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Weighted occupation measure results are obtained for fractional Brownian
motion. Proofs depend on small ball probability estimates of the sup-norm for
these processes, which are then used to obtain a functional law of the iterated
logarithm. The occupation measure results are consequences of the law of the
iterated logarithm.
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1. INTRODUCTION AND MAIN RESULTS

Let {B(t): −. < t <.} be a sample continuous Brownian motion with
B(0)=0. For 0 < c < 2 and t \ 0, define

Bc(t)=F
R
1
kc(t, x) dB(x), (1.1)

where

kc(t, x)=˛
0 if x > t

ac(t−x)(c−1)/2 if 0 [ x [ t

ac{|t−x| (c−1)/2−|x| (c−1)/2} if −. < x < 0,

(1.2)



and

ac=1c−1+F
0

−.
((1−s) (c−1)/2−(−s) (c−1)/2)2 ds2

−1/2

. (1.3)

If c=1, we naturally interpret kc(t, x) to be I[0, t](x), and hence B1(t)
is a sample continuous Brownian motion starting at zero at time zero.
Otherwise, {Bc(t): t \ 0} is c-fractional Brownian motion, and we set

Mc(t)= sup
0 [ s [ t

|Bc(s)| (1.4)

for t \ 0. For n \ 1 and t \ 0, let

gn(t)=Mc(nt)/(ccn/LLn)c/2, (1.5)

where the constant 0 < cc <. is given by

cc=− lim
EQ 0+

E2/c log P(Mc(1) [ E). (1.6)

The existence of cc in (1.6), with 0 < cc <., is given in Li and Linde(5) and
independently in Shao.(11) The constant c1=p2/8. For other values of c, cc
is unknown, but certain estimates are in Shao.(10) It was shown earlier in
Monrad and Rootzen,(8) and Shao,(9) that the lim inf (lim sup) of the right
hand term in (1.6) is strictly positive (finite), but here we need (1.6) as
stated. Of course, gn( · ) in (1.5) depends on c, but we suppress that to sim-
plify the notation. Throughout, log x denotes the natural logarithm of x
and LLx=max(1, log log x) for x \ 1.
Our main objective here is to prove a functional LIL for the sequence

{gn} based on fractional Brownian motions, and then to apply this result to
obtain some weighted occupation measure results for these processes. The
proof of our functional LIL follows the broad outlines of the companion
result for stable process in Chen et al., (1) but is completely different in the
details. Once the functional LIL is established, the occupation measure
results follow in a fashion similar to that established in Chen et al. (1)

The functional LIL is motivated by a result in Wichura(13) for Brow-
nian motion. Wichura’s proof depended on diffusion process techniques,
and differs from what we do here, and also from what was done in Chen
et al. (1) This is not a matter of choice, but of necessity at this point in time.
Now we turn to notation for our functional LIL. We let M be the

space of functions f: [0,.)Q [0,.] such that f(0)=0, f is right con-
tinuous on (0,.), nondecreasing and limtQ+. f(t)=.. We endow M
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with the topology of weak convergence, that is, pointwise convergence at
all continuity points of the limit function. As can be seen, for example, by
the discussion in Chen et al. (1) (see pp. 259–263), the weak topology onM

is metrizable, separable, and complete.
If {fn} is a sequence of points in M, then C({fn}) denotes the cluster

set of {fn}, that is, all possible subsequential limits of {fn} in the weak
topology. If A ıM, we write {fn}QQ A if {fn} is relatively compact inM,
and C({fn})=A in the weak topology. A subset F of M is relatively
compact in the weak topology if for every C > 0 there exists t0=t0(C)
such that t \ t0 implies inff ¥ F f(t) \ C. This characterization of relative
compactness is immediate from the discussion of the weak topology on M

given in Chen et al. (1)

The functional LIL we obtain is our first theorem.

Theorem 1.1. Let {Bc(t): t \ 0} be a sample continuous c-fractional
Brownian motion with Bc(0)=0 and 0 < c < 2. Then

P({gn}QQKc)=1, (1.7)

where gn( · ) is given in (1.5) and

Kc=3f ¥M : F
.

0
f−2/c(s) ds [ 14 . (1.8)

Corollary 1.1. Let {gn} be as in Theorem 1.1. Then

P(lim inf
n
gn(1)=1)=1. (1.9)

Remarks.

(1) Theorem 1.1 is motivated by its companion result in Chen et al. (1)

for symmetric stable processes having stationary independent increments.
As their proofs reveal, the results obtained here, and in Chen et al., (1) are
about increasing processes with scaling properties. However, the proofs of
the necessary probability estimates for the functional LIL vary consider-
ably in the different settings, and the exact class of processes for which such
results hold is not so clear to us at this time.

(2) The first passage time results for symmetric stable processes
obtained in Corollary 1.2 of Chen et al. (1) have analogues for fractional
Brownian motions. They can be derived in exactly the same fashion as
Corollary 1.2. Wichura’s approach for Brownian motion started with the
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first passage time process, and derived a functional LIL from that setup.
Our approach reverses that procedure. Additional details are contained in
Corollary 1.2 of Chen et al. (1)

Our weighted occupation measure results for the fractional Brownian
motions are obtained from Theorem 1.1 by applying suitable functionals.
This is very much in the spirit of Donsker’s invariance principle and Strassen’s
functional LIL and follows along the lines established in Chen et al. (1)

For example, we know from Corollary 1.1 that with probability one
lim infn gn(1)=1, but how fast does gn( · ) get away from the zero function,
say over the interval [0, 1], or how many samples gn(1), n [ t, fall in the
interval [0, c], c \ 1? One measure of these quantities is the weighted
occupation measure

Yc(t)=t−1 F
t

0
I[0, c](gs(1) h(s/t)) ds, (1.10)

where c \ 1, h maps (0, 1] into [1,.) with h(1)=1, gs(u)=M(su)/
(ccs/LLs)c/2 for s > 0, u \ 0, and g0(u)=0 for all u \ 0. We also assume

h(s) is non-increasing on (0, 1] and lim
sQ 0+

h(s)=., (1.11)

and define the function

h(s)=h2/c(s)+F
1

s
(h2/c(u)/u) du, 0 < s [ 1. (1.12)

Note that if h is continuous on (0, 1] and (1.11) holds with h(1)=1, then
h(s) is strictly decreasing and continuous on (0, 1]. Furthermore, under
these conditions it is easy to see that the range of h(s) is all of [1,.).
The functions h(s)=(log(e/s))c/2 and h(s)=s−b+c/2, where b > c/2,

provide interesting weights which satisfy the conditions formulated in
(1.11) and are continuous on (0, 1]. Now we can state our weighted occu-
pation measure results.

Theorem 1.2. Let h: (0, 1]Q [1,.) such that h(1)=1. In addition,
assume (1.11) and that h(s) defined as in (1.12) is strictly decreasing and
continuous from (0, 1] onto [1,.). Then, with probability one

lim sup
tQ.

Yc(t)=1−sc, (1.13)

where s=sc is the unique solution to h(s)=c2/c, c \ 1.
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Remarks.

(1) Theorem 1.2 is proven is Section 4, and requires the parameter s
in {gs( · )} to converge to infinity continuously rather than through the
integers. In particular, {gs( · )} must satisfy (3.1), (3.2), (3.3) as sQ., but
this follows from easy modifications of Section 3 and the related material
in Chen et al. (1)

(2) Theorem 1.2 and the examples which follow are remarkably
similar to their analogues for the symmetric stable processes studied in
Chen et al. (1) In fact, they only differ in the value of the small ball con-
stants cc, and again one conjectures something more general must underly
these results. Unlike Theorem 1.1, the proof of Theorem 1.2 and the veri-
fication of the examples follows along lines similar to that for their
analogues for symmetric stable processes. On the other hand, in order to
make precise an argument in the proof of Theorem 1.2 in Chen et al., (1) we
include some additional details. These, as well as other comments, are
included in the proofs of Theorems 1.2 and 1.3.

Examples. If h(s)=(log(e/s))c/2 on (0, 1], then for 0 < s [ 1, h(s)=
1−2 log s+(log s)2/2. Solving h(s)=c2/c, 0 < s [ 1 and c \ 1, we get sc=
exp{2−2`1+(c2/c−1)/2 }, and hence with probability one,

lim sup
tQ.

t−1 F
t

0
I[0, c](gs(1)(log(et/s))c/2) ds

=1− exp{2−2`1+(c2/c−2)/2}

for c \ 1.
Let h(u)=u−b+c/2 where b > c/2. Then sc=((1−c2/c(1−2b/c)) c/

2b)1/(1−
2b
c
) and with probability one

lim sup
tQ.

Yc(t)=1−((1−c2/c(1−2b/c)) c/2b)1/(1−
2b
c
).

Another gauge of the rate of escape is the quantity t−1 > t0 I[0, c]
(gt(s/t)) ds, which is similar to Yc(t) (as tQ.), provided h(s)=sc/2. With
this choice of h (1.11) fails, and h(s)=1. Thus Theorem 1.2 is not applic-
able, but the techniques for its proof imply

lim sup
tQ.

t−1 F
t

0
I[0, c](gt(s/t)) ds=˛

1 if c \ 1

c2/c if 0 [ c < 1.
(1.14)
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The rate of escape with respect to Lp distances, 0 < p <., is

lim inf
tQ.

F
1

0
|gt(u)|p du= inf

f ¥Kc
F
1

0
|f(u)|p du=1. (1.15)

Since gt( · ) is increasing, the analogue of (1.15) for the sup-norm on [0, 1]
follows immediately from (1.9). The proof of (1.14), (1.9), and (1.15) follow
much like their analogues in Chen et al., (1) so we do not include the details.
Another class of examples follows. They were not considered in Chen

et al., (1) but seem worthwhile to be included here. To describe these results
we let

Hc(t)=t−1 F
t

0
I[0, c](gt(s/t) h(s/t)) ds, (1.16)

where h: (0, 1]Q [1,.), h(1)=1, and sh(s)2/c is non-increasing on (0, 1].
We also set

g(s)=sh(s)2/c+F
1

s
h(u)2/c du (1.17)

for 0 < s [ 1.
Although the functionals Yc(t) and Hc(t) look quite different, the fact

that

gt(s/t) h(s/t)=gs(1)(s/t)c/2 h(s/t)(LLt/LLs)c/2,

and that Lemma 4.1 below implies the factor (LLt/LLs)c/2 is negligible
under certain circumstances, one conjectures that results about the weight
uc/2h(u) in Yc(t) should translate into results about the weight h(u) in
Hc(t). Our next result makes this precise, and its proof follows along lines
similar to those for Theorem 1.2.

Theorem 1.3. Let h: (0, 1]Q [1,.) satisfy h(1)=1, and assume
sh2/c(s) is non-increasing in s on (0, 1] with limsQ 0+ sh2/c(s)=..
Furthermore, assume that g(s) as defined in (1.17) is continuous and one-
to-one from (0, 1] onto [1,.). Then with probability one

lim sup
tQ.

Hc(t)=1−sc, (1.18)

where s=sc is the unique solution to g(s)=c2/c, c \ 1.
Of course, Theorem 1.3 has examples similar to those for Theorem 1.2.
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2. PROBABILITY ESTIMATES

The proof of Theorem 1.1 depends on the probability estimates for
weighted sup-norms in this section. The form of these estimates parallels
the analogues in Chen et al. (1) for symmetric stable processes with station-
ary independent increments, but the proofs are considerably different due
to the lack of independent increments. For a survey of probability estima-
tes of small balls and their applications see Li and Shao.(7) The first result
is Theorem 1.1 of Li and Linde.(5)

Lemma 2.1. Let {Bc(t): t \ 0} be as above, and for t \ 0 define

Wc(t)=F
t

0
kc(t, u) dB(u). (2.1)

Then, for 0 < c < 2

lim
E a 0
E2/c log P(Mc(1) [ E)=lim

E a 0
E2/c log P( sup

0 [ s [ 1
|Wc(s)| [ E)=−cc, (2.2)

where

0 < cc=−inf
E > 0
E2/c log P( sup

0 [ s [ 1
|Wc(s)| [ E) <..

Our first proposition provides a useful upper bound for the probabil-
ities we need to estimate.

Proposition 2.2. Fix sequences {ti}
m
i=1, {ai}

m
i=1, and {bi}

m
i=1 such

that 0=t0 < t1 < · · · < tm and 0 [ ai < bi for i=1, 2,..., m, and b1 [ b2
[ · · · [ bm. Then

lim
E a 0
E2/c log P(aiE [Mc(ti) [ biE, 1 [ i [ m) [ −cc C

m

i=1
(ti−ti−1)/b

2/c
i .
(2.3)

Proof. Let Ai={supti−1 [ s [ ti |Bc(s)| [ biE} for 1 [ i [ m, and for
s \ t \ 0 set

Yc(t, s)=Zc(s)+F
t

0
kc(s, u) dB(u), (2.4)
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where

Zc(s)=F
0

−.
kc(s, u) dB(u). (2.5)

Then

P(aiE [Mc(ti) [ biE, 1 [ i [ m) [ P 13
m

i=1
Ai 2 , (2.6)

and since

F
s

tm−1
(s−u) (c−1)/2 dB(u)

is independent of 4m−1
i=1 Ai and also Yc(tm−1, · )=y( · ) we have P(4m

i=1 Ai)
equal to

F
C[tm−1, tm]

P 13
m−1

i=1
Ai, sup

tm−1 [ s [ tm

:F s
tm−1
kc(s, x) dB(x)+y(s): [ bmE2 dPYc(tm−1, · )(y).

Hence by Anderson’s inequality, and the independence mentioned pre-
viously

P 13
m

i=1
Ai 2 [ P 13

m−1

i=1
Ai 2 P 1 sup

tm−1 [ s [ tm

:F s
tm−1
kc(s, u) dB(u): [ bmE2 .

Iterating the above, we see by setting r=s−ti−1 in each term, that

P 13
m

i=1
Ai 2 [ D

m

i=1
P 1 sup

ti−1 [ s [ ti

:F s
ti−1
kc(s, u) dB(u) : [ biE2

=D
m

i=1
P 1 sup

0 [ r [ ti − ti−1

:F r+ti−1
ti−1

kc(r+ti−1, u) dB(u) : [ bi E2

=D
m

i=1
P 1 sup

0 [ r [ ti − ti−1

:F r
0
kc(r, v) dB(v) : [ bi E2 (2.7)

by setting v=u−ti−1 and using the homogeneous increments of Brownian
motion.
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Now the process {Wc(ct): t \ 0} has the same distribution as
{cc/2Wc(t): t \ 0} for all c > 0, and hence setting s=r/(ti−ti−1) we get
from (2.7) that

P 13
m

i=1
Ai 2 [ D

m

i=1
P 1 sup

0 [ s [ 1

:F (ti − ti−1) s
0

kc(s(ti−ti−1), v) dB(v) : [ biE2

=D
m

i=1
P 1 sup

0 [ s [ 1

:F s
0
kc(s, u) dB(u) : [ biE/(ti−ti−1)c/22 . (2.8)

Hence (2.1), (2.2), and (2.8) combine to imply

lim
E a 0
E2/c log P(ai E [Mc(ti) [ biE, 1 [ i [ m)

[ lim
E a 0

C
m

i=1
E2/c log P 1 sup

0 [ s [ 1

:F s
0
kc(s, u) dB(u) : [ biE/(ti−ti−1)c/22

[ −cc C
m

i=1

(ti−ti−1)
b2/ci

, (2.9)

and the proposition is proven.

Remark. If we define

Jc(t)= sup
0 [ s [ t

|Wc(s)|, (2.10)

then Jc(1) andMc(1) are related by Lemma 2.1 and the previous argument
easily implies the analogue of (2.3) for Jc(t), namely

lim
E a 0
E2/c log P(aiE [ Jc(ti) [ biE, 1 [ i [ m) [ −cc C

m

i=1

(ti−ti−1)
b2/ci

. (2.11)

The necessary lower bound we require is the next proposition.

Proposition 2.3. Fix sequences {ti}
m
i=1, {ai}

m
i=1, {bi}

m
i=1 such that

0=t0 < t1 < · · · < tm and 0 [ a1 < b1 [ a2 < b2 [ · · · [ am < bm. Then,

J
E a 0
E2/c log P(ai E [Mc(ti) [ biE, 1 [ i [ m) \ −cc C

m

i=1
(ti−ti−1)/b

2/c
i .
(2.12)
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Proof. Let Ai, 1 [ i [ m, Yc(t, s), and Zc(s) be defined as in the proof
of Proposition 2.2. The first step of this proof is to obtain a lower bound
for P(4m

i=1 Ai).
Take 0 < d < b1=min1 [ i [ m bi. Then,

P 13
m

i=1
Ai 2 \ P 13

m

i=1
Ai, sup

tm−1 [ s [ tm

|Yc(tm−1, s)| [ dE2

\ P 13
m−1

i=1
Ai, sup

tm−1 [ s [ tm

|Yc(tm−1, s)| [ dE,

sup
tm−1 [ s [ tm

:F s
tm−1
kc(s, u) dB(u) : [ (bm−d) E2

=p1 · p2, (2.13)

where

p1=P 13
m−1

i=1
Ai, sup

tm−1 [ s [ tm

|Yc(tm−1, s)| [ dE2 , (2.14)

and

p2=P 1 sup
tm−1 [ s [ tm

:F s
tm−1
kc(s, u) dB(u) : [ (bm−d) E2 . (2.15)

Arguing as in (2.7) and (2.8) we have

p2=P( sup
0 [ s [ 1

|Wc(s)| [ (bm−d) E/(tm−tm−1)c/2). (2.16)

To estimate p1, we use the following lemma of Li, (4) which is a
weakened form of the Gaussian correlation conjecture. A very short proof
appears in Li and Shao.(6)

Lemma 2.4. Let m be a centered Gaussian measure on separable
Banach space E and assume A and B are symmetric m-measurable convex
subsets of E. Then for 0 < l < 1

m(A 5 B) \ m(lA) m((1−l2)1/2 B). (2.17)
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Thus (2.17) implies for any 0 < l < 1 that

p1=P 13
m−1

i=1
Ai, sup

0 [ s [ tm −tm−1

:F tm−1
−.
kc(s+tm−1, u) dB(u) : [ dE2

\ P 13
m−1

i=1
{ sup
ti−1 [ s [ ti

|Bc(s)| [ lbiE}2

·P 1 sup
0 [ s [ tm −tm−1

:F tm−1
−.
kc(s+tm−1, u) dB(u) : [ (1−l2)1/2 dE2 . (2.18)

Combining the estimate in (2.13) with (2.18), and iterating these estimates,
implies

P 13
m

i=1
Ai 2 \ q1q2, (2.19)

where

q1=D
m

i=1
P 1 sup

0 [ s [ ti − ti−1

:F ti−1
−.
kc(s+ti−1, u) dB(u) : [ (1−l2)1/2 lm−idE2

(2.20)

and

q2=D
m

i=1
P( sup
0 [ s [ 1

|Wc(s)| [ lm−i(bi−d) E/(ti−ti−1)c/2).

Applying Lemma 2.1 we see

lim
E a 0
E2/c log q2=−cc C

m

i=1

(ti−ti−1)
(lm−i(bi−d))2/c

,

and letting l ‘ 1, d a 0 we see P(4m
i=1 Ai) has lower bound given by the

right-hand side of (2.12) provided we show limE a 0 E2/c log q1=0.
Now log q1 is a finite sum of probabilities involving the process

R(s)=Ra, b(s)=F
a

−.
kc(a+s, u) dB(u) (2.21)

where 0 [ s [ b. To study the small ball behavior of the centered Gaussian
process {R(s): 0 [ s [ b} we use the following result established in
Talagrand(12) and formulated as given below by Ledoux,(3) p. 257.
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Lemma 2.5. Let {X(t): t ¥ T} be a centered Gaussian process. For
every E > 0, let N(T, d, E) denote the minimal number of balls of radius E,
under the (pseudo)-metric dX(s, t)=(E(X(t)−X(s))2)1/2, that are neces-
sary to cover T. Assume that k(E) is defined on [0,.) such that
N(T, d, E) [ k(E), and such that for some constants 1 < c1 [ c2 <.,
c1k(E) [ k(E/2) [ c2k(E). Then, for some constant K > 0, for every E > 0,

P(sup
s, t ¥ T

|X(s)−X(t)| [ E) \ exp{−Kk(E)}. (2.22)

With the help of Lemma 2.5 we now establish a result which applies to
the process {R(t): 0 [ t [ b}.

Lemma 2.6. Fix a \ 0, b > 0, 0 < c < 2, and for 0 [ s [ b define

R(s)=F
a

−.
kc(a+s, u) dB(u).

Then

lim
E a 0
E2/c log P( sup

0 [ s [ b
|R(s)| [ E)=0. (2.23)

Proof. For simplicity we assume b=1. There are two cases to con-
sider, and we recall a \ 0.

Case 1. c=1 (and hence ac=1). Then kc(t, u)=I[0, t](u) for t, u \ 0
and for 0 [ s [ b

R(s)=F
a

0
dB(u)=B(a).

Hence in this case (2.23) is obvious.

Case 2. 0 < c < 2, c ] 1. If 0 < s < t [ 1, then

d2(s, t)=E 11F a
−.
(kc(a+t, u)−kc(a+s, u)) dB(u)2

22

=F
a

−.
(kc(a+t, u)−kc(a+s, u))2 du

=a2c F
a

−.
((a+t−u) (c−1)/2−(a+s−u)c−1)/2)2 du
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=a2c F
.

0
((t+v)(c−1)/2−(s+v)(c−1)/2)2 dv

=a2c F
.

s
[((t−s)+r)(c−1)/2−r (c−1)/2]2 dr. (2.24)

Now by the mean value theorem

|(t−s+r)(c−1)/2−r (c−1)/2| [ |t− s| r (c−3)/2

for all r > 0, and hence for min(s, t) > 0 we have

d(s, t) [ ac |t− s| (min(s, t)) (c−2)/2 (2− c)−1/2. (2.25)

When s=0, we have from the above that

d2(0, t)=a2c t
c F
.

0
[(1+u)(c−1)/2−(u) (c−1)/2]2 du [ C2tc,

where C is some constant depending only on c.
For any E > 0 small, set N(E)=min{n: tn > 1} where t0=(E/C)2/c so

that d(0, t0) [ E, and {tn: n \ 1} are such that

ac(2− c)−1/2 (ti−ti−1) t
−(2− c)/2
i−1 =E

for i \ 1. Taking ti−1 [ 1, we see for 1 [ i [N(E),

ti=ti−1(1+(2− c)1/2 Et
−c/2
i−1 /ac) \ ti−1(1+(2− c)

1/2 E/ac).

Thus by iterating these estimates we see

1 \ tN(E)−1 \ t0(1+(2− c)1/2 E/ac)N(E)−1

=(E/C)2/c (1+(2− c)1/2 E/ac)N(E)−1,

which implies N(E) [ CE−1 log 1E . Here C depends only on c, but may vary
from line-to-line. Hence using ti, 0 [ i [N(E)−1, as centers, we obtain

N([0, 1], d, E) [N(E) [ CE−1 log
1
E
.

Applying Lemma 2.5 we thus have K > 0 such that

log P( sup
s, t ¥ [0, 1]

|R(s)−R(t)| [ E) \ −KE−1 log
1
E
.
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Thus

log P( sup
0 [ s [ 1

|R(s)| [ E) \ log P 1 sup
0 [ s [ 1

|R(s)−R(0)| [
E

2
, |R(0)| [

E

2
2

\ log 1P 1 sup
0 [ s [ 1

|R(s)−R(0)| [
E

2
2 P 1 |R(0)| [ E

2
22

\ log P 1 sup
0 [ s, t [ 1

|R(s)−R(t)| [
E

2
2+C log E,

where the second inequality is an application of Sidak’s inequality. Hence
again (2.23) is obvious as 2 > c. Thus, except for the assumption b=1,
(2.23) holds. However, for 0 < b <., the proof is the same, only constants
change, and hence the proof of the lower bound for P(4m

i=1 Ai) is now
complete.
To finish the proof of (2.12), and hence the proof of Proposition 2.3,

we observe that

P(ai E [Mc(ti) [ bi E, i=1,..., m)

\ P 13
m

i=1
Ai 2− C

m

j=1
P(Mc(tj) < aj E, Mc(ti) [ biE, 1 [ i [ m, i ] j).

(2.26)

Then for E > 0 sufficiently small, the upper bound in (2.8) and the
lower bound for P(4m

i=1 Ai) implies

P 1Mc(tj) [ ajE, 3
m

i=1
i ] j

Ai 2;P 13
m

i=1
Ai 2

[ exp 3 − E−2/c 1 (cc−d)5C
m

i=1
i ] j

(ti−ti−1)/b
2/c
i +(tj−tj−1)/a

2/c
j
6

+E−2/c(cc+d) C
m

i=1
(ti−ti−1)/b

2/c
i
4

=exp 3dE−2/c 12 C
m

i=1
i ] j

(ti−ti−1)
b2/ci

+(tj−tj−1)((1/a
2/c
j )+(1/b

2/c
j ))2

− E−2/ccc(tj−tj−1)1
1
a2/cj
−
1
b2/cj
24 .
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Now take d > 0 sufficiently small such that for j=1,..., m

cc(tj−tj−1)(1/a
2/c
j −1/b

2/c
j ) > 2d 1 C

m

i=1
(ti−ti−1)/a

2/c
i
2 ,

which implies

lim
E a 0
P 1Mc(tj) [ aj E, 3

m

i=1
i ] j

Ai 2;P 13
m

i=1
Ai 2=0 (2.27)

for each j=1,..., m. Thus

lim
E a 0

C
m

j=1
P 1Mc(tj) < aj E, 3

m

i=1
i ] j

Ai 2;P 13
m

i=1
Ai 2=0,

and for E > 0 sufficiently small (2.26) then implies

P(aiE [Mc(ti) [ biE, 1 [ i [ m) \ P 13
m

i=1
Ai 2;2.

Thus the above implies

J
E a 0
E+2/c log P(aiE [Mc(ti) [ biE, 1 [ i [ m) \J

E a 0
E2/c log P 13

m

i=1
Ai 2

=−cc C
m

i=1
(ti−ti−1)/b

2/c
i ,

and Proposition 2.3 is proven.

3. PROOF OF THEOREM 1.1

Given the probability estimates of Propositions 2.2 and 2.3, the proof
of Theorem 1.1 follows once one establishes the following three facts. That
is,

P({gn}) is relatively compact inM=1, (3.1)

P(C({gn}) ıKc)=1, and (3.2)

P(Kc ı C({gn}))=1. (3.3)
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The topology on M is given by weak convergence, and is discussed
in detail in Chen et al. (1) As mentioned previously, the weak topologyM is
separable and metric, and a subset F ofM is relatively compact if for every
C > 0 there exists t0=t0(C) such that t \ t0 implies inff ¥ F f(t) \ C. The
proofs of (3.1) and (3.2) follow as for their analogues in Chen et al. (1)

Hence we do not include the details, but turn to (3.3), whose proof is dif-
ferent in this setting.

Proposition 3.1. P(Kc ı C({gn}))=1.

Proof. Fix f ¥Kc, with L(f)=>.0 (f(t))−2/c dt < 1. Then by the
argument in Chen et al., (1) it suffices to show for every weak neighborhood
Nf of f that

P(gn ¥Nf i.o.)=1. (3.4)

Let tgf=sup{t: f(t) <.}. Then t
g
f=. or 0 [ t

g
f <.. If t

g
f=., then

a typical weak neighborhood of f is of the form N=4a

j=1 Cj where
0 < t1 < · · · < ta,

Cj={g: f(tj)−h < g(tj) < f(tj)+h}, (3.5)

and h > 0. If 0 < tgf <., then a typical weak neighborhood of f is of the
form

Nf=13
a

j=1
Cj 2 5 13

s

k=1
Rr+k 2 (3.6)

where 0=t0 < t1 < · · · < ta < t
g
f [ tr+1 < · · · < tr+s, Cj is as in (3.5), and

Rr+k={g: f(tr+k) > mk}. When t
g
f=0, then a typical neighborhood of f is

of the form

Nf=3
s

k=1
Rk (3.7)

where Rk={g: f(tk) > mk}.
Assuming L(f) < 1, we consider only the case tgf=. (the other cases

being much the same). Then Nf=4a

j=1 Cj where Cj is as in (3.5). To verify
(3.4) we take nk=kk. Then we define

k̃c(t, x)=bc{|x−t| (c−1)/2−|x| (c−1)/2}, −. < x <., t \ 0,
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where

bc=1F
.

−.
(|1−s| (c−1)/2−|s| (c−1)/2)2 ds2

−1/2

,

and set

B2c(t)=F
.

−.
k̃(t, x) dB(x), t \ 0.

{B2c(t): t \ 0} is also c-fractional Brownian motion, and we will use this
representation to take advantage of some previous results in Kuelbs et al. (2)

We also define

Zr(t)=F
{dr−1 [ |x| [ dr}

k̃c(t, x) dB(x),

and

Xr(t)=B2c(t)−Zr(t)

for t \ 0, dr=r r+(1−f), 0 < f < 1, r \ 1.
Next define for r \ 1

Ar=3 sup
0 [ s [ ti

|Zr(nrs)|/(ccnr/LLnr)c/2 ¥ 1f(ti)−
3b
2
, f(ti)+

3b
2
2 , 1 [ i [ a4

Br={ sup
0 [ s [ t

a

|Xr(nrs)|/(ccnr/LLnr)c/2 \ b/2}

Cr={g̃nr (ti) ¥ (f(ti)−b, f(ti)+b), 1 [ i [ a}

where

g̃n(t)= sup
0 [ s [ t

|B2c(ns)|/(ccn/LLn)c/2, t \ 0.

Then

Cr ı Ar 2 Br, (3.8)

and applying Proposition 2.3 with Mc(t)=sup0 [ s [ t |B2c(s)| and rescaling
we see
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J
r
(LLnr)−1 log P(Cr) \ − C

a

i=1
(ti−ti−1)/(f(ti)+b)2/c

\ −F
.

0
(f(s)+b)−2/c ds.

Since >.0 f(s)−2/c ds < 1 we can choose b > 0 sufficiently small that
>.0 (f(s)+b)−2/c ds < 1−b and hence for r sufficiently large

P(Cr) \ exp{−(LLnr)(1−b)}. (3.9)

Thus with nr=r r we see ; r \ 1 P(Cr)=..
Hence we have ; r \ 1 P(Ar)=., provided we show ; r \ 1 P(Br) <..

This will complete the proof since the Zr’s are independent, and the Borel–
Cantelli lemma therefore implies

P(Ar i.o.)=1. (3.10)

That is, if (3.10) holds, and ; r \ 1 P(Br) <., then P(Br i.o.)=0 and hence
with probability one we have

lim
r
sup
0 [ s [ ta

|X(nrs)|/(ccnr/LLnr)c/2 [ b/2. (3.11)

Then we have

P(g̃nr (ti) ¥ (f(ti)−2b, f(ti)+2b), 1 [ i [ a, i.o. in r)=1

and since b > 0 is arbitrary we have (3.4).
Thus it remains to show ; r \ 1 P(Br) <. for all b > 0. Since dr=

r r+(1−f), 0 < f < 1, nr=rr, we have

{Xr(t): 0 [ t [ tanr}=
L {nc/2r Yr(t/nr): 0 [ t [ tanr}

where {Yr(t): 0 [ t [ ta} is given as in Lemma 3.4 of Kuelbs et al. (2) Note
that defining Yr( · ) for 0 [ t [ ta requires a slightly different proof, but this
is without difficulty. Hence by Lemma 3.3 and Lemma 3.4 in Kuelbs
et al., (2) with q=0, h=ĥ, d=d̂ there, we obtain for some c > 0 that

P(Br)=P( sup
0 [ s [ t

a

|Yr(s)| > b((LLnr)/cc)−c/2)

[
1
ĥ
exp{− ĥ((cr−d̂)−1 b2((LLnr)/cc)−c}.
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Hence ; r \ 1 P(Br) <. for all b > 0, and the proof of Proposition 3.1 is
complete.

4. PROOF OF THEOREM 1.2 AND THEOREM 1.3

First we provide two lemmas which allow us to identify the left-hand
terms in (1.13), (1.14), and (1.18). The proof of the first follows in similar
fashion to its analogue in Chen et al. (1) The second makes precise an
argument in the proof of Theorem 1.2 in Chen et al., (1) which certainly is
less than obvious in light of the details necessary to establish Lemma 4.2
below. In particular, it imposes slightly stronger assumptions on the func-
tion h than those used previously.

Lemma 4.1. Let Fc(f)=>10 I[0, c](f(u) r(u)) du, and

Gc(t)=F
1

0
I[0, c]1gt(u) r(u)1

LLtu
LLt
2c/22 du,

where r: (0, 1]Q (0,.) is measurable. Then for c > 0, with probability
one,

lim sup
tQ.

Gc(t) [ sup
f ¥Kc

Fc(f). (4.1)

Furthermore, we have equality in (4.1) whenever supf ¥Kc
Fx(f) is left

continuous in x at c.

Lemma 4.2. Let g be real-valued, non-negative, and continuous
on (0, 1] with 0 < g(1) < 1. If tg(t) is non-increasing on (0, 1] and
limt a 0 tg(t) > 1, then

sup
f ¥K

F
1

0
I{t: f(t) \ g(t)}(x) dx=1−u0, (4.2)

where K is the set of non-negative, non-increasing, right-continuous func-
tions f on (0, 1] with >10 f(t) dt [ 1, and u0 satisfies

u0 g(u0)+F
1

u0

g(u) du=1. (4.3)

Proof. To simplify notation let Ef={t: f(t) \ g(t)} and m be
Lebesgue measure on [0, 1]. Let {fn} ıK be such that limn m(Efn )=
supf ¥K m(Ef). Then by a standard diagonalization argument there exists
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a function h on (0, 1] which is non-negative and right continuous, and a
subsequence {fnk} of {fn} such that

lim
k
fnk (t)=h(t)

at all continuity points of h. Furthermore, by Fatou’s lemma h ¥K. Since

lim
k
IEfnk
(x)=lim

k
I[1,.)(fnk (x)/g(x)) [ I[1,.)(h(x)/g(x))

except for possibly countably many points in (0, 1], we thus have

lim
k
m(Efnk ) [ F

1

0
lim
k
IEfnk
(x) dx [ F

1

0
IEh (x) dx=m(Eh).

Thus h is a point in K where the supremum in (4.2) is achieved. Further-
more, we may assume h=g on Eh={t: h(t) \ g(t)} as h and g are right
continuous on (0, 1], and otherwise h would not be optimal. We do this
throughout the remainder of the proof.
If l(s)=sg(s)+>1s g(u) du, then l is continuous, non-negative, and non-

increasing in (0, 1] with l(1) < 1. Since >10 g(u) du=., there is a unique
point u0 ¥ (0, 1) such that l(u0)=1. Hence (4.3) holds for a unique u0.
Furthermore, the function f0 defined by

f0(s)=˛
g(u0) 0 < s [ u0
g(s) u0 [ s [ 1

is then in K and m(Ef0 )=1−u0. Hence it remains to show h=f0, where h
is a point in K where the supremum in (4.2) is attained.
To do this we select s0=inf{s > 0 : > s0 IEh (s) ds > 0}. Then by right

continuity h(s0)=g(s0). If s0 \ u0, then we are done since s0 > u0 is impos-
sible as sg(s) is decreasing on (0, 1], and s0=u0 easily implies h=f0. If
s0=0, then there exists tn a 0 such that h(tn)=g(tn), and

F
tn

0
IEh (s) ds > 0.

However, since > tn0 h(s) ds \ tnh(tn)=tn g(tn) > 1 for large n, this is impos-
sible as >10 h(s) ds=1.
Hence 0 < s0 < u0, and we let T=>1s0 (g(s)−h(s)) ds. Then T > 0, or

F
1

0
h(s) ds \ s0 g(s0)+F

1

s0
g(s) ds > u0 g(u0)+F

1

u0
g(s) ds=1.
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The strict inequality follows in the above as sg(s) a on (0, 1] and g(s) > 0
on (0, 1] with 0 < s0 < u0.
Now pick s1, s0 < s1 [ u0, such that h(s1)=g(s1), > s1s0 (g(s)−h(s)) ds

[ T/4, and 0 < > s1s0 h(s) IEh (s) ds [ T/4. Such a choice of s1 is possible since
> s0+ds0

IEh (s) ds > 0 for all d > 0, and hence s1 can be taken arbitrarily close
to s0. Now pick s2 such that s1 < s2 [ 1 and

F
s1

s0
h(s) IEh (s) ds=F

s2

s1
(g−h)(s) IEch (s) ds. (4.4)

Recall that since h(s) [ g(s) on (0, 1], Ech={t ¥ (0, 1] : h(t) < g(t)}. Thus
we define

h1(t)=˛
h(s1)=g(s1) 0 < t [ s1
g(t) s1 [ t < s2
h(t) s2 [ t [ 1,

and define AS to be the area saved and AA the area added in comparing
the area under h1 to that under h. Thus

AS=s0 g(s0)−s1 g(s1)+F
s1

s0
h(s) ds

\ s0 g(s0)−s1 g(s)+F
s1

s0
h(s) IEh (s) ds

\ F
s1

s0
h(s) IEh (s) ds

> g(s1) F
s1

s0
IEh (s) ds, (4.5)

where the second inequality holds since sg(s) is non-increasing on (0, 1]
and the strict inequality because g is strictly decreasing on (0, 1] with
> s1s0 IEh (s) ds > 0 by our choice of s1. By our choice of s2, the area added is

AA=F
s2

s1
(g(s)−h(s)) IEch (s) ds=F

s1

s0
h(s) IEh (s) ds.

Thus >10 h1(s) ds [ >10 h(s) ds=1, which implies h1 ¥K.
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Furthermore, m(Eh1 ) > m(Eh), because

g(s1) F
s1

s0
IEh (s) ds < F

s1

s0
hIEh (s) ds

=F
s2

s1
(g(s)−h(s)) IEch (s) ds

< g(s1) F
s2

s1
IEch (s) ds, (4.6)

where the first inequality follows from (4.5), the equality by definition of
s2 in (4.4), and the last inequality since g is strictly decreasing on (0, 1]
with > s2s1 IEch (s) ds > 0. Thus (4.6) implies >

s1
s0
IEh (s) ds < > s2s1 IEch (s) ds, which

implies m(Eh1 ) > m(Eh).
Therefore we have a contradiction to m(Eh) being maximal, so

0 < s0 < u0 is impossible. Thus the only possible choice is s0=u0, and
h=f0 as claimed.

Proof of Theorem 1.2. Since gs(1)=gt(s/t)(tLLs/sLLt)c/2 for s, t
> 0, letting u=s/t implies Yc(t) as given in (1.10), satisfies

Yc(t)=F
1

0
I[0, c]1gt(u) u−c/2h(u)1

LLtu
LLt
2c/22 du.

Applying Lemma 4.1 with r(u)=u−c/2h(u) implies lim suptQ. Yc(t)=
supf ¥Kc

Fc(f) with probability one, provided supf ¥Kc
Fx(f) is left con-

tinuous in x at c.
When c > 1, Lemma 4.2 implies

sup
f ¥Kc

Fc(f)=sup
f ¥Kc

F
1

0
I[0, c](f(u) u−c/2h(u)) du=1−sc. (4.7)

That is, if f(u) > cuc/2/h(u) on [0, 1] then f−2/c(u) < h2/c(u)/(c2/cu) on
(0, 1]. Letting g(u)=h2/c(u)/(c2/cu) on (0, 1], we see from (1.11) that g
satisfies the conditions in Lemma 4.2. Hence from (4.2) we have

sup
f ¥Kc

F
1

0
I{t: f −2/c(t) \ g(t)}(x) dx=1−sc, (4.8)

where sc is as defined in the theorem. However, since

{t: f−2/c(t) \ g(t)}={t: f(t) t−c/2h(t) [ c},

we have (4.7) holding.
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Therefore for c > 1, supf ¥Kc
Fc(f)=1−sc, and since h as given in

(1.12) is one-to-one and continuous from (0, 1] onto [1,.) with h(1)=1
we have sc continuous in c for each c > 1. Thus Lemma 4.1, (4.7), and (4.8)
imply (1.13) for c > 1. If c=1, then for d > 0

0 [ sup
f ¥Kc

F1(f) [ sup
f ¥Kc

F1+d(f)=1−s1+d,

and since limd a 0 s1+d=s1=1, we have supf ¥Kc
Fc(f)=0 when c=1.

Thus the upper bound in (4.1) implies with probability one that
lim suptQ. Yc(t) [ 0 when c=1. However, this lim sup is clearly non-
negative, so (1.13) holds even when c=1. Thus Theorem 1.2 is proven.

Proof of Theorem 1.3. Let Hc(t) be given by (1.16) and set Fc(f)=
>10 I[0, c](f(u) h(u)) du. Then, as in the proof of Lemma 4.1, with probabil-
ity one we have

lim sup
tQ.

Hc(t) [ sup
f ¥Kc

Fc(f). (4.9)

Furthermore, we have equality in (4.9) whenever supf ¥Kc
Fx(f) is left

continuous in x at c.
When c > 1, Lemma 4.2 implies supf ¥Kc

Fc(f)=supf ¥Kc
>10 I[0, c]

(f(u) h(u)) du=1−sc, where sc is defined as in Theorem 1.3. The proof of
this can completed by applying Lemma 4.2 as was done in the proof of
Theorem 1.2 above. Here the function g(s) in Lemma 4.2 is taken to be
h(s)2/c/c2/c. All the details are the same, and hence Theorem 1.3 follows.
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