lim
δ→0+

lim sup
t→∞

t−1 log P

{
sup

|x−y|≤δ
|L(t, x)− L(t, y)| > εt

}
= −∞. (2.8)
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Due to joint continuity ofL(t, x) as function of t and x, this can be slightly strength-
ened into: for any ε > 0 and N > 0, there is a δ > 0 such that

sup
t≥1

t−1 log P

{
sup

|x−y|≤δ
|L(t, x)− L(t, y)| > εt

}
≤ −N.

Hence, for any integer k ≥ 1, there is a δk > 0 such that

sup
t≥1

t−1 log P

{
sup

|x−y|≤δk
|L(t, x)− L(t, y)| > k−1t

}
≤ −kM.

We take KM as the closure (in Lp[−a, a]) of the set

A =
∞⋂
k=1

{
f ; f ≥ 0,

∫ a

−a
f (x)dx ≤ 1 and sup

|x−y|≤δk
|f (x)− f (y)| ≤ k−1

}
.

Note that A is an equi-continuous family. According to the Ascoli theorem, A
is relatively compact when viewed as a subset of C[−a, a]. We claim that A
is also relatively compact in Lp[−a, a] – therefore KM is compact in Lp(R).
This follows from the fact that for any sequence {fn} ⊂ A, the uniform conver-
gence supx∈[−a,a] |fn(x) − f (x)| → 0 leads to Lp-convergence

∫ a
−a |fn(x) −

f (x)|pdx → 0 as n → ∞. Furthermore, for any t ≥ 1,

P

{
t−1L(t, ·) �∈ KM

}
≤

∞∑
k=1

P

{
sup

|x−y|≤δk
|L(t, x)− L(t, y)| > k−1t

}

≤
∞∑
k=1

e−kMt = (
1 − e−Mt

)−1
e−Mt

which leads to (2.7).
Next we present the proof of the lower bound for (2.3) in the general case. Note

that the functional � defined by

�(f1, · · · , fm) = 1

m

m∑
j=1

( ∫ a

−a
|fj (x)|mpdx

)1/mp

−
( ∫ a

−a

m∏
j=1

|fj (x)|pdx
)1/mp

is non-negative formp ≥ 1 and continuous on the Banach space ⊗m
j=1Lmpj [−a, a],

and that � ≡ 0 on the diagonal

{(f1, · · · , fm); f1 = · · · = fm}.

Hence, for given ε > 0 and any f ∈ Lmp[−a, a] there exists a δ = δ(f, ε) > 0
such that

�(f1, · · · , fm) ≤ ε for fj ∈ B(f, δ), ∀1 ≤ j ≤ m
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where B(f, δ) stands for the open ball in Lmp[−a, a] with the center f and the
radius δ. Therefore, if we view Lj (t, ·) (1 ≤ j ≤ m) as stochastic processes taking
values in Lmp[−a, a] by limiting the space variable x to [−a, a], we have

E exp

{( ∫ a

−a

m∏
j=1

L
p
j (t, x)dx

)1/mp}

≥ e−tεE
(

exp

{
1

m

m∑
j=1

( ∫ a

−a
L
mp
j (t, x)dx

)1/mp}
;

t−1Lj (t, ·) ∈ B(f, δ) ∀1 ≤ j ≤ m

)

= e−tε
(

E

(
exp

{
1

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp}
; t−1L(t, ·) ∈ B(f, δ)

))m
.

Let KM ⊂ Lmp(R) be the compact set given by (2.7) (with p being replaced by
mp). Then by the Cauchy-Schwarz inequality

E

(
exp

{
1

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp}
; t−1L(t, ·) �∈ KM

)

≤
(

E exp

{
2

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp})1/2(
P

{
t−1L(t, ·) �∈ KM

})1/2

.

Note that

lim sup
t→∞

t−1 log E exp

{
2

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp}
< ∞.

Hence, for sufficiently large M ,

lim sup
t→∞

t−1 log E

(
exp

{
1

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp}
; t−1L(t, ·) �∈ KM

)
< 0

which leads to

E

(
exp

{
1

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp}
; t−1L(t, ·) ∈ KM

)

∼ E exp

{
1

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp}
(t → ∞).

Let {B(g1, δ1), · · · , B(gN, δN)} be a collection of finite number of open balls
in Lmp[−a, a] that covers KM . Then

E

(
exp

{
1

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp}
; t−1L(t, ·) ∈ KM

)

≤
N∑
i=1

E

(
exp

{
1

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp}
; t−1L(t, ·) ∈ B(gi, δi)

)
.
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Therefore,

lim inf
t→∞ t−1 log max

1≤i≤N

{
E

(
exp

{
1

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp}
;

t−1L(t, ·) ∈ B(gi, δi)
)}

≥ lim inf
t→∞ t−1 log E exp

{
1

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp}
.

Summarizing the above discussion, we have

lim inf
t→∞ t−1 log E exp

{( ∫ a

−a

m∏
j=1

L
p
j (t, x)dx

)1/mp}

≥ −ε +m lim inf
t→∞ t−1 log E exp

{
1

m

( ∫ a

−a
Lmp(t, x)dx

)1/mp}

≥ −ε +m sup
g∈F

{
1

m

( ∫ a

−a
|g(x)|2mpdx

)1/mp

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}

where the last step follows from (2.5) with γ = m−1 and p being replaced by mp.
Letting ε → 0 and then taking supremum over a > 0 leads to the lower bound

lim inf
t→∞ t−1 log E exp

{( ∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx

)1/mp}

≥ m sup
g∈F

{
1

m

( ∫ ∞

−∞
|g(x)|2mpdx

)1/mp

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}

which is the lower bound in (2.3) by using the substitution g(x) �→ m−mp/2(2mp+1)

g
(
m−mp/(2mp+1)x

)
. We thus finished the proof of the lower bound for (2.3).

To establish the upper bound for (2.3), we first deal with the case m = 1 and
p > 1. That is, we shall prove

lim sup
t→∞

t−1 log E exp

{( ∫ ∞

−∞
Lp(t, x)dx

)1/p}

≤ sup
g∈F

{( ∫ ∞

−∞
|g(x)|2pdx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}
. (2.9)

Before the proof, let us mention that the situation we face is quite different from
the one in the proof of the lower bound. Indeed, the approach of truncation is no
longer working as the tails of

∫ ∞

a

Lp(t, x)dx and
∫ −a

−∞
Lp(t, x)dx

are too heavy to be cut off. In fact, based on (2.4) and by an argument similar to
the one for (2.5), we have
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lim inf
t→∞ t−1 log E exp

{( ∫ ∞

a

Lp(t, x)dx

)1/p}

≥ sup
g∈F

{( ∫ ∞

a

|g(x)|2pdx
)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}

= sup
g∈F

{( ∫ ∞

−∞
|g(x)|2pdx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}

where the second step follows from shifting the variable x. This shows that no matter
how large a is, the tails have the same weight as the whole integral

∫ ∞
−∞ Lp(t, x)dx

in the sense of large deviation. It also indicates that {t−1L(t, ·)} is no longer expo-
nentially tight when embedded into Lp(R) without truncation. That is why we do
truncation at a fixed level a > 0 in the proof of the lower bound.

We shall localize the value space by mapping the Brownian path into a com-
pact space, an approach developed by Donsker-Varadhan (1975) in study of the
Wiener sausage (see, also Mansmann (1991) for an application close to our sit-
uation). Let M > 0 be fixed and let TM be the set of equivalent classes under
the equivalence relation on R defined by x ∼ y if x − y = M . Let λ(dx) be
the Lebesgue (Haar) measure on the compact group TM . Let W∗(t) be the image
of W(t) under the quotient map x ∈ R �→ x̄ ∈ TM . In the literature, the pro-
cess W∗(t) is called the Brownian motion on TM . It can be seen that W∗(t) is
a Markov process with independent increments. It can also be verified that the
process

L∗(t, x̄) =
∑
k∈Z

L(t, x + kM) t ≥ 0 x ∈ R

is the local time of W∗(t). That is, for each t ≥ 0, L∗(t, ·) is the density of
the occupation measure

∫ t
0 I{W∗(s)∈A}ds,A ⊂ TM, with respect to λ(dx). Note

that

∫ ∞

−∞
Lp(t, x)dx =

∑
k∈Z

∫ M

0
Lp(t, x + kM)dx

≤
∫ M

0

( ∑
k∈Z

L(t, x + kM)

)p
dx =

∫
TM

(
L∗(t, x̄)

)p
λ(dx̄).

For any measurable function f on TM , define f∗(x) = f (x̄). Then f∗ is a periodic
function with the period M and

∫
TM

f (x̄)L∗(t, x̄)λ(dx̄) =
∫ M

0
f∗(x)

∑
k∈Z

L(t, x + kM)dx

=
∫ ∞

−∞
f∗(x)L(t, x)dx =

∫ t

0
f∗

(
W(s)

)
ds.
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From (2.4),

lim
t→∞ t

−1 log E exp

{ ∫
TM

f (x̄)L∗(t, x̄)λ(dx̄)
}

= sup
g∈F

{ ∫ ∞

−∞
f∗(x)g2(x)dx − 1

2

∫ ∞

−∞
|g′(x)|2dx

}

= sup
g∈F

{ ∫ M

0
f∗(x)

( ∑
k∈Z

g2(x + kM)
)
dx − 1

2

∫ ∞

−∞
|g′(x)|2dx

}
. (2.10)

In the following lemma, we show that the process {L∗(t, ·)} can be embedded into
the separable Banach space Lp(TM) and that {t−1L∗(t, ·)} is exponentially tight in
Lp(TM).

To this end, let us recall some concepts related to Minkowski functionals. Given
a Banach space B, a set K ⊂ B is called positively balanced, if λx ∈ K whenever
λ ∈ [0, 1] and x ∈ K . The Minkowski functional qK(·) of a convex and positively
balanced set K is defined by

qK(x) = inf{λ > 0; x ∈ λK}
with the customary convention that inf φ = ∞. Then qK(·) is subadditive and
positively homogeneous:

qK(x + y) ≤ qK(x)+ qK(y) and qK(λx) = λqK(x) x, y ∈ B, λ ≥ 0.

Lemma 2.1. For each t ≥ 0,

P
{
L∗(t, ·) ∈ Lp(TM)} = 1. (2.11)

Moreover, there is a compact, convex, positively balanced subset K ∈ Lp(TM)
such that

lim sup
t→∞

t−1 log E exp
{
qK

(
L∗(t, ·)

)}
< ∞ (2.12)

where qK(·) is the Minkowski functional of K .

Proof. For simplicity we only prove (2.11) in the case t = 1 and (2.12) in the case
t = n runs along positive integers. Note that

( ∫
TM

L
p
∗ (1, x̄)λ(dx̄)

)1/p

=
( ∫ M

0

( ∑
k∈Z

L(1, x + kM)

)p
dx

)1/p

≤
∑
k∈Z

( ∫ M

0
Lp(1, x + kM)dx

)1/p

=
∑
k∈Z

( ∫ M

0
Lp(1, x + kM)dx

)1/p

I{kM ∈ [ min
0≤s≤1

W(s), max
0≤s≤1

W(s)+M]}
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≤
( ∑
k∈Z

I{kM ∈ [ min
0≤s≤1

W(s), max
0≤s≤1

W(s)+M]}
)1/q

×
( ∑
k∈Z

∫ M

0
Lp(1, x + kM)dx

)1/p

≤ 2M−1
(

max
0≤s≤1

|W(s)| + 1
)1/q

( ∫ ∞

−∞
Lp(1, x)dx

)1/p

≤ 2M−1
(

max
0≤s≤1

|W(s)| + 1
)(p−1)/p

sup
x∈R

L1/q(1, x)

≤ M−1
((

max
0≤s≤1

|W(s)| + 1
)2/q + sup

x∈R

L2/q(1, x)

)
.

Note that there is γ0 > 0 such that

E exp
{
γ0 sup

x∈R

L2(1, x)
}
< ∞ and E exp

{
γ0 max

0≤s≤1
|W(s)|2

}
< ∞.

In fact, the first is given in Theorem 1.7 of Borodin (1986), and the second is well
known for any norm of Gaussian elements. Hence,

E exp

{
γ

( ∫
TM

L
p
∗ (1, x̄)λ(dx̄)

)1/p}
< ∞, for any γ > 0. (2.13)

In particular, we have (2.11).
Similarly, for any ȳ, z̄ ∈ TM ,

( ∫
TM

(
L∗(1, x̄ + ȳ)− L∗(1, x̄ + z̄)

)p
λ(dx̄)

)1/p

=
( ∫

TM

(
L∗(1, x̄)− L∗(1, x̄ + z̄− ȳ)

)p
λ(dx̄)

)1/p

≤ 2 · 21/pM−1 sup
x∈R

(
L(1, x)− L(1, x + z− y)

)1/q
(

max
0≤s≤1

|W(s)| + 1
)1/q

.

By continuity of Brownian local time we have established the continuity of the
random function L∗(1, ȳ + ·) on Lp(TM). It is well known, as a general result,
that each random variable taking values in a separable Banach space is tight. In
particular, L∗(1, ȳ + ·) is tight for each ȳ ∈ TM : Given ε > 0 there is a compact
set Cy ∈ Lp(TM) such that P{L∗(1, ȳ + ·) ∈ Cy} ≥ 1 − ε. By continuity of
L∗(1, ȳ + ·) as a Lp(TM)-valued function of ȳ and by the compactness of TM , the
family

{
L∗(1, ȳ + ·)}

ȳ∈TM is uniformly tight: Given ε > 0 there is a compact set
C ∈ Lp(TM) such that infy∈TM P{L∗(1, ȳ + ·) ∈ C} ≥ 1 − ε. Note that for any
ȳ ∈ TM ,

∫
TM
L
p
∗ (t, x̄ + ȳ)λ(dx̄) = ∫

TM
L
p
∗ (t, x̄)λ(dx̄). Hence from (2.13)

sup
ȳ∈TM

E ȳ exp

{
γ

( ∫
TM

L
p
∗ (1, x̄)λ(dx̄)

)1/p}
< ∞ ∀γ > 0.
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By Theorem 3.1 in deAcosta (1985), there is a compact, convex, positively balanced
subset K ∈ Lp(TM), such that

sup
ȳ∈TM

E ȳ exp
{
qK

(
L∗(1, ·)

)}
< ∞. (2.14)

By the triangular inequality and the Markov property,

E exp
{
qK

(
L∗(n, ·)

)}
≤ E exp

{
qK

(
L∗(n− 1, ·)) + qK

(
L∗(n, ·)− L∗(n− 1, ·))}

≤ E exp
{
qK

(
L∗(n− 1, ·))} sup

ȳ∈TM
E ȳ exp

{
qK

(
L∗(1, ·)

)}
.

Repeating this procedure gives

E exp
{
qK

(
L∗(n, ·)

)} ≤
(

sup
ȳ∈TM

E ȳ exp
{
qK

(
L∗(1, ·)

)})n
.

Hence (2.12) follows from (2.14). ��
Let ε > 0 and γ > 0 be fixed and let K ⊂ Lp(TM) be the compact set given

in Lemma 2.1. By the fact that the set of measurable, bounded functions on TM
is dense in the unit ball of Lq(TM), and by the Hahn-Banach Theorem, for each
h ∈ γK , there is a bounded function f such that

∫
TM

|f (x̄)|qλ(dx̄) = 1, and

∫
TM

f (x̄)h(x̄)λ(dx̄) >

( ∫
TM

|h(x̄)|pλ(dx̄)
)1/p

− ε.

Consequently, there are finitely many bounded functions f1, · · · , fN in the unit
sphere of Lq(TM) such that

( ∫
TM

|h(x̄)|pλ(dx̄)
)1/p

< max
1≤i≤N

∫
TM

fi(x̄)h(x̄)λ(dx̄)+ ε ∀h ∈ γK.

Therefore,

E

(
exp

{( ∫
TM

L
p
∗ (t, x̄)λ(dx̄)

)1/p}
; t−1L∗(t, ·) ∈ γK

)

≤ eεt
N∑
i=1

E exp

{ ∫
TM

fi(x)L(t, x)dx

}
.

In view of (2.10),

lim sup
t→∞

t−1 log E

(
exp

{( ∫
TM

L
p
∗ (t, x̄)λ(dx̄)

)1/p}
; t−1L∗(t, ·) ∈ γK

)

≤ ε + max
1≤i≤N

sup
g∈F

{ ∫ M

0
fi(x̄)

( ∑
k∈Z

g2(x + kM)
)
dx − 1

2

∫ ∞

−∞
|g′(x)|2dx

}

≤ ε + sup
g∈F

{( ∫ M

0

( ∑
k∈Z

g2(x + kM)
)p
dx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}
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where the second step follows from Hölder’s inequality and the fact∫M
0 |fi(x̄)|qdx = 1 for 1 ≤ i ≤ N . Letting ε −→ 0 gives

lim sup
t→∞

t−1 log E

(
exp

{( ∫
TM

L
p
∗ (t, x̄)λ(dx̄)

)1/p}
; t−1L∗(t, ·) ∈ γK

)

≤ sup
g∈F

{( ∫ M

0

( ∑
k∈Z

g2(x + kM)
)p
dx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}
. (2.15)

By the Cauchy-Schwarz inequality, on the other hand,

E

(
exp

{( ∫
TM

L
p
∗ (t, x̄)λ(dx̄)

)1/p}
; t−1L∗(t, ·) �∈ γK

)

≤
(

E exp

{
2

( ∫
TM

L
p
∗ (t, x̄)λ(dx̄)

)1/p})1/2(
P

{
t−1L∗(t, ·) �∈ γK

})1/2

.

Note that (2.13) implies that

lim sup
t→∞

t−1 log E exp

{
2

( ∫
TM

L
p
∗ (t, x̄)λ(dx̄)

)1/p}
≡ C1 < ∞,

since for any integer n,

( ∫
TM

L
p
∗ (n, x̄)λ(dx̄)

)1/p

≤
n∑
k=1

( ∫
TM

|L∗(k, x̄)− L∗(k − 1, x̄)|pλ(dx̄)
)1/p

with i.i.d. terms. Furthermore, by the Chebyshev inequality,

P
{
t−1L∗(t, ·) �∈ γK} = P

{
qK

(
L∗(t, ·)

) ≥ γ t
} ≤ e−γ tE exp

{
qK

(
L∗(t, ·)

)}
.

Hence, by Lemma 2.1 there is a constant C2 > 0 independent of γ , such that

lim sup
t→∞

t−1 log P

{
t−1L∗(t, ·) �∈ γK

}
≤ −γ + C2.

Combining above observations we have

lim sup
t→∞

1

t
log E

(
exp

{( ∫
TM

L
p
∗ (t, x̄)λ(dx̄)

)1/p}
; t−1L∗(t, ·) �∈ γK

)

≤ (C1 + C2 − γ )/2. (2.16)

Note that γ > 0 can be arbitrarily large. Hence from (2.15) and (2.16) we have

lim sup
t→∞

t−1 log E exp

{( ∫
TM

L
p
∗ (t, x̄)λ(dx̄)

)1/p}

≤ sup
g∈F

{( ∫ M

0

( ∑
k∈Z

g2(x + kM)
)p
dx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}
.
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Thus, from (2.10) we obtain

lim sup
t→∞

t−1 log E exp

{( ∫ ∞

−∞
Lp(t, x)dx

)1/p}

≤ sup
g∈F

{( ∫ M

0

( ∑
k∈Z

g2(x + kM)
)p
dx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}

for all M > 0. Letting M −→ ∞ we have (2.9) by Lemma 7.1 in Section 7.
Finally, we come to the proof of the upper bound necessary for (2.3) in the case

m > 1. Note that for mp ≥ 1,

( ∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx

)1/mp

≤ 1

m

m∑
j=1

( ∫ ∞

−∞
L
mp
j (t, x)dx

)1/mp

which gives that

E exp

{( ∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx

)1/mp}

≤
(

E exp

{
1

m

( ∫ ∞

−∞
Lmp(t, x)dx

)1/mp})m

=
(

E exp

{( ∫ ∞

−∞
Lmp

(
m−2mp/(mp+1)t, x

)
dx

)1/mp})m

where the second step follows from (1.5). Replacing p by mp in (2.9) we obtain

lim sup
t→∞

t−1 log E exp

{( ∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx

)1/mp}

≤ m−(mp−1)/(mp+1) sup
g∈F

{( ∫ ∞

−∞
g2mp(x)dx

)1/mp

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}
.

Therefore, (2.3) follows.

3. Weak law of convergence

In the rest of the paper, we use [x] to denote the integer part of x ∈ R. Note that

∑
x∈Z

m∏
j=1

l
p
j (n, x) =

∫ ∞

−∞

m∏
j=1

l
p
j (n, [x])dx = n1/2

∫ ∞

−∞

m∏
j=1

l
p
j (n, [n1/2x])dx.

So, Theorem 1.2 is equivalent to

n−mp/2
∫ ∞

−∞

m∏
j=1

l
p
j (n, [n1/2x])dx

d−→ σ−(mp−1)
∫ ∞

−∞

m∏
j=1

L
p
j (1, x)dx.
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Note that the function

η(f1, · · · , fm) =
∫ ∞

−∞

m∏
j=1

f
p
j (x)dx

is continuous on the Banach space ⊗m
j=1Lmpj (R), we need only to show that as a

Lmp(R)-valued process, l(n, [n1/2·])/√n weakly converges to σ−1L(1, σ−1·) as
n → ∞. Replacing mp by p, we need only to establish the following result.

Proposition 3.1. For any real number p > 1, we have the weak convergence

l(n, [n1/2·])/√n d−→ σ−1L(1, σ−1·) (n → ∞)

in the space Lp(R).

Proof. We first prove Proposition 3.1 under the extra assumption that {S(n)}n≥1 is
aperiodic, that is, the greatest common factor of {n ≥ 1; P{S(n) = 0} > 0} is 1.

According to Theorem 2.4 of de Acosta (1970), we need to check two things:
First, there is a w∗-dense set D ∈ Lq(R) such that for each f ∈ D,

n−1/2
∫ ∞

−∞
f (x)l(n, [n1/2x])dx

d−→ σ−1
∫ ∞

−∞
f (x)L(1, x)dx,

and second, the sequence {l(n, [n1/2·])}n≥1 is flatly concentrated, that is, for every
ε > 0, there is a finite-dimensional subspace F o f Lp(R) such that

lim inf
n→∞ P

{
n−1/2l(n, [n1/2·]) ∈ Fε

}
≥ 1 − ε

where Fε is the ε-neighborhood of F .
To verify the first assertion, we takeD as the set of uniformly continuous func-

tions in Lq(R). For each f ∈ D,
∫ ∞

−∞
f (x)l(n, [n1/2x])dx = 1

n1/2

∫ ∞

−∞
f (x/n1/2)l(n, [x])dx

= 1

n1/2

(
o(n)+

∑
x∈Z

f (n−1/2x)l(n, x)
) = 1

n1/2

(
o(n)+

n∑
k=1

f (n−1/2Sk)
)

as n → ∞. By invariance principle,

n−1/2
∫ ∞

−∞
f (x)l(n, [n1/2x])dx

d−→
∫ 1

0
f

(
σW(s)

)
ds

= σ−1
∫ ∞

−∞
f (x)L(1, σ−1x)dx.

To check the second condition, we consider the partition xj = jδ, j ∈ Z, for a
given δ > 0. Define
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F = {
f ; f (x) = 0 outside [−M,M] and f (x) equals constant

between any two neighboring partition points
}

where the constantM > 0 is to be specified later. Clearly, F is a finite-dimensional
subspace of Lp(R). Define

ln(x) =
{
l(n, [n1/2xj ]) for xj ≤ x < xj+1

l(n, [n1/2x−j ]) for x−(j+1) ≤ x < x−j .

On the event {max
k≤n

|Sk| ≤ Mn1/2}, ln(·) ∈ F . Therefore,

P

{
n−1/2l(n, [n1/2·]) �∈ Fε

}
≤ P

{
max
k≤n

|Sk| > Mn1/2}

+P

{( ∫ ∞

−∞
|l(n, [n1/2x])− ln(x)|pdx

)1/p

≥ εn1/2
}
.

By the invariance principle

lim
M→∞

lim
n→∞ P

{
max
k≤n

|Sk| > Mn1/2} = lim
M→∞

P
{

max
0≤s≤1

|W(s)| ≥ M} = 0.

Hence, we need only to show, using symmetry,

lim
δ→0

lim sup
n→∞

1

np/2

∫ ∞

0
E |l(n, [n1/2x])− ln(x)|pdx = 0.

Define, for any x ≥ 0,

τn(x) = inf
{
k ≥ 1; [n1/2xj ] ≤ Sk ≤ [n1/2x]

}
for x ∈ [xj , xj+1).

For any j ≥ 0 and x ∈ [xj , xj+1),

E |l(n, [n1/2x])− ln(x)|p
= E

∣∣∣(l(n, [n1/2x])− l(τn(x), [n1/2x])
) − (

l(n, [n1/2xj ])− l(τn(x), [n1/2xj ])
)

+(
I{Sτn(x)=[n1/2x]} − I{Sτn(x)=[n1/2xj ]}

)∣∣∣pI{τn(x)≤n}
=

n∑
k=1

P
{
τn(x) = k

}
E

∣∣l(n− k, 0)− l(n− k, [n1/2x] − [n1/2xj ])+ 1
∣∣p

≤
n∑
k=1

P
{
τn(x) = k

}
sup

|y|≤2δn1/2
E

∣∣l(n− k, 0)− l(n− k, y)+ 1
∣∣p

≤ max
k≤n

sup
|y|≤2δn1/2

E
∣∣l(k, 0)− l(k, y)+ 1

∣∣p ·
n∑
k=1

P
{
τn(x) = k

}
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where the second equality follows from the Markov property and symmetry of the
random walk. Observe that

∫ ∞

0

n∑
k=1

P
{
τn(x) = k

}
dx =

∫ ∞

0
P
{
τn(x) ≤ n

}
dx

=
∞∑
j=0

∫ xj+1

xj

P
{
τn(x) ≤ n

}
dx

≤ δ

∞∑
j=0

P
{

max
0≤k≤n

Sk ≥ xjn
1/2}

≤ C
1

n1/2 E max
0≤k≤n

Sk −→ CE max
0≤s≤1

W(s) < ∞ as n → ∞

for some constant C > 0 independent of δ and n. Therefore, it remains to show

lim
δ→0

lim sup
n→∞

1

np/2
max
k≤n

sup
|y|≤2δn1/2

E
∣∣l(k, 0)− l(k, y)

∣∣p = 0. (3.1)

Indeed,

E
∣∣l(k, 0)− l(k, y)∣∣p ≤

(
E

∣∣l(k, 0)− l(k, y)∣∣2(p−1)
)1/2(

E
∣∣l(k, 0)− l(k, y)∣∣2

)1/2

and

E
∣∣l(k, 0)−l(k, y)∣∣2(p−1)≤ E l2(p−1)(n, 0)+E l2(p−1)(n, y)≤1+2E l2(p−1)(n, 0)

where the last step follows from Lemma 1 in Chen (2000). By the weak law for local

times l(n, 0)/n1/2 d−→ σ−1|ξ | where ξ ∼ N(0, 1). Through a standard procedure
we have

E l2(p−1)(n, 0) ∼ np−1σ−2(p−1)
E |ξ |2(p−1), as n → ∞.

Let ψi = I{Si=0} − I{Si=y} (i = 0, 1, 2, · · · ). Then for any integers k and y with
1 ≤ k ≤ n and |y| ≤ 2δn1/2,

E
∣∣l(k, 0)− l(k, y)

∣∣2 ≤ 2
k∑
i=1

k∑
j=i

E (ψiψj ) = 2
k∑
i=1

E

(
ψi

k−i∑
j=0

E Siψj

)

≤ 2
n∑
i=1

E

(
|ψi |

∞∑
j=1

|E Siψj |
)

≤ 2C|y|
n∑
i=1

E |ψi |

≤ 4Cn1/2δ
{
E l(n, 0)+ E l(n, y)

}
≤ 4Cn1/2δ

{
2E l(n, 0)+ 1

}∼8Cδσ−1
E |ξ |n as n→∞
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where C > 0 is a universal constant, the fourth step follows from Lemma 7 of Jain
and Pruitt (1984) (here the aperiodicity assumption is required) and the sixth from
Lemma 1 in Chen (2000). Hence, (3.1) holds.

We now prove Proposition 3.1 without aperiodicity assumption. Let 0 < λ < 1
be fixed and let {δn}n≥1 be a sequence of i.i.d. Bernoulli random variables with
common law

P{δ1 = 0} = 1 − P{δ1 = 1} = λ.

We assume independence between {δn}n≥1 and {Sn}n≥1. Define the renewal se-
quence {τk}k≥1:

τ1 = inf{n ≥ 1; δn = 1} and τk+1 = inf{n > τk; δn = 1}.

Then τ1 has geometric distribution P{τ1 = n} = (1 − λ)λn−1, n ≥ 1, and the
sequence {S(τk)}k≥1 is a random walk whose i.i.d increments has the distribution
same as that of S(τ1). In particular, the random walk {S(τk)}k≥1 is aperiodic and
symmetric with the variance equal to E |S(τ1)|2 = E τ1E S2

1 = (1−λ)−1σ 2.Write
l′(n, x) for its local time. By what we have proved,

l′(n, [n1/2·])/√n d−→ √
1 − λσ−1L(1,

√
1 − λσ−1·) (n → ∞) (3.2)

in the space Lp(R).
Let t (n) = δ1 + · · · + δn = max{k; τk ≤ n} and notice that for each x ∈ Z,

l′
(
t (n), x) =

t (n)∑
k=1

I{S(τk) = x} =
n∑
k=1

δkI{S(k) = x} n = 1, 2, · · · .

By the law of large numbers, t (n)/n
p−→ 1 − λ as n → ∞. From (3.2),

n−1/2
n∑
k=1

δkI{S(k) = [n1/2·]}
d−→ (1 − λ)σ−1L(1,

√
1 − λσ−1·) (n → ∞).

Replacing {δn} by the Bernoulli sequence {1 − δn} gives

n−1/2
n∑
k=1

(1 − δk)I{S(k) = [n1/2·]}
d−→ λσ−1L(1,

√
λσ−1·) (n → ∞).

Thus, the desired conclusion follows from the decomposition

l(n, [n1/2·]) =
n∑
k=1

δkI{S(k) = [n1/2·]} +
n∑
k=1

(1 − δk)I{S(k) = [n1/2·]}

and then taking λ −→ 0+. ��
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4. Exponential moment for rescaled occupation times

As we shall see in the next section, the upper bound for the moderate deviation
stated in Theorem 1.3 can be established based on Theorem 1.1 and Theorem 1.2.
The harder part is the lower bound. In this section we develop some tools for the
lower bound, which can been viewed as a partial extension of (2.4) in the case
of random walks. Since exponential moment estimation we establish below may
be used in other applications, we state it in a more general form, which holds for
multi-dimensional random walks. Limited to this section, d ≥ 1 is an integer and
S(n) = ∑n

k=1Xk, n = 1, 2, · · · is an random walk with covariance matrix � gen-
erated by an Z

d -valued symmetric i.i.d. sequence {Xn}n≥1. We assume that the
smallest group which supports {S(n)}n≥1 is Z

d .

Theorem 4.1. For any bounded continuous functionf on R
d and positive sequence

{bn} satisfying (1.11),

lim inf
n→∞ b−1

n log E exp

{
bn

n

n∑
k=1

f
(
(bn/n)

1/2Sk

)}

≥ sup
g∈Fd

{ ∫
Rd
f (x)g2(x)dx − 1

2

∫
Rd

〈∇g(x), �∇g(x)〉dx
}

(4.1)

where Fd is the set of absolutely continuous functions g on R
d with

∫
Rd

|g(x)|2dx = 1 and
∫

Rd
|∇g(x)|2dx < ∞.

Note that Theorem 4.1 holds also for random walks with continuous values
under certain regularity conditions, and it is natural to expect that the correspon-
dent upper bound holds. What we need in this paper is the lower bound (4.1).

Proof of Theorem 4.1. In view of how we go from the case of aperiodicity to the
general case in the proof of Proposition 3.1, we may assume that {Sn}n≥1 is aperi-
odic. Write tn = [n/bn], γn = [n/tn] and thus tnγn ≤ n < tn(γn + 1). Therefore

E exp

{
bn

n

n∑
k=1

f
(
(bn/n)

1/2Sk

)}

≥ E exp
{

− 2|f |∞
}
E exp

{
bn

n

γntn∑
k=tn+1

f
(
(bn/n)

1/2Sk

)}
.

Hence, we need only to show the lower bound (4.1) for

lim inf
n→∞ b−1

n log E exp

{
bn

n

γntn∑
k=tn+1

f
(
(bn/n)

1/2Sk

)}
.
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For each n, define the continuous linear operator n on L2(Zd) as

nξ(x) = exp
{ bn

2n
f

((bn
n

)1/2
x
)}

×E x

(
exp

{bn
n

tn−1∑
k=1

f
((bn
n

)1/2
Sk

)
+ bn

2n
f

((bn
n

)1/2
Stn

)}
ξ(Stn)

)

where x ∈ Z
d and ξ ∈ L2(Zd). Due to symmetry of the random walk, n is self-

adjoint:∗
n = n, where∗

n is the dual operator ofn. Indeed, it is straightforward
to find out that the linear operator Tn given by

Tnξ(x) = exp
{ bn

2n
f

((bn
n

)1/2
x
)}

E x

(
exp

{ bn
2n
f

((bn
n

)1/2
S1

)}
ξ(S1)

)

is self adjoint and n = T
tn
n .

Let g be a bounded function on R
d and assume that g is infinitely differentiable,

supported by a finite box [−M,M]d with
∫

Rd
|g(x)|2dx = 1 (4.2)

and write

ξn(x) = g
(
(bn/n)

1/2x
) ·


 ∑
y∈Zd

g2((bn/n)1/2y)



−1/2

, x ∈ Z
d .

Then

E exp

{
bn

n

( γntn∑
k=tn+1

f
((bn
n

)1/2
Sk

)}

=
∑
x∈Zd

Ptn(0, x)E x exp

{
bn

n

( (γn−1)tn∑
k=1

f
((bn
n

)1/2
Sk

)}

≥ 1 + o(1)

supy |g(y)|
{ ∑
y∈Zd

g2
((bn
n

)1/2
y
)}

·
∑
x∈Zd

Ptn(0, x)ξn(x) exp
{
f

((bn
n

)1/2
x
)}

× E x

(
exp

{bn
n

( (γn−1)tn−1∑
k=1

f
((bn
n

)1/2
Sk

)

+ bn

2n
f

((bn
n

)1/2
S(γn−1)tn

)}
ξn

(
S(γn−1)tn

))

= 1 + o(1)

supy |g(y)|
{ ∑
y∈Zd

g2
((bn
n

)1/2
y
)}

·
∑
x∈Zd

Ptn(0, x)ξn(x)
γn−1
n ξn(x)
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where the last step follows from the Markov property. Note that
∑
y∈Zd

g2
((bn
n

)1/2
y
)

∼
( n
bn

)d/2 ∫
Rd

|g(x)|2dx = (bn
n

)d/2

as n → ∞ and in the light of the Remark of Le Gall and Rosen (1991), p. 661, the
aperiodicity of the random walk implies

sup
x∈Z

∣∣∣td/2n Ptn(0, x)− (2π)−d/2 det(G)−1/2 exp
{

− (2tn)
−1〈x, �−1x〉

}∣∣∣
−→ 0 (n → ∞).

Since ξn(x) = 0 outside [−M(n/bn)1/2,M(n/bn)1/2]d , there is a δ > 0 indepen-
dent of n, such that

E exp

{
bn

n

( γntn∑
k=1

f
((bn
n

)1/2
Sk

)}
≥ δ

∑
x∈Zd

ξn(x)
γn−1
n ξn(x) = δ(ξn,

γn−1
n ξn).

Consider the spectral representation of n:

(ξn,nξn) =
∫ ∞

0
λµξn(dλ)

where µξn is a probability measure on R
+. By the mapping theorem,

(ξn,
γn−1
n ξn) =

∫ ∞

0
λγn−1µξn(dλ) ≥

( ∫ ∞

0
λµξn(dλ)

)γn−1

= (ξn,nξn)
γn−1

where the second step follows from Jensen’s inequality. Hence,

lim inf
n→∞ b−1

n log E exp

{
bn

n

( γntn∑
k=1

f
((bn
n

)1/2
Sk

)}
≥ lim inf

n→∞ log(ξn,nξn).

Next note that

(ξn,nξn) =
( ∑
y∈Zd

g2
((bn
n

)1/2
y
))−1

·
∑
x∈Zd

g
((bn
n

)1/2
x
)

× exp
{ bn

2n
f

((bn
n

)1/2
x
)}

E x

(
exp

{bn
n

tn−1∑
k=1

f
((bn
n

)1/2
Sk

)

+ bn

2n
f

((bn
n

)1/2
Stn

)}
g
((bn
n

)1/2
Stn

))

= (
1 + o(1)

)(bn
n

)d/2 ∑
x∈Zd

g
((bn
n

)1/2
x
)

× E

(
exp

{bn
n

tn∑
k=1

f
((bn
n

)1/2
(x + Sk)

)}
g
((bn
n

)1/2
(x + Stn)

))

−→
∫

Rd
g(x)E x

(
exp

{ ∫ 1

0
f

(
W̃ (s)

)
ds

}
g
(
W̃ (1)

))
dx as n → ∞
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where W̃ (t) is a d-dimensional Lévy Gaussian process (Brownian motion) such
that W̃ (1) has the covariance matrix �.

Summarizing what we have so far, we obtain

lim inf
n→∞ b−1

n log E exp

{
bn

n

( γntn∑
k=1

f
((bn
n

)1/2
Sk

)}

≥ log
∫

Rd
g(x)E x

(
exp

{ ∫ 1

0
f

(
W̃ (s)

)
ds

}
g
(
W̃ (1)

))
dx. (4.3)

What follows next is a standard treatment (see, e.g., Remillard (1998)) which is
briefly described here. Let the semigroup of linear operators {Tt } on L2(Rd) be
defined as

Tth(x) = E x exp

({ ∫ t

0
f

(
W̃ (s)

)
ds

}
h
(
W̃ (t)

))
, h ∈ L2(Rd), t ≥ 0.

The infinitesimal generator of Tt is

Ah(x) = 1

2

d∑
i,j=1

aij
∂2h

∂xi∂xj
(x)+ f (x)h(x)

where aij (1 ≤ i, j ≤ d) are entries of the matrix �. Clearly, A is self-adjoint. Let

(g,Ag) =
∫ ∞

−∞
λµg(dλ)

be the spectral representation of the quadratic form (g,Ag), where µg is, in view
of (4.2), a probability measure on (−∞,∞). By Jensen’s inequality,

E x

(
exp

{ ∫ 1

0
f

(
W̃ (s)

)
ds

}
g
(
W̃ (1)

))
dx = (g, T1g)

=
∫ ∞

−∞
eλµg(dλ) ≥ exp

{ ∫ ∞

−∞
λµg(dλ)

}
= exp

{
(g,Ag)}

= exp

{ ∫
Rd
f (x)g2(x)dx − 1

2

∫
Rd

〈∇g(x), �∇g(x)〉dx
}
.

From (4.3) we obtain

lim inf
n→∞ b−1

n log E exp

{
bn

n

( γntn∑
k=1

f
((bn
n

)1/2
Sk

)}

≥
∫

Rd
f (x)g2(x)dx − 1

2

∫
Rd

〈∇g(x), �∇g(x)〉dx

for any bounded and infinitely smooth function g supported in a bounded region
in R

d , which also satisfies (4.2). Note that the set of such g is dense in Fd . Taking
supremum over g on the right hand side finishes the proof. ��
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5. Moderate deviation for intersection local times

In this section, we prove Theorem 1.3. We shall omit the details of the parts that are
similar to the proof of Theorem 1.1 given in section 2 and put emphasis on places
where a different treatment is needed. In the light of variation evaluation given in
Lemma 7.2, we need only to establish

lim
n→∞ b

−1
n log E exp

{(bn
n

)(mp+1)/2mp
( ∑
x∈Z

m∏
j=1

l
p
j (n, x)

)1/mp}

= (
mσ 2)−(mp−1)/(mp+1) sup

g∈F

{( ∫ ∞

−∞
|g(x)|2mpdx

)1/mp

−1

2

∫ ∞

−∞
|g′(x)|2dx

}
. (5.1)

We first deal with the lower bound. Note that

∑
x∈Z

m∏
j=1

l
p
j (n, x) =

∫ ∞

−∞

m∏
j=1

l
p
j (n, [x])dx

= (n/bn)
1/2

∫ ∞

−∞

m∏
j=1

l
p
j

(
n,

[
(n/bn)

1/2x
])
dx.

So we only need to show the lower bound (5.1) for

lim inf
n→∞ b−1

n log E exp

{
(bn/n)

1/2
( ∫ ∞

−∞

m∏
j=1

l
p
j

(
n,

[
(n/bn)

1/2x
])
dx

)1/mp}
.

Similar to (2.8), by Lemma 11 of Jain and Pruitt (1984), given ε > 0,

lim
δ→0+

lim sup
n→∞

1

bn
log P

{
sup

|x−y|≤δ

∣∣∣l
(
n,

[
(n/bn)

1/2x
])

−l
(
n,

[
(n/bn)

1/2y
])∣∣∣ ≥ ε

√
nbn

}
= −∞. (5.2)

In fact, in the proof of the law of the iterated logarithm for local times, Jain and Pruitt
obtained this result for much more general random walks in the case bn = log log n.
By carefully examining their proof one can see that it actually can be extended to
the general bn defined by (1.11). By the same argument given in section 2, we will
have the lower bound if we can prove

lim inf
n→∞ b−1

n log E exp

{
γ (bn/n)

1/2
( ∫ a

−a
lp

(
n,

[
(n/bn)

1/2x
])
dx

)1/p}

≥ sup
g∈F

{
γ

( ∫ a

−a
|g(x)|2pdx

)1/p

− σ 2

2

∫ ∞

−∞
|g′(x)|2dx

}
(5.3)

for any a > 0 and γ > 0 in the case m = 1 and p > 1.
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Observe that, for any bounded continuous function f supported on [−a, a]
satisfying (2.6),

( ∫ a

−a
lp

(
n,

[
(n/bn)

1/2x
])
dx

)1/p

≥
∫ ∞

−∞
f (x)l

(
n,

[
(n/bn)

1/2x
])
dx

= (bn/n)
1/2

∫ ∞

−∞
f

(
(bn/n)

1/2x
)
l(n, [x])dx

= (bn/n)
1/2

{
o(n)+

∑
x∈Z

f
(
(bn/n)

1/2x
)
l(n, x)

}

= (bn/n)
1/2

{
o(n)+

n∑
k=1

f
(
(bn/n)

1/2Sk

)}

where the notation o(n) should be viewed as a possibly random quantity bounded
by αnn for some deterministic positive sequence {αn} with αn → 0 as n → ∞.
Taking d = 1 in Theorem 4.1 gives

lim inf
n→∞ b−1

n log E exp

{
γ (bn/n)

1/2
( ∫ a

−a
lp

(
n,

[
(n/bn)

1/2x
])
dx

)1/p}

≥ sup
g∈F

{
γ

∫ a

−a
f (x)g2(x)dx − σ 2

2

∫ ∞

−∞
|g′(x)|dx

}
.

We obtain (5.3) by taking supremum over f on the right hand side above.
Similar to the Brownian motion case in section 2, we only need to establish the

upper bound necessary for (5.1) in the special case m = 1 and p > 1. That is, we
need to show

lim sup
n→∞

b−1
n log E exp

{(bn
n

)(p+1)/2p( ∑
x∈Z

lp(n, x)
)1/p

}

≤ σ−2(p−1)/(p+1) sup
g∈F

{(∫ ∞

−∞
|g(x)|2pdx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}
. (5.4)

We first prove the following upper tail estimate.

Lemma 5.1. Let p > 1. Then for any a, b > 0 and any integer n ≥ 1,

P

{( ∑
x∈Z

lp(n, x)
)1/p ≥ a + b

}

≤ P

{( ∑
x∈Z

lp(n, x)
)1/p ≥ a − 1

}
P

{( ∑
x∈Z

lp(n, x)
)1/p ≥ b

}
.

Proof. Define the stopping time

τ = inf

{
k;

( ∑
x∈Z

lp(k, x)
)1/p ≥ a − 1

}
.
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Note that for any k ≥ 1,
( ∑

x∈Z
lp(k + 1, x)

)1/p − ( ∑
x∈Z

lp(k, x)
)1/p ≤ 1 and

hence
∑
x∈Z

lp(τ, x) ≤ ap. Consequently, for each 1 ≤ k ≤ n,

( ∑
x∈Z

(
l(n, x)− l(k, x)

)p)1/p ≥
( ∑
x∈Z

lp(n, x)
)1/p −

( ∑
x∈Z

lp(k, x)
)1/p ≥ b

on the event
{
τ = k,

( ∑
x∈Z

lp(n, x)
)1/p ≥ a + b

}
. Therefore,

P

{( ∑
x∈Z

lp(n, x)
)1/p ≥ a + b

}

=
n∑
k=1

P

{
τ = k,

( ∑
x∈Z

lp(n, x)
)1/p ≥ a + b

}

≤
n∑
k=1

P

{
τ = k,

( ∑
x∈Z

(
l(n, x)− l(k, x)

)p)1/p ≥ b

}

=
n∑
k=1

P
{
τ = k

}
P

{( ∑
x∈Z

lp(n− k, x)
)1/p ≥ b

}

≤ P

{( ∑
x∈Z

lp(n, x)
)1/p ≥ a − 1

}
P

{( ∑
x∈Z

lp(n, x)
)1/p ≥ b

}
.

��
Here is how we utilize Lemma 5.1: Let 0 < δ < 1 be fixed. For any λ ≥ 2 we

have

P

{( ∑
x∈Z

lp([δn], x)
)1/p ≥ λn(p+1)/2p

}

≤
(

P

{( ∑
x∈Z

lp([δn], x)
)1/p ≥ n(p+1)/2p − 1

})[λ]

.

On the other hand, taking m = 1 in Theorem 1.2 we have

n−(p+1)/2p
( ∑
x∈Z

lp(n, x)
)1/p d−→ σ−(p−1)/p

( ∫ ∞

−∞
Lp(1, x)dx

)1/p

. (5.5)

Therefore, for any γ > 0, one can take δ > 0 small enough so that

sup
n

P

{( ∑
x∈Z

lp([δn], x)
)1/p ≥ λn(p+1)/2p

}
≤ e−2γ λ.

holds for all λ > 0 large. In particular

sup
n

E exp

{
γ n−(p+1)/2p

( ∑
x∈Z

lp([δn], x)
)1/p

}
< ∞.
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By the triangular inequality and independence of increments, for large n,

E exp

{
γ n−(p+1)/2p

( ∑
x∈Z

lp(n, x)
)1/p

}

≤
(

E exp

{
γ n−(p+1)/2p

( ∑
x∈Z

lp([δn], x)
)1/p

})2δ−1

.

We thus conclude that for any γ > 0,

sup
n

E exp

{
γ n−(p+1)/2p

( ∑
x∈Z

lp(n, x)
)1/p

}
< ∞.

This, together with (5.5), implies that for any γ > 0,

lim
n→∞ E exp

{
γ n−(p+1)/2p

( ∑
x∈Z

lp(n, x)
)1/p

}

= E exp

{
γ σ−(p−1)/p

( ∫ ∞

−∞
Lp(1, x)dx

)1/p}
. (5.6)

Let λ > 0 be fixed but arbitrary. Write tn = [λn/bn] and γn = [n/tn]. Then
n ≤ tn(γn + 1). Hence,

E exp

{(bn
n

)(p+1)/2p( ∑
x∈Z

lp(n, x)
)1/p

}

≤
(

E exp

{(
bn/n

)(p+1)/2p( ∑
x∈Z

lp(tn, x)
)1/p

})γn+1

.

From (5.6),

lim sup
n→∞

b−1
n log E exp

{(bn
n

) p+1
2p

( ∑
x∈Z

lp(n, x)
)1/p

}

≤ 1

λ
log E exp

{
λ(p+1)/2pσ−(p−1)/p

( ∫ ∞

−∞
Lp(1, x)dx

)1/p}
.

Letting λ → ∞ on the right hand side and taking m = 1 in (2.1) we have proved
(5.4).

6. The law of the iterated logarithm

We only prove (1.14) as the proof of (1.15) is similar. Recall the constant C3(m, p)

is given in (1.16). Let tk = θk (k ≥ 1) with θ > 1. In view of (1.5), we have from
Theorem 1 that

∑
k

P

{ ∫ ∞

−∞

m∏
j=1

L
p
j (tk, x)dx ≥ γ t

(mp+1)/2
k

(
log log tk

)(mp−1)/2
}
< ∞ (6.1)
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for any γ > C3(m, p). By the Borel-Cantelli lemma we obtain

lim sup
k→∞

t
−(mp+1)/2
k

(
log log tk

)−(mp−1)/2
∫ ∞

−∞

m∏
j=1

L
p
j (tk, x)dx ≤ C3(m, p) a.s.

By monotonicity, for any tk ≤ t ≤ tk+1,

t−(mp+1)/2( log log t
)−(mp−1)/2

∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx

≤ (
θ
mp+1

2 + o(1)
)
t
−(mp+1)/2
k+1

(
log log tk+1

)−(mp−1)/2
∫ ∞

−∞

m∏
j=1

L
p
j (tk+1, x)dx

as k → ∞. Therefore

lim sup
t→∞

t−(mp+1)/2( log log t
)−(mp−1)/2

∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx≤θ mp+1

2 C3(m, p)a.s.

which gives the upper bound by letting θ → 1+.
To prove the lower bound, write sk = kk , k ≥ 1 and notice that

∫ ∞

−∞

m∏
j=1

[
Lj (sk+1, x)−Lj (sk, x)

]p
dx =

∫ ∞

−∞

m∏
j=1

L
p
j,k

(
sk+1−sk, x−Wj(sk)

)
dx

where Lj,k(t, x) is the local time of the Brownian motion Wj,k(t):

Wj,k(t) = Wj(sk + t)−Wj(sk) t ≥ 0, k ≥ 1, 1 ≤ j ≤ m.

Hence,
∣∣∣∣
( ∫ ∞

−∞

m∏
j=1

[
Lj(sk+1, x)− Lj(sk, x)

]p
dx

)1/mp

−
( ∫ ∞

−∞

m∏
j=1

L
p

j,k

(
sk+1 − sk, x

)
dx

)1/mp∣∣∣∣

≤
( ∫ ∞

−∞

∣∣∣∣
m∏
j=1

L
1/m
j,k

(
sk+1 − sk, x −Wj(sk)

) −
m∏
j=1

L
1/m
j,k

(
sk+1 − sk, x

)∣∣∣∣
mp

dx

)1/mp

≤
m∑
j=1

( ∏
i �=j

∫ ∞

−∞
L
mp

i,k

(
sk+1 − sk, x

)
dx

)1/m2p

×
( ∫ ∞

−∞

∣∣∣L1/m
j,k

(
sk+1 − sk, x −Wj(sk)

) − L
1/m
j,k

(
sk+1 − sk, x

)∣∣∣m
2p

dx

)1/m2p

≤ 21/m
m∑
j=1

( ∏
i �=j

∫ ∞

−∞
L
mp

i,k

(
sk+1 − sk, x

)
dx

)1/m2p

×
( ∫ ∞

−∞

∣∣∣Lj,k(sk+1 − sk, x −Wj(sk)
) − Lj,k

(
sk+1 − sk, x

)∣∣∣mpdx
)1/m2p

≤ 21/ms
1/m2p
k+1

m∑
j=1

( ∏
i �=j

∫ ∞

−∞
L
mp

i,k

(
sk+1, x

)
dx

)1/m2p

× sup
x

∣∣∣Lj,k(sk+1 − sk, x −Wj(sk)
) − Lj,k

(
sk+1 − sk, x

)∣∣∣(mp−1)/m2p
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where the third step follows from the easy inequality

∣∣a1/m − b1/m
∣∣ ≤ 21/m|a − b|1/m ∀a, b ≥ 0 and m ≥ 1.

Let m = 1 and replace p by mp in (6.1). By the Borel-Cantelli lemma one has

lim sup
k→∞

s
−(mp+1)/2
k+1

(
log log sk+1

)−(mp−1)/2
∫ ∞

−∞
L
mp
i,k

(
sk+1, x

)
dx ≤ β1 a.s.

for each 1 ≤ i ≤ p, where β1 is a constant depending only on m and p. Note that
as k → ∞, sk log log sk = o

(
sk+1/ log log sk+1

)
. By the classic law of the iterated

logarithm for Brownian motions,

lim
k→∞

(
s−1
k+1 log log sk+1

)1/2 |Wj(sk)| = 0 a.s.

for every 1 ≤ j ≤ p. Therefore,

lim sup
k→∞

(2sk+1 log log sk+1)
−1/2

× sup
x∈R

∣∣∣Lj,k(sk+1 − sk, x −Wj(sk)
) − Lj,k

(
sk+1 − sk, x

)∣∣∣
≤ lim
δ→0+

lim sup
k→∞

(2sk+1 log log sk+1)
−1/2

× sup
|x−y|≤δ(sk+1/ log log sk+1)

1/2

∣∣∣Lj,k(sk+1 − sk, y
) − Lj,k

(
sk+1 − sk, x

)∣∣∣
= 0 a.s.

where the last step follows from the Borel-Cantelli lemma, and (2.8) that can be
stated as, after a proper rescaling,

lim
δ→0+

lim sup
t→∞

(log log t)−1

× log P

{
sup

|x−y|≤δ(t/ log log t)1/2
|L(t, y)− L(t, x)| ≥ (t/ log log t)1/2

}
= −∞.

Combining what we have observed so far, we reach the conclusion that

∣∣∣∣
( ∫ ∞

−∞

m∏
j=1

(
Lj (sk+1, x)− Lj (sk, x)

)p
dx

)1/mp

−
( ∫ ∞

−∞

m∏
j=1

L
p
j,k

(
sk+1 − sk, x

)
dx

)1/mp∣∣∣∣
= o

(
s
(mp+1)/2mp
k+1

(
log log sk+1

)(mp−1)/2mp
)

a.s. (k → ∞). (6.2)
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On the other hand, by (1.7) in Theorem 1.1, for any γ < C3(m, p)

∑
k

P
{ ∫ ∞

−∞

m∏
j=1

L
p
j,k

(
sk+1 − sk, x

)
dx ≥ γ s

(mp+1)/2
k+1

(
log log sk+1

)(mp−1)/2}

=
∑
k

P
{ ∫ ∞

−∞

( m∏
j=1

Lj
(
sk+1 − sk, x

))p
dx

≥ γ s
(mp+1)/2
k+1

(
log log sk+1

)(mp−1)/2} = ∞

By the Borel-Cantelli lemma and the independence of the sequence

∫ ∞

−∞

m∏
j=1

L
p
j,k

(
sk+1 − sk, x

)
dx, k = 1, 2, · · ·

we have

lim sup
k→∞

s
−(mp+1)/2
k+1

(
log log sk+1

)−(mp−1)/2

×
∫ ∞

−∞

m∏
j=1

L
p
j,k

(
sk+1 − sk, x

)
dx ≥ C3(m, p) a.s.

In view of (6.2),

lim sup
k→∞

s
−(mp+1)/2
k+1

(
log log sk+1

)−(mp−1)/2

×
∫ ∞

−∞

m∏
j=1

(
Lj (sk+1, x)− Lj (sk, x)

)p
dx ≥ C3(m, p) a.s.

Note that

∫ ∞

−∞

m∏
j=1

L
p
j (sk+1, x)dx ≥

∫ ∞

−∞

m∏
j=1

(
Lj (sk+1, x)− Lj (sk, x)

)p
dx, ∀k ≥ 1.

Hence,

lim sup
t→∞

t−(mp+1)/2(log log t)−(mp−1)/2
∫ ∞

−∞

m∏
j=1

L
p
j (t, x)dx ≥ C3(m, p) a.s.

which finishes the proof of (1.14).

7. Two analytic lemmas

Recall that F denotes the set of absolutely continuous functions on (−∞,∞)

satisfying (2.2).
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Lemma 7.1. For any p > 1,

lim sup
M→∞

sup
g∈F

{( ∫ M

0

( ∑
k∈Z

g2(x + kM)
)p
dx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}

≤ sup
g∈F

{( ∫ ∞

−∞
|g(x)|2pdx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}
.

Proof. Without loss of generality we may assume that the right hand side, call it
J , is finite. Indeed, J is found explicitly in the next lemma. We only need to prove
that given ε > 0, there is a M > 0 such that for any g ∈ F ,

( ∫ M

0

( ∑
k∈Z

g2(x + kM)
)p
dx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

≤ ε + (1 − ε)−(p−1)/(p+1)J. (7.1)

The hard part is that M has to be independent of g. We will determine the value
of M later. Let ḡ2(x) = ∑

k∈Z
g2(x + kM) with ḡ(x) ≥ 0. Then

∫M
0 ḡ2(x) =∫ ∞

−∞ g2(x)dx = 1 and ḡ is absolutely continuous with |ḡ′(x)|2 ≤ ∑
k∈Z

|g′(x +
kM)|2 which is easy to see by direct computation of ḡ′(x) and then using the
Cauchy-Schwarz inequality. Consequently,

( ∫ M

0

( ∑
k∈Z

g2(x + kM)
)p
dx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

≤
( ∫ M

0
ḡ2p(x)dx

)1/p

− 1

2

∫ M

0
|ḡ′(x)|2dx. (7.2)

Next we need to construct a function f ∈ F which is equal to ḡ on [M1/2,M−
M1/2] and is negligible in some suitable sense at the rest part of the real line as
M gets large. Let E = [0,M1/2] ∪ [M −M1/2,M]. By Lemma 3.4 in Donsker-
Varadhan (1975), there is a real number a such that

∫M
0 ḡ2(x − a)dx ≤ 2M−1/2.

We may assume a = 0, i.e,

∫ M

0
ḡ2(x)dx ≤ 2M−1/2 (7.3)

for otherwise we can replace ḡ(·) by ḡ(· + a). Define

ϕ(x) =




xM−1/2 0 ≤ x ≤ M1/2

1 M−1/2 ≤ x ≤ M −M1/2

M1/2 − xM−1/2 M −M1/2 ≤ x ≤ M

0 otherwise.

It is straightforward to verify that

0 ≤ ϕ(x) ≤ 1, |ϕ′(x)| ≤ M−1/2, |(ϕ2(x)
)′| ≤ 2M−1/2, −∞ < x < ∞.
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Define

f (x) = ḡ(x)ϕ(x) ·
(∫ ∞

−∞
ḡ2(x)ϕ2(x)dx

)−1/2

.

Clearly, f ∈ F . Set α = ∫ ∞
−∞ ḡ2(x)ϕ2(x)dx. Then

|f ′(x)|2 = 1

α

{
|ḡ′(x)|2ϕ2(x)+ ḡ2(x)|ϕ′(x)|2 + 1

2

(
ḡ2(x)

)′(
ϕ2(x)

)′}

≤ 1

α
I[0,M](x)

{
|ḡ′(x)|2 +M−1ḡ2(x)+M−1/2

∣∣(ḡ2(x)
)′∣∣}.

Note that

∫ M

0

∣∣(ḡ2(x)
)′∣∣dx ≤ 2

( ∫ M

0
|ḡ′(x)|2dx

)1/2( ∫ M

0
ḡ2(x)dx

)1/2

= 2

( ∫ M

0
|ḡ′(x)|2dx

)1/2

.

Hence,

∫ ∞

−∞
|f ′(x)|2dx ≤ 1

α

{ ∫ M

0
|ḡ′(x)|2 +M−1 + 2M−1/2

( ∫ M

0
|ḡ′(x)|2dx

)1/2}
.

(7.4)

On the other hand,

( ∫ M

0
ḡ2p(x)dx

)1/p

≤
(
αp

∫ ∞

−∞
|f (x)|2pdx +

∫
E

|ḡ(x)|2pdx
)1/p

≤ α

( ∫ ∞

−∞
|f (x)|2pdx

)1/p

+
( ∫

E

|ḡ(x)|2dx
)1/p

(7.5)

and from (7.3)

( ∫
E

|ḡ(x)|2pdx
)1/p

≤ sup
0≤x≤M

|ḡ(x)|2/q
( ∫

E

|ḡ(x)|2dx
)1/p

≤ (2M−1/2)1/p sup
0≤x≤M

|ḡ(x)|2/q .

Observe that for any 0 ≤ x ≤ M , if x + 1 ∈ [0,M] then

|ḡ(x)| ≤
∫ x+1

x

|ḡ(y)|dy +
∫ x+1

x

( ∫ y

x

|ḡ′(z)|dz
)
dy

≤
( ∫ M

0
ḡ2(x)dx

)1/2

+
( ∫ M

0
|ḡ′(x)|2dx

)1/2

≤ 1 +
( ∫ M

0
|ḡ′(x)|2dx

)1/2

.
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Note that this inequality holds even x + 1 �∈ [0,M], in which case we integrate on
[x − 1, x] instead of [x, x + 1] in the above estimate. Therefore,

( ∫
E

|ḡ(x)|2pdx
)1/p

≤ (2M−1/2)1/p
{

1 +
( ∫ M

0
|ḡ′(x)|2dx

)1/2}2/q

. (7.6)

By combining (7.4), (7.5), (7.6), we see

( ∫ M

0
ḡ2p(x)dx

)1/p

− 1 − ε

2

∫ M

0
|ḡ′(x)|2dx −

(
1√
M

( ∫ M

0
|ḡ′(x)|2dx

)1/2

+(2M−1/2)1/p
{

1 +
( ∫ M

0
|ḡ′(x)|2dx

)1/2}2/q)

≤ 1 − ε

2M
+ α

{( ∫ ∞

−∞
|f (x)|2pdx

)1/p

− 1 − ε

2

∫ ∞

−∞
|f ′(x)|2dx

}

≤ 1

2M
+ sup
f∈F

{( ∫ ∞

−∞
|f (x)|2pdx

)1/p

− 1 − ε

2

∫ ∞

−∞
|f ′(x)|2dx

}

= 1

2M
+

( 1

1 − ε

) p−1
p+1
J

where the second inequality follows from the fact that α ≤ 1 and the final step from
the substitution

f (x) =
( 1

1 − ε

)p/2(p+1)
h
(( 1

1 − ε

)p/(p+1)
x
)
.

Since q > 1, there is a sufficiently large M = M(ε) > 0 such that M−1 ≤ ε and
that

(x/M)1/2 + (2M−1/2)1/p(1 + √
x)2/q ≤ ε(x + 1)/2

for all x ≥ 0. Note that the choice ofM is independent of the function g!. For such
M ,

( ∫ M

0
ḡ2p(x)dx

)1/p

− 1

2

∫ M

0
|ḡ′(x)|2dx ≤ ε +

( 1

1 − ε

) p−1
p+1
J (7.7)

Finally, (7.1) follows from (7.2) and (7.7). ��

Lemma 7.2. For any real number p > 1,

J = sup
g∈F

{( ∫ ∞

−∞
|g(x)|2pdx

)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

}

= p−2p/(p+1)
( √

2

(p − 1)(p + 1)
B

( 1

p − 1
,

1

2

))−2(p−1)/(p+1)

.
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Proof. The proof is partially inspired by Strassen (1964). By a close examination
of the proof of Theorem 6.7 in Mansmann (1991), one can show that J < ∞ and
there is a f ∈ F such that

J =
( ∫ ∞

−∞
f 2p(x)dx

)1/p

− 1

2

∫ ∞

−∞
|f ′(x)|2dx

with the properties

f (x) ≥ 0, f (−x) = f (x), ∀x and f (x) ≥ f (y) for |x| ≤ |y|. (7.8)

Let W 1,2(R) be the Hilbert space

W 1,2(R) =
{
g; g is absolutely continuous,

∫ ∞

−∞
|g(x)|2dx < ∞,

∫ ∞

−∞
|g′(x)|2dx < ∞

}

with the Sobolev norm |g|21,2 = ∫ ∞
−∞ |g(x)|2dx + ∫ ∞

−∞ |g′(x)|2dx. Applying the
Lagrange multiplier gives that for any g ∈ W 1,2(R)

2
( ∫ ∞

−∞
|f (x)|2pdx

)−(p−1)/p
∫ ∞

−∞
f 2p−1(x)g(x)dx −

∫ ∞

−∞
f ′(x)g′(x)dx

= 2λ
∫ ∞

−∞
f (x)g(x)dx.

Note that as |x| → ∞,∣∣∣∣g(x)
∫ x

0
f (y)dy

∣∣∣∣ ≤ |g(x)|
√

|x| → 0

and therefore as |x| → ∞,∣∣∣∣g(x)
∫ x

0
f 2p−1(y)dy

∣∣∣∣ ≤ f 2p−2(0)

∣∣∣∣g(x)
∫ x

0
f (y)dy

∣∣∣∣ → 0.

Hence, using integration by parts,

−2
( ∫ ∞

−∞
f 2p(x)dx

)−(p−1)/p
∫ ∞

−∞
g′(x)

∫ x

0
f 2p−1(y)dydx

−
∫ ∞

−∞
f ′(x)g′(x)dx = −2λ

∫ ∞

−∞
g′(x)

∫ x

0
f (y)dydx.

Thus for all x,
( ∫ ∞

−∞
f 2p(x)dx

)−(p−1)/p
∫ x

0
f 2p−1(y)dy + 1

2
f ′(x) = λ

∫ x

0
f (y)dy.

Therefore, f (x) has a continuous second derivative f ′′(x) satisfying
( ∫ ∞

−∞
f 2p(x)dx

)−(p−1)/p
f 2p−1(x)+ 1

2
f ′′(x) = λf (x) (7.9)
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with f ′(0) = 0. Multiplying both sides of (7.9) by f (x) and integrating we obtain

λ =
( ∫ ∞

−∞
f 2p(x)dx

)1/p

− 1

2

∫ ∞

−∞
|f ′(x)|2dx = J. (7.10)

Multiplying both sides of (7.9) by f ′(x), integrating we have after simplification
that

(
f ′(x)

)2 = 2

(
λf 2(x)− 1

p

( ∫ ∞

−∞
f 2p(x)dx

)−(p−1)/p
f 2p(x)+ C

)

where, using f ′(0) = 0,

C = 1

p

( ∫ ∞

−∞
f 2p(x)dx

)−(p−1)/p
f 2p(0)− λf 2(0). (7.11)

Thus, by the fact that f ′(x) ≤ 0 for all x ≥ 0,

dx = − 1√
2

(
λf 2(x)− p−1

( ∫ ∞

−∞
f 2p(x)dx

)−(p−1)/p
f 2p(x)+ C

)−1/2

× df (x) ∀x ≥ 0. (7.12)

Consequently, for all x ≥ 0,

x = 1√
2

∫ f (0)

f (x)

(
λy2 − p−1

( ∫ ∞

−∞
f 2p(x)dx

)−(p−1)/p
y2p + C

)−1/2

dy.

(7.13)

Letting x → ∞ we have f (x) → 0 and the above relation implies C = 0. Hence
by (7.11),

f (0) =
( ∫ ∞

−∞
f 2p(x)dx

)1/2p
p1/(2p−2)λ1/(2p−2). (7.14)

Combining (7.8), (7.12) and (7.14) we obtain∫ ∞

−∞
f 2p(x)dx = 2

∫ ∞

0
f 2p(x)dx

=
√

2
∫ f (0)

0
y2p

(
λy2 − p−1

( ∫ ∞

−∞
f 2p(x)dx

)−(p−1)/p
y2p

)−1/2

dy

= f 2p(0)
√

2/λ
∫ 1

0

u2pdu√
u2 − u2p

=
√

2pp/(p−1)λ(p+1)/2(p−1)
∫ ∞

−∞
f 2p(x)dx

∫ 1

0

u2pdu√
u2 − u2p

.

Therefore,

1 =
√

2pp/(p−1)λ(p+1)/2(p−1)
∫ 1

0

u2pdu√
u2 − u2p

.

Hence

λ = p−2p/(p+1)
( √

2

(p − 1)(p + 1)
B

( 1

p − 1
,

1

2

))−2(p−1)/(p+1)

and the desired conclusion follows from (7.10). ��
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Remark 7.3. It can be seen from the proof of Lemma 7.2 that the maximizer f (x)
is unique. In addition,

f (x) = Kpϕ
−1
p (Cp|x|), x ∈ R

where ϕ−1
p (x) (x ∈ [0,∞)) is the inverse of the decreasing function ϕp:

ϕp(y) =
∫ 1

y

1√
u2 − u2p

du, y ∈ (0, 1]

and,

Cp = 21/(p+1)p−p/(p+1)
(

1

(p − 1)(p + 1)
B

( 1

p − 1
,

1

2

))−(p−1)/(p+1)

Kp = 21/2(p+1)(p + 1)(p−1)/2(p+1)
(

p

(p − 1)
B

( 1

p − 1
,

1

2

))−p/(p+1)

.

Indeed, by (7.14) a suitable integration substitution in (7.13) gives

x = C−1
p

∫ 1

f (x)/f (0)

1√
u2 − u2p

du, x ≥ 0

which gives that f (x) = f (0)ϕ−1
p (Cp|x|) for all x ∈ R. This, together with the

constraint
∫ ∞
−∞ f 2(x)dx = 1 gives f (0) = Kp.

Acknowledgement. The authors would like to thank the referee for careful reading of the
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