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1 Introduction

A Gaussian measure µ on a real separable Banach space E equipped with its Borel σ-field B and
with norm ‖·‖ is a Borel probability measure on (E,B) such that the law of each continuous linear
functional on E is Gaussian (normal distribution). The small ball probability (or small deviation) for
the Gaussian measure studies the behaviour of

logµ(x : ‖x‖ ≤ ε) (1.1)

as ε→ 0, while the large deviation for the Gaussian measure studies the behaviour of

logµ(x : ‖x‖ ≥ a)

as a→∞.
It is well-known that the large deviation result plays a fundamental role in studying the upper

limits of Gaussian processes, such as the Strassen type law of the iterated logarithm. The theory on
large deviation has been well developed during the last few decades; see, for example, Ledoux and
Talagrand [LT91], Ledoux [L96] and Bogachev [Bog98] for Gaussian measures, Varadhan [V84] and
Dembo and Zeitouni [DZ98] for the general theory of large deviations. However, the complexity of
the small ball estimate is well-known, and there are only a few Gaussian measures for which the small
ball probability can be determined completely. The small ball probability is a key step in studying
the lower limits of the Gaussian process. It has been found that the small ball estimate has close
connections with various approximation quantities of compact sets and operators, and has a variety of
applications in studies of Hausdorff dimensions, rate of convergence in Strassen’s law of the iterated
logarithm, and empirical processes, just mentioning a few here.

Our aim in writing this exposition is to survey recent developments in the theory of Gaussian
processes. In particular, our focus is on inequalities, small ball probabilities and their wide range of
applications. The compromise attempted here is to provide a reasonable detailed view of the ideas
and results that have already gained a firm hold, to make the treatment as unified as possible, and
sacrifice some of the details that do not fit the scheme or tend to inflate the survey beyond reasonable
limits. The price to pay is that such a selection is inevitably biased. The topics selected in this survey
are not exhaustive and actually only reflect the tastes and interests of the authors. We also include
a number of new results and simpler proofs, in particular in Section 4. The survey is the first to
systematically study the existing techniques and applications which are spread over various areas. We
hope that readers can use results summarized here in their own works and contribute to this exciting
area of research.

We must say that we omitted a great deal of small ball problems for other important processes
such as Markov processes (in particular stable processes, diffusions with scaling), polygonal processes
from partial sums, etc. Probably the most general formulation of small ball problems is the following.
Let E be a Polish space (i.e., a complete, separable metric space) and suppose that {µε : ε > 0} is a
family of probability measures on E with the properties that µε =⇒ µ as ε→ 0, i.e., µε tends weakly
to the measure µ. If, for some bounded, convex set A ⊂ E, we have µ(A) > 0 and µε(εA) → 0 as
ε→ 0, then one can reasonable say that, as ε→ 0, the measures µε “see” the small event εA. What is
often an important and interesting problem is the determination of just how “small” the event εA is.
That is, one wants to know the rate at which µε(εA) is tending to 0. In general, a detailed answer to
this question is seldom available in the infinite dimensional setting. However, if one only asks about
the exponential rate, the rate at which logµε(εA) → 0, then one has a much better chance of finding a
solution and one is studying the small ball probabilities of the family {µε : ε > 0} associated with the
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ball-like set A. In the case where all measures µε are the same and µε = µ, A = {x ∈ E : ‖x‖ ≤ 1},
then we are in the setting of (1.1).

When we compare the above formulation with the general theory of large deviations, see page one
of Deuschel and Stroock [DS89] for example, it is clear that the small ball probability deals with a
sequence of measures below the non-trivial limiting measure µ and the large deviation is above. The
following well known example helps to see the difference. Let Xi, i ≥ 1, be i.i.d. random variables
with EXi = 0, EX2

i = 1 and E exp(t0|X1|) < ∞ for t0 > 0, and let Sn =
∑n

i=1Xi. Then as n → ∞
and xn →∞ with xn = o(

√
n)

log P
(

1√
n

max
1≤i≤n

|Si| ≥ xn

)
∼ −1

2
x2

n

and as n→∞ and εn → 0,
√
nεn →∞

log P
(

1√
n

max
1≤i≤n

|Si| ≤ εn

)
∼ −π

2

8
ε−2
n .

That is why the small ball probability is sometimes called small deviation. We make no distinction
between them. Of course, certain problems can be viewed from both points of view. In particular, the
large deviation theory of Donsker and Varadhan for the occupation measure can be used to obtain
small ball probabilities when the Markov processes and the norm used have the scaling property. A
tip of the iceberg can be seen in Section 3.3, 7.10 and below.

The small ball probability can also be seen in many other topics. To see how various topics are
related to small ball estimates, it is instructive to exam the Brownian motion W (t) on R1 under the
sup-norm. We have by scaling

P
(

sup
0≤t≤1

|W (t)| ≤ ε

)
= P

(
sup

0≤t≤T
|W (t)| ≤ 1

)
= P (τ ≥ T ) (1.2)

and

log P
(

sup
0≤t≤1

|W (t)| ≤ ε

)
= log P (L(T, 1) = 1, L(T,−1) = 0) ∼ −π

2

8
· T ∼ −π

2

8
1
ε2

(1.3)

as ε→ 0 and T = ε−2 →∞. Here
τ = inf {s : |W (s)| ≥ 1}

is the first exit (or passage) time and

L(T, y) =
1
T

∫ T

0
1(−∞,y](Ws)ds

is a distribution (occupation) function with a density function called local time. In (1.2), the first
expression is clearly the small ball probability for the Wiener measure or small deviation from the
“flat” trajectories or lower tail estimate for the positive random variable sup0≤t≤1 |W (t)|; the second
and third expressions are related to the two sided boundary crossing probability and exit or escape
time. In (1.3), the second expression can be viewed as a very special case of the asymptotic theory
developed by Donsker and Varadhan. The value π2/8 is the principle eigenvalue of the Laplacian over
the domain [−1, 1].

We believe that a theory of small ball probabilities should be developed. The topics we cover here
for Gaussian processes are part of the general theory. The organization of this paper is as follows.
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Section 2 summarizes various inequalities for Gaussian measures or for Gaussian random variables.
The emphasis is on comparison inequalities and correlation inequalities which play an important role
in small ball estimates. In Section 3 we present small ball probabilities in the general setting. The links
with metric entropy and Laplacian transforms are elaborated. Sections 4 and 5 pay special attention
to Gaussian processes with index set in R and Rd respectively. In Section 6, we give exact values of
small ball constants for certain special processes. Various applications are discussed in Section 7.

Acknowledgements. The authors would like to thank Miklós Csörgő, Davar Khoshnevisan, Jim
Kuelbs, Michael Marcus, Ken Ross for their helpful comments and suggestions about this paper.

2 Inequalities for Gaussian random elements

Inequalities are always one of the most important parts of a general theory. In this section, we present
some fundamental inequalities for Gaussian measures or Gaussian random variables.

The density and distribution function of the standard Gaussian (normal) distribution on the real
line R are

φ(x) = (2π)−1 exp{−x2/2} and Φ(x) =
∫ x

−∞
φ(t)dt. (2.1)

Let γn denote the canonical Gaussian measure on Rn with density function

φn(x) = (2π)−n/2 exp(−|x|2/2)

with respect to Lebesgue measure, where |x| is the Euclidean norm of x ∈ Rn. We use µ to denote a
centered Gaussian measure throughout. All results for γn on Rn in this paper can be used to determine
the appropriate infinite dimensional analogue by a classic approximation argument presented in detail
in Chapter 4 of [L96].

2.1 Isoperimetric inequalities

The following isoperimetric inequality is one of the most important properties of the Gaussian measure.
It has played a fundamental role in topics such as integrability and upper tail behavior of Gaussian
seminorms, deviation and regularity of Gaussian sample paths, and small ball probabilities.

Theorem 2.1 For any Borel set A in Rn and a half space H = {x ∈ Rn : 〈x, u〉 ≤ a} such that

γn(A) ≥ γn(H) = Φ(a)

for some real number a and some unit vector u ∈ Rn, we have for every r ≥ 0

γn(A+ rU) ≥ γn(H + rU) = Φ(a+ r),

where U is the unit ball in Rn and A+ rU = {a+ ru : a ∈ A, u ∈ U}.

The result is due independently to Borell [B75] and Sudakov and Tsirelson [ST74]. The standard
proof is based on the classic isoperimetric inequality on the sphere and the fact that the standard
Gaussian distribution on Rn can be approximated by marginal distributions of uniform laws on spheres
in much higher dimensions. The approximation procedure, so called Poincare limit, can be found in
[L96], chapter 1. A direct proof based on the powerful Gaussian symmetrization techniques is given
by Ehrhard [E83]. This also led him to a rather complete isoperimetric calculus in Gauss space, see
[E84] and [E86]. In particular, he obtained the following remarkable Brunn-Minkowski type inequality
with both sets A and B convex.
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Theorem 2.2 (Ehrhard’s inequality) For any convex set A and Borel set B of Rn, and 0 ≤ λ ≤ 1,

Φ−1 ◦ γn(λA+ (1− λ)B) ≥ λΦ−1 ◦ γn(A) + (1− λ)Φ−1 ◦ µ(B) (2.2)

where λA+ (1− λ)B={λa+ (1− λ)b : a ∈ A, b ∈ B}.

The above case of one convex set and one Borel set is due to Latala [La96]. A special case was
studied in [KL95]. Ehrhard’s inequality is a delicate result, which implies the isoperimetric inequality
for Gaussian measures and has some other interesting consequences as well; see, for example [E84],
[Kw94] and [KwS93]. It is still an open problem to prove (2.2) for two arbitrary Borel sets and the
result in R suffices to settle the conjecture. If the conjecture were true, it would improve upon the
more classical so called log-concavity of Gaussian measures:

logµ(λA+ (1− λ)B) ≥ λ logµ(A) + (1− λ) log µ(B). (2.3)

A proof of (2.3) may be given using again the Poincare limit on the classical Brunn-Minkowski in-
equality on Rn; see [LT91] for details.

Talagrand [T92, T93] has provided very sharp upper and lower estimates for γn(A + rU) when r
is large and A is convex symmetric. In particular, the estimates relate to the small ball problem and
its link with metric entropy; see Section 7.3 for some consequences.

Other than using addition of sets as enlargement, multiplication to a set can also be considered.
The following result is due to Landau and Shepp [LaS70].

Theorem 2.3 For any convex set A in Rn and a half space H = {x ∈ Rn : 〈x, u〉 ≤ a} such that
γn(A) ≥ γn(H) = Φ(a) for some a ≥ 0 and some unit vector u ∈ Rn, one has for every r ≥ 1

γn(rA) ≥ γn(rH) = Φ(ra),

where rA = {rx : x ∈ A}.

The proof is based on the Brunn-Minkowski inequality on the sphere without using the Poincare
limit. An application of Theorem 2.3 is the exponential square integrability of the norm of a Gaussian
measure.

For a symmetric convex set A, the following was conjectured by Shepp in 1969 (so called S-
conjecture) and proved recently by Lata la and Oleszkiewicz [LO99]. Early work and related problems
can be found in [KwS93].

Theorem 2.4 Let µ be a centered Gaussian measure on a separable Banach space E. If A is a
symmetric, convex, closed subset of E and S ⊂ E is a symmetric strip, i.e., S = {x ∈ E : |x∗(x)| ≤ 1}
for some x∗ ∈ E∗, the dual space of E, such that µ(A) = µ(S), then

µ(tA) ≥ µ(tS) for t ≥ 1

and
µ(tA) ≤ µ(tS) for 0 ≤ t ≤ 1.

The proof uses both Theorem 2.1 and Theorem 2.2. A consequence of Theorem 2.4 is the following
result, which gives the best constants in comparison of moments of Gaussian vectors.

Theorem 2.5 If ξi are independent standard normal r.v. and xi are vectors in some separable Banach
space (E, ‖ · ‖) such that the series S =

∑
xiξi is a.s. convergent, then

(E ‖S‖p)1/p ≤ ap

aq
(E ‖S‖q)1/q

for any p ≥ q > 0, where ap = (E |ξ1|p)1/p =
√

2(π−1/2Γ((p+ 1)/2))1/p.
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2.2 Concentration and deviation inequalities

Here we only summarize some of the key estimates. We refer to Ledoux and Talagrand [LT91], Ledoux
[L96] and Lifshits [Lif95] for more details and applications. Let f be Lipschitz function on Rn with
Lipschitz norm given by

‖f‖Lip = sup {|f(x)− f(y)|/|x− y| : x, y ∈ Rn} .

Denote further by Mf a median of f for µ and by E f =
∫
fdµ(x) for the expectation of f .

Theorem 2.6
µ(|f −Mf | > t) ≤ exp{−t2/2 ‖f‖2

Lip} (2.4)

and
µ(|f − E f | > t) ≤ 2 exp{−t2/2 ‖f‖2

Lip} (2.5)

Another version of the above result can be stated as follows. Let {Xt, t ∈ T} be a centered Gaussian
process with

d(s, t) = (E |Xs −Xt|2)1/2, s, t ∈ T

and σ2 = supt∈T EX2
t .

Theorem 2.7 For all x > 0, we have

P
(

sup
t∈T

Xt − E sup
t∈T

Xt ≥ x
)
≤ exp

(
− x2

2σ2

)
.

A proof based on log-concavity and a connection to Wills functional are given in Vitale [Vi96,
Vi99b].

Theorem 2.8 Let N(T, d; ε) denote the minimal number of open balls of radius ε for the metric d
that are necessary to cover T . Then

P
(

sup
t∈T

Xt ≥ x+ 6.5
∫ σ/2

0
(logN(T, d; ε))1/2dε

)
≤ exp

(
− x2

2σ2

)
.

The above result is due to Dudley [Du67]. Among Fernique type upper bounds, the following
inequality due to Berman [Be85] gives a sharp bound.

Theorem 2.9 Let {Xt, t ∈ T}, T ⊂ Rd be a centered Gaussian process. Let

ρ(ε) = sup
s,t∈T,|s−t|≤ε

d(s, t)

and
Q(δ) =

∫ ∞

0
ρ(δe−y2

)dy.

Then for all x > 0

P
(

sup
t∈T

Xt > x
)
≤ C(Q−1(1/x))−d exp

(
− x2

2σ2

)
,

where Q−1 is the inverse function of Q and C is an absolute constant.
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2.3 Comparison inequalities

Ledoux and Talagrand [LT91] and Lifshits [Lif95] have a very nice discussion on comparison inequalities
for Gaussian random variables. We list below several main results, which are also useful in the small
ball problems; see [LS99a] and [Li99b].

In this subsection, we let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be independent centered Gaus-
sian random variables. The following identity due to Piterbarg [Pit82] gives a basis for various modi-
fications of comparison inequalities.

Theorem 2.10 Let f : Rn → R1 be a function with bounded second derivatives. Then

E f(X)− E f(Y ) =
1
2

∫ 1

0

∑
1≤i,j≤n

(EXiXj − EYiYj)E
∂2f

∂xi∂xj
((1− ε)1/2X + ε1/2Y )dε.

From the above identity, one can easily derive the famous Slepian lemma given in [Sl62].

Theorem 2.11 (Slepian’s lemma) If EX2
i = EY 2

i and EXiXj ≤ EYiYj for all i, j = 1, 2, ..., n, then
for any x,

P
(

max
1≤i≤n

Xi ≤ x

)
≤ P

(
max
1≤i≤n

Yi ≤ x

)
.

Other interesting and useful extensions of Slepian’s inequality, involving min-max, etc, can be
found in Gordon [Gor85]. The next result is due to Fernique [F75] and requires no condition on the
diagonal. Some elaborated variants are given in Vitale [Vi99c].

Theorem 2.12 If
E (Xi −Xj)2 ≥ E (Yi − Yj)2 for 1 ≤ i, j ≤ n

then
E max

1≤i≤n
Xi ≥ E max

1≤i≤n
Yi

and
E f(max

i,j
(Xi −Xj)) ≥ E f(max

i,j
(Yi − Yj))

for every non-negative convex increasing function f on R+.

We end this subsection with Anderson’s inequality given in [A55], while the second inequality
below is due to [S99].

Theorem 2.13 Let ΣX and ΣY be the covariance matrices of X and Y , respectively. If ΣX − ΣY is
positive semi-definite, then for any a ∈ Rn, any convex symmetric set C in Rn, and any arbitrary set
A in Rn

P(X ∈ C) ≤ P(Y ∈ C),

P(X ∈ A) ≥
(det(ΣY )

det(ΣX)

)1/2
P(Y ∈ A)

and
P(X + ar ∈ C) ≤ P(X ∈ C),

is a monotone decreasing function of r, 0 ≤ r ≤ 1.
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2.4 Correlation inequalities

The Gaussian correlation conjecture states that for any two symmetric convex sets A and B in a
separable Banach space E and for any centered Gaussian measure µ on E,

µ(A ∩B) ≥ µ(A)µ(B). (2.6)

For early history of the conjecture we refer to Das Gupta, Eaton, Olkin, Perlman, Savage, and Sobel
[G-72], Tong [To80] and Schechtman, Schlumprecht and Zinn [SSZ98].

An equivalent formulation of the conjecture is as follows: If (X1, . . . , Xn) is a centered, Gaussian
random vector, then

P
(

max
1≤i≤n

|Xi| ≤ 1
)
≥ P

(
max
1≤i≤k

|Xi| ≤ 1
)

P
(

max
k+1≤i≤n

|Xi| ≤ 1
)

(2.7)

for each 1 ≤ k < n. Khatri [Kh67] and Sidak [Si67, Si68] have shown that (2.7) is true for k = 1. That
is,

P
(

max
1≤i≤n

|Xi| ≤ x
)
≥ P(|X1| ≤ x)P( max

2≤i≤n
|Xi| ≤ x

)
. (2.8)

The Khatri-Sidak inequality has become one of the most powerful tools for lower bound estimates of
small ball probabilities; see Section 3.4. The inequality (2.8) was extended to elliptically contoured
distributions in [G-72]. The original proofs of Khatri and Sidak are very lengthy. Simpler proofs are
given in [J70] and [SSZ98]. Here we give an alternative proof. We only need to show that for any
symmetric and convex set A in Rn−1,

P
(
|X1| ≤ x, (X2, . . . , Xn) ∈ A

)
/P(|X1| ≤ x) := f(x)/g(x)

is a monotone decreasing function of x, x > 0. Let φ(x1, x2, . . . , xn) be the joint density function of
X1, X2, ...Xn, and φ1(x) be the density function of X1. It suffices to show that

∀ x ≥ 0, g(x)f ′(x)− f(x)g′(x) ≤ 0 (2.9)

Let y = (x2, . . . , xn) and Y = (X2, . . . , Xn). Noting that

f ′(x) = 2
∫

y∈A
f(x, y)dy = 2φ1(x)P(Y ∈ A | X1 = x) (2.10)

and g′(x) = 2φ1(x), we have

g(x)f ′(x)− f(x)g′(x)

= 2φ1(x)
(
P(|X1| ≤ x)P(Y ∈ A | X1 = x)− P(|X1| ≤ x, Y ∈ A)

)
= 2φ1(x)P(|X1| ≤ x)

(
P(Y ∈ A | X1 = x)− P(Y ∈ A | |X1| ≤ x)

)
≤ 0

by Anderson’s inequality, as desired.
It is also known that the Gaussian correlation conjecture is true for other special cases. Pitt [P77]

showed that (2.7) holds for n = 4 and k = 2. The recent paper [SSZ98] sheds new light on the
conjecture. They show that the conjecture is true whenever the sets are symmetric and ellipsoid or
the sets are not too large. Hargé [Ha98] proves that (2.6) holds if one set is symmetric ellipsoid and
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the other is simply symmetric convex. Vitale [Vi99a] proves that (2.6) holds for two classes of sets:
Schur cylinders and barycentrically ordered sets. Shao [S99] shows that

P
(

max
1≤i≤n

|Xi| ≤ 1
)
≥ 2−min(k,n−k)P

(
max
1≤i≤k

|Xi| ≤ 1
)

P
(

max
k+1≤i≤n

|Xi| ≤ 1
)
. (2.11)

Recently, Li [Li99a] presented a weak form of the correlation conjecture, which is a useful tool
to prove the existence of small ball constants; see Section 3.3. The varying parameter λ plays a
fundamental role in most of the applications we know so far.

Theorem 2.14 Let µ be a centered Gaussian measure on a separable Banach space E. Then for any
0 < λ < 1, any symmetric, convex sets A and B in E

µ(A ∩B)µ(λ2A+ (1− λ2)B) ≥ µ(λA)µ((1− λ2)1/2B).

In particular,
µ(A ∩B) ≥ µ(λA)µ((1− λ2)1/2B) (2.12)

and
P(X ∈ A, Y ∈ B) ≥ P

(
X ∈ λA

)
P
(
Y ∈ (1− λ2)1/2B

)
(2.13)

for any centered jointly Gaussian vectors X and Y in E.

The proof follows along the arguments of Proposition 3 in [SSZ98], where the case λ = 1/
√

2 was
proved. Here we present a simple proof for (2.13) given in [LS99b]. Let a = (1−λ2)1/2/λ, and (X∗, Y ∗)
be an independent copy of (X,Y ). It is easy to see that X − aX∗ and Y + Y ∗/a are independent.
Thus, by Anderson’s inequality

P(X ∈ A, Y ∈ B) ≥ P(X − aX∗ ∈ A, Y + Y ∗/a ∈ B)
= P(X − aX∗ ∈ A)P(Y + Y ∗/a ∈ B)

= P
(
X ∈ λA

)
P
(
Y ∈ (1− λ2)1/2B

)
,

as desired. The main difference between the Khatri-Sidak inequality and Theorem 2.14 in the appli-
cations to small ball probabilities is that the former only provides the rate (up to a constant) and the
latter can preserve the rate together with the constant.

For various other approaches related to the Gaussian correlation conjecture, see Hu [Hu97],
Hitczenko, Kwapień, Li, Schechtman, Schlumprecht and Zinn [H-98], Szarek and Werner [SzW99],
Lewis and Pritchard [LP99].

3 Small ball probabilities in general setting

In this section, we present some fundamental results in the general setting for the small ball probabil-
ities of Gaussian processes and Gaussian measures. Throughout, we use the following notations. Let
E∗ be the topological dual of E with norm ‖·‖ and X be a centered E-valued Gaussian random vector
with law µ = L(X). It is well known that there is a unique Hilbert space Hµ ⊆ E (also called the
reproducing Hilbert space generated by µ) such that µ is determined by considering the pair (E,Hµ)
as an abstract Wiener space (see [Gr70]). The Hilbert space Hµ can be described as the completion
of the range of the mapping S : E∗ → E defined by the Bochner integral

Sf =
∫

E
xf(x)dµ(x) f ∈ E∗,

8



where the completion is in the inner product norm

〈Sf, Sg〉µ =
∫

E
f(x)g(x)dµ(x) f, g ∈ E∗.

We use ‖ · ‖µ to denote the inner product norm induced on Hµ, and for well known properties and
various relationships between µ,Hµ, and E, see Lemma 2.1 in Kuelbs [Ku76]. One of the most
important facts is that the unit ball Kµ = {x ∈ Hµ : ‖x‖µ ≤ 1} of Hµ is always compact.

Finally, in order to compare the asymptotic rates, we write f(x) � g(x) as x→ a if lim supx→a f(x)/g(x) <
∞, and f(x) ≈ g(x) as x→ a if f(x) � g(x) and g(x) � f(x).

3.1 Measure of shifted small balls

We first recall Anderson’s inequality given in Theorem 2.13 that plays an important role in the estimate
of small ball probability. For every convex symmetric subset A of E and every x ∈ E,

µ(A+ x) ≤ µ(A). (3.1)

Note that (3.1) is also an easy consequence of the log-concavity of Gaussian measure given in (2.3) by
replacing A with A+ x and B with A− x and taking λ = 1/2.

Next we have the following well known facts about the shift of symmetric convex sets (see, for
example, [DHS79] and [dA83]).

Theorem 3.1 For any f ∈ Hµ and r > 0,

exp{−‖f‖2
µ/2}µ(x : ‖x‖ ≤ r) ≤ µ(x : ‖x− f‖ ≤ r) ≤ µ(x : ‖x‖ ≤ r). (3.2)

Furthermore,

µ(x : ‖x− f‖ ≤ ε) ∼ exp
{
− ‖f‖2

µ/2
}
· µ(x : ‖x‖ ≤ ε) as ε→ 0. (3.3)

The upper bound follows from Anderson’s inequality (3.1). The lower bound follows from the
Cameron-Martin formula

µ(A− f) =
∫

A
exp{−1

2
‖f‖2

µ − 〈x, f〉µ}dµ(x) (3.4)

for Borel subsets A of E, f ∈ Hµ, together with Hölder’s inequality and the symmetry of 〈x, f〉µ on
A = {x : ‖x‖ ≤ r}. Note that 〈x, f〉µ can be defined as the stochastic inner product for µ almost all
x in E. A particularly nice proof of (3.4) is contained in Proposition 2.1 of de Acosta [dA83].

Refinements of (3.2) are the following inequalities which play important roles in the studies of the
functional form of Chung’s law of the iterated logarithm; see Section 7.4 for more details. They extend
the approach of Grill [G91] for Brownian motion, and are given in Kuelbs, Li and Linde [KLL94] and
Kuelbs, Li and Talagrand [KLT94].

First we need some additional notations. Let

I(x) =
{
‖x‖2

µ /2 x ∈ Hµ

+∞ otherwise,

which is the I-function of large deviations for µ. Furthermore, defining

I(f, r) = inf
‖f−x‖≤r

I(x),
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we see I(f, r) <∞ for all f ∈ H̄µ, the support of µ in E. It is also the case that all of the properties
established for the function I(x, r) in Lemma 1 of [G91], when µ is Wiener measure on C0[0, 1], have
analogues for general µ. In particular, if f ∈ E and r > 0, then there is a unique element, call it hf,r,
such that ‖hf,r − f‖ ≤ r and I(f, r) = I(hf,r). The following result is given in [KLL94].

Theorem 3.2 For all f ∈ H̄µ, r > 0, and h = hf,δr

µ(x : ‖x− f‖ ≤ r) ≤ exp{− sup
δ>0

(
(δ − 1)δ−1〈f, h〉µ + (2− δ)δ−1I(h)

)
}µ(x : ‖x‖ ≤ r),

and for 0 ≤ δ ≤ 1
µ(x : ‖x− f‖ ≤ r) ≥ exp{−I(h)}µ(x : ‖x‖ ≤ (1− δ)r).

In particular, for all f ∈ H̄µ,

µ(x : ‖x− f‖ ≤ r) ≤ exp{−I(hf,r)}µ(x : ‖x‖ ≤ r)

and for all f ∈ Hµ,

exp{−I(f)} · µ(x : ‖x‖ ≤ r) ≤ µ(x : ‖x− f‖ ≤ r) ≤ exp{−I(hf,r)} · µ(x : ‖x‖ ≤ r).

We thus see that the small ball probabilities of shifted balls can be handled by (3.3) if f ∈ Hµ and
by the above Theorem if f /∈ Hµ. Note that the estimates we have in this section can be used to give
the convergence rate and constant in the functional form of Chung’s LIL; see Section 7.4, which only
depends on the shift being in Hµ. So we can also answer the similar problem for points outside Hµ

by Theorem 3.2. Other related shift inequalities for Gaussian measures are presented in Kuelbs and
Li [KL98].

3.2 Precise links with metric entropy

Let µ denote a centered Gaussian measure on a real separable Banach space E with norm ‖·‖ and
dual E∗. Consider the small ball probability

φ(ε) = − logµ(x : ‖x‖ ≤ ε) (3.5)

as ε → 0. The complexity of φ(ε) is well known, and there are only a few Gaussian measures for
which φ(ε) has been determined completely as ε → 0. Kuelbs and Li [KL93a] discovered a precise
link between the function φ(ε) and the metric entropy of the unit ball Kµ of the Hilbert space Hµ

generated by µ.
We recall first that if (E, d) is any metric space and A is a compact subset of (E, d), then the

d-metric entropy of A is denoted by H(A, ε) = logN(A, ε) where N(A, ε) is the minimum covering
number defined by

N(A, ε) = min
{
n ≥ 1 : ∃ x1, . . . , xn ∈ A such that ∪n

j=1 Bε(xj) ⊇ A
}
,

where Bε(a) = {x ∈ A : d(x, a) < ε} is the open ball of radius ε centered at a. Since the unit ball
Kµ = {x ∈ Hµ : ‖x‖µ ≤ 1} of Hµ is always compact, Kµ has finite metric entropy.

Now we can state the precise links between the small ball function φ(ε) given in (3.5) and the
metric entropy function H(Kµ, ε).

Theorem 3.3 Let f(x) and g(x) be regularly varying functions at 0, and J(x) be a slowly varying
function at infinity such that J(x) ≈ J(xρ) as x→∞ for each ρ > 0.
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(I) We have H(Kµ, ε/
√

2φ(ε)) � φ(2ε). In particular, if φ(ε) � φ(2ε) and φ(ε) � ε−αJ(ε−1), where
α > 0, then

H(Kµ, ε) � ε−2α/(2+α)J(1/ε)2/(2+α). (3.6)

Especially, (3.6) holds whenever φ(ε) ≈ ε−αJ(ε−1).

(II) If φ(ε) � f(ε), then H(Kµ, ε/
√
f(ε)) � f(ε). In particular, if f(ε) = ε−αJ(ε−1) with α > 0,

then
H(Kµ, ε) � ε−2α/(2+α)J(1/ε)2/(2+α).

(III) If H(Kµ, ε) � g(ε), then φ(ε) � g(ε/
√
φ(ε)). In particular, if g(ε) = ε−αJ(1/ε), where 0 < α <

2, then
φ(ε) � ε−2α/(2−α)(J(1/ε))2/(2−α).

(IV) If H(Kµ, ε) � ε−αJ(1/ε), 0 < α < 2, then for ε small

φ(ε) � ε−2α/(2−α)(J(1/ε))2/(2−α).

As a simple consequence, it is easy to see that for α > 0 and β ∈ R ,

φ(ε) ≈ ε−α(log 1/ε)β iff H(Kµ, ε) ≈ ε−2α/(2+α)(log 1/ε)2β/(2+α). (3.7)

To fully understand this basic result, we would like to make the following remarks. First, since it
is known from Goodman [Go90] that H(Kµ, ε) = o(ε−2) regardless of the Gaussian measure µ, the
restriction on α in part (III) and (IV) of the Theorem is natural.

Second, we see clearly from (I) and (II) of Theorem 3.3 that in almost all cases of interest, small
ball probabilities provide sharp estimates on the metric entropy. This approach has been applied
successfully to various problems on estimating metric entropy; see Section 7.6 for more details.

Third, the proofs of (I), (II) and (III) given essentially in [KL93a] are based on the relations

H(2ε, λKµ) ≤ λ2/2− logµ(Bε(0)) (3.8)

and
H(ε, λKµ) + logµ(B2ε(0)) ≥ log Φ(λ+ ηε) (3.9)

for all λ > 0 and ε > 0, where Φ(t) = (2π)−1/2
∫ t
−∞ exp{−u2/2}du and Φ(ηε) = µ(Bε(0)). In fact,

(3.8) follows easily from (3.2), and (3.9) is a consequence of the isoperimetric inequality for Gaussian
measures which states that µ(A+λKµ) ≥ Φ(λ+η) for any λ > 0 and any Borel set A with µ(A) ≥ Φ(η);
see Theorem 2.1. The proof of (IV) of Theorem 3.3 given by Li and Linde [LL99] is based on (3.9) with
an iteration procedure, and a new connection between small ball probabilities and the l–approximation
numbers given in Section 3.5.

Fourth, the recent establishment of (IV) in Theorem 3.3 allows applications of powerful tools and
deep results from functional analysis to estimate the small ball probabilities. The following is a very
special case of Theorem 5.2 in [LL99], which is a simple consequence of (IV) in Theorem 3.3 for linear
transformations of a given Gaussian process. It is worthwhile to stress that the result below, along
with many other consequences of (IV) in Theorem 3.3, has no purely probabilistic proof to date.

Theorem 3.4 Let Y = (Y (t))t∈[0,1] be a centered Gaussian process with continuous sample path and
assume that

log P
(

sup
0≤t≤1

|Y (t)| ≤ ε

)
� −ε−α

(
log

1
ε

)β
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for α > 0. If

X(t) =
∫ 1

0
K(t, s)Y (s)ds (3.10)

with the kernel K(t, s) satisfying the Hölder condition∫ 1

0

∣∣K(t, s)−K(t′, s)
∣∣ ds ≤ c

∣∣t− t′
∣∣λ , t, t′ ∈ [0, 1] , (3.11)

for some λ ∈ (0, 1] and some c > 0, then

log P
(

sup
0≤t≤1

|X(t)| ≤ ε

)
� −ε−α/(αλ+1)

(
log

1
ε

)β/(αλ+1)

.

Some applications of Theorem 3.4 for integrated Gaussian processes are detailed in Section 4.4 and
6.3. Note that the integrated kernel K(t, s) = 1(0,t)(s) satisfies the Hölder condition (3.11) with λ = 1.
So if Y (t) in Theorem 3.4 is a fractional Brownian motion (see Section 4.3) and X(t) in Theorem 3.4
is the integrated fractional Brownian motion (see Section 4.4), then the lower bound given in Theorem
3.4 is sharp by observing (4.14) and (4.15). Other significant applications of (IV) in Theorem 3.3 are
mentioned in Section 5.2 on Brownian sheets.

Finally, in the theory of small ball estimates for Gaussian measure, (IV) of Theorem 3.3 together
with basic techniques of estimating entropy numbers as demonstrated in [LL99], is one of the most
general and powerful among all the existing methods of estimating the small ball lower bound. Another
commonly used general lower bound estimate on supremum of Gaussian processes is presented in
Sections 3.4 and 4.1.

3.3 Exponential Tauberian theorem

Let V be a positive random variable. Then the following exponential Tauberian theorem connects the
small ball type behavior of V near zero with an asymptotic Laplace transform of the random variable
V .

Theorem 3.5 For α > 0 and β ∈ R

log P (V ≤ ε) ∼ −CV ε
−α| log ε|β as ε→ 0+

if and only if

log E exp(−λV ) ∼ −(1 + α)α−α/(1+α)C
1/(1+α)
V λα/(1+α)(log λ)β/(1+α) as λ→∞.

A slightly more general formulation of the above result is given in Theorem 4.12.9 of Bingham, Goldie
and Teugels [BGT87], and is called de Bruijn’s exponential Tauberian theorem. Note that one direction
between the two quantities is easy and follows from

P (V ≤ ε) = P (−λV ≥ −λε) ≤ exp(λε)E exp(−λV ),

which is just Chebyshev’s inequality.
Next we give two typical applications. Let X0(t) = W (t) and

Xm(t) =
∫ t

0
Xm−1(s)ds, t ≥ 0, m ≥ 1,
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which is the m’th integrated Brownian motion or the m-fold primitive. Note that using integration
by parts we also have the representation

Xm(t) =
1
m!

∫ t

0
(t− s)mdW (s), m ≥ 0. (3.12)

The exact Laplace transform E exp
(
−λ
∫ 1
0 X

2
m(t)dt

)
is computed in Chen and Li [CL99] and one can

find from the exact Laplace transform, for each integer m ≥ 0,

lim
λ→∞

λ−1/(2m+2) log E exp
{
−λ
∫ 1

0
X2

m(t)dt
}

= −2−(2m+1)/(2m+2)

(
sin

π

2m+ 2

)−1

. (3.13)

Then by the Tauberian theorem, (3.13) implies

log P
(∫ 1

0
X2

m(t)dt ≤ ε2
)
∼ 2−1(2m+ 1)

(
(2m+ 2) sin

π

2m+ 2

)−(2m+2)/(2m+1)

ε−2/(2m+1). (3.14)

For other applications of this type going the other way, see Section 7.10.
Our second application is for sums of independent random variables, and it is an easy consequence

of the Tauberian theorem.

Corollary 3.1 If Vi, 1 ≤ i ≤ m, are independent nonnegative random variables such that

lim
ε→0

εγ log P (Vi ≤ ε) = −di, 1 ≤ i ≤ m,

for 0 < γ <∞, then

lim
ε→0

εγ log P

(
m∑

i=1

Vi ≤ ε

)
= −

(
m∑

i=1

d
1/(1+γ)
i

)1+γ

.

Now we consider the sum of two centered Gaussian random vectors X and Y in a separable Banach
space E with norm ‖·‖.

Theorem 3.6 If X and Y are independent and

lim
ε→0

εγ log P (‖X‖ ≤ ε) = −CX , lim
ε→0

εγ log P (‖Y ‖ ≤ ε) = −CY (3.15)

with 0 < γ <∞ and 0 ≤ CX , CY ≤ ∞, then

lim sup
ε→0

εγ log P (‖X + Y ‖ ≤ ε) ≤ −max(CX , CY ),

lim inf
ε→0

εγ log P (‖X + Y ‖ ≤ ε) ≥ −
(
C

1/(1+γ)
X + C

1/(1+γ)
Y

)1+γ
.

The upper bound follows from

P (‖X + Y ‖ ≤ ε) ≤ min
(
P (‖X‖ ≤ ε) ,P (‖Y ‖ ≤ ε)

)
by Anderson’s inequality and the independence assumption. The lower bound follows from the triangle
inequality ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖ and Corollary 3.1. Note that both upper and lower constants given
above are not sharp in the case X = Y in law. It seems a very challenging problem to find the precise
constant for limε→0 ε

γ log P (‖X + Y ‖ ≤ ε), which we conjecture to exist, in terms of CX , CY , ‖·‖, γ
and possibly the properties of covariance structure of X and Y .

What happens for the sums if X and Y are not necessarily independent but with different small
ball rates? This is given recently in Li [Li99a] as an application of Theorem 2.14.
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Theorem 3.7 For any joint Gaussian random vectors X and Y such that (3.15) holds with 0 < γ <
∞, 0 < CX <∞ and CY = 0, we have

lim
ε→0

εγ log P (‖X + Y ‖ ≤ ε) = −CX .

The proof is so easy now that we have to present it, keeping in mind the very simple argument for
(2.12) or (2.13). For the lower bound, we have by the inequality (2.13) with any 0 < δ < 1, 0 < λ < 1,

P (‖X + Y ‖ ≤ ε) ≥ P (‖X‖ ≤ (1− δ)ε, ‖Y ‖ ≤ δε)

≥ P (‖X‖ ≤ λ(1− δ)ε) · P
(
‖Y ‖ ≤ (1− λ2)1/2δε

)
.

Thus
lim inf

ε→0
εγ log P (‖X + Y ‖ ≤ ε) ≥ −(λ(1− δ))−γCX

and the lower bound follows by taking δ → 0 and λ→ 1. For the upper bound, we have again by the
inequality (2.13) with any 0 < δ < 1, 0 < λ < 1,

P
(
‖X‖ ≤ ε

(1− δ)λ

)
≥ P

(
‖X + Y ‖ ≤ ε

λ
, ‖Y ‖ ≤ δ · ε

(1− δ)λ

)
≥ P (‖X + Y ‖ ≤ ε) · P

(
‖Y ‖ ≤ (1− λ2)1/2δ

ε

(1− δ)λ

)
.

Thus
lim sup

ε→0
εγ log P (‖X + Y ‖ ≤ ε) ≤ −(λ(1− δ))γCX

and the upper bound follows by taking δ → 0 and λ→ 1.
As a direct consequence of Theorem 3.7, we see easily that under the sup-norm or Lp-norm,

Brownian motion and Brownian bridge have exact the same small ball behavior at the log level, and
so do Brownian sheets and various tied down Brownian sheets including Kiefer process; see Section
5.2, 6.2 and 7.2.

3.4 Lower bound on supremum under entropy conditions

A Gaussian process X = (Xt)t∈T with index set T is a random process such that each finite linear
combination

∑
i αiXti ∈ R, ti ∈ T , is a real valued Gaussian variable. We always assume it is

separable. For a detailed discussion related to separability, we refer to Section 2.2 of [LT91]. The
distribution of the Gaussian process X is therefore completely determined by its covariance sructure
EXsXt, s, t ∈ T . Assume (Xt)t∈T is a centered Gaussian process with entropy number N(T, d; ε), the
minimal number of balls of radius ε > 0, under the Dudley metric

d(s, t) = (E |Xs −Xt|2)1/2, s, t ∈ T

that are necessary to cover T . Then a commonly used general lower bound estimate on the supremum
was established in Talagrand [T93] and the following nice formulation was given in [L96], page 257.

Theorem 3.8 Assume that there is a nonnegative function ψ on R+ such that N(T, d; ε) ≤ ψ(ε) and
such that c1ψ(ε) ≤ ψ(ε/2) ≤ c2ψ(ε) for some constants 1 < c1 ≤ c2 <∞ . Then, for some K > 0 and
every ε > 0 we have

log P

(
sup
s,t∈T

|Xs −Xt| ≤ ε

)
≥ −Kψ(ε).
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In particular,

log P
(

sup
t∈T

|Xt| ≤ ε

)
� −ψ(ε).

The proof of this theorem is based on the Khatri-Sidak correlation inequality given in (2.8) and
standard chaining arguments usual for estimation of large ball probabilities via N(T, d; ·); see e.g.
[L96]. The similar idea of the proof was also used in Shao [S93] and Kuelbs, Li and Shao [KLS95] for
some special Gaussian processes. Here is an outline of the method; a similar argument is given at the
end of Section 4.1.

Let (Xt)t∈T be a centered Gaussian process. Then, by the Khatri-Sidak inequality

P
(

sup
t∈A

|Xt| ≤ x, |Xt0 | ≤ x

)
≥ P(|Xt0 | ≤ x)P

(
sup
t∈A

|Xt| ≤ x

)
for every A ⊂ T , t0 ∈ T and x > 0. If there are a countable set Tc and a Gaussian process Y on Tc

such that {
sup
t∈T

|Xt| ≤ x

}
⊃
{

sup
t∈Tc

|Yt| ≤ x

}
,

then we have

P
(

sup
t∈T

|Xt| ≤ x

)
≥
∏
t∈Tc

P(|Yt| ≤ x).

Since Yt is a normal random variable for each t ∈ Tc, the right hand side above can be easily estimated.
So, the key step of estimating the lower bound of P (supt∈T |Xt| ≤ x) is to find the countable set Tc

and Gaussian process Y .
Although Theorem 3.8 is relatively easy to use, it does not always provide sharp lower estimates

even when N(T, d; ε) can be estimated sharply. The simplest example is Xt = ξt for t ∈ T = [0, 1],
where ξ denotes a standard normal random variable. In this case,

P
(

sup
t∈T

|Xt| < ε

)
= P (|ξ| < ε) ∼ (2/π)1/2 · ε,

but Theorem 3.8 produces an exponential lower bound exp(−c/ε) for the above probability. More
interesting examples are the integrated fractional Brownian motion given in Section 4.4 and the frac-
tional integrated Brownian motion Wβ given in Section 6.3. We know as applications of Theorem 3.4
and a special upper bound estimate,

lim
ε→0

ε2/β log P
(

sup
0≤t≤1

|Wβ(t)| ≤ ε

)
= −kβ, (3.16)

0 < kβ <∞, β > 0; see [LL98]. But for β > 2, Theorem 3.8 only implies a lower bound of order ε−1

for the log of the probability. When β = 3,

W3(t) =
∫ t

0
(t− s)dWs =

∫ t

0
W (s)ds, t ≥ 0,

is the integrated Brownian motion and the sharp lower estimate of order ε−2/3 was first obtained in
Khoshnevisan and Shi [KS98a] by using special local time techniques.

The following example in Lifshits [Lif99] suggests that the stationarity plays a big role in the upper
estimate in Theorem 4.5, Theorem 4.6 and that L2-norm entropy N(T, d; ·) is not an appropriate tool
for the upper bound.
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Example. Let α > 0, and {ξi} be i.i.d standard normal random variables. Define φ(t) = 1− |2t− 1|
for t ∈ [0, 1]. Let {u} denote the fractional part of real number u. Put

Xt = ξ0t+
∞∑
i=1

2−αi/2ξiφ({2it}) for t ∈ [0, 1].

It is easy to see that E (Xt −Xs)2 ≥ c|t− s|α for all s, t ∈ [0, 1], where c > 0 is a constant. However,
we have

log(P
(

sup
0≤t≤1

|Xt| ≤ ε

)
≈ − log2(1/ε) (3.17)

as ε→ 0. To see the lower bound, we have

P( sup
0≤t≤1

|Xt| ≤ ε) ≥ P
( ∞∑

i=0

2−αi/2|ξi| ≤ ε
)

≥ P
(
|ξi| ≤ ε2αi/4(1− 2−α/4), i = 0, 1, . . .

)
=

∞∏
i=0

P
(
|ξ1| ≤ ε2αi/4(1− 2−α/4)

)
≥ exp(−K2 log2(1/ε))

for some positive constant K2. The upper bound can be proven as follows:

P( sup
0≤t≤1

|Xt| ≤ ε) ≤ P(max
k≥2

|X(2−k)| ≤ ε)

≤ P
(

max
k≥2

|
k−1∑
i=1

2−αi/2ξi2−(k−i−1)| ≤ ε
)

≤ P
(

max
k≥2

|ξk| ≤ 2ε2αk/2
)

=
∏
k≥2

P(|ξ0| ≤ 2ε2αk/2)

≤ exp(−K1 log2(1/ε))

for some positive constant K1.
For the upper bound estimates, there is no general probabilistic method available in the spirit of

Theorem 3.8 at this time. Various special techniques based on Anderson’s inequality, Slepian’s lemma,
exponential Chebychev inequality, iteration procedure, etc, are used in [P78], [S93], [MR95], [KLS95],
[St96], [DLL98], [Li99b], [LS99a], [DLL99] and references therein. See Section 4.2 and 5.2 for more
information.

3.5 Connections with l-approximation numbers

The small ball behaviour of a Gaussian process is also closely connected with the speed of approx-
imation by “finite rank” processes. For the centered Gaussian random variable X on E, the nth

l–approximation number of X is defined by

ln(X) = inf
{(

E
∥∥∥ ∞∑

j=n+1

ξjxj

∥∥∥2)1/2
: X d=

∞∑
j=1

ξjxj , xj ∈ E
}
. (3.18)
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where ξj are i.i.d. standard normal and the inf is taken over all possible series representations for
X. One may consider ln(X) as a measure of a specific orthogonal approximation of X by random
vectors of rank n. Note that ln(X) → 0 as n → ∞ if X has bounded sample path. Other equivalent
definitions and some well known properties of ln(X) can be found in Li and Linde [LL99] and Pisier
[Pi89]. The following results show the connections between the small ball probability of X and its
l-approximation numbers ln(X).

Theorem 3.9 Let α > 0 and β ∈ R.

(a) If
ln(X) � n−1/α(1 + log n)β, (3.19)

then
− log P (‖X‖ ≤ ε) � ε−α (log 1/ε)αβ . (3.20)

(b) Conversely, if (3.20) holds, then

ln(X) � n−1/α(1 + log n)β+1 . (3.21)

Moreover, if E is K–convex (e.g. Lp, 1 < p < ∞), i.e. E does not contain ln1 ’s uniformly (see
Thm. 2.4 in [Pi89]), then (3.19) holds and thus (3.19) and (3.20) are equivalent in this case.

(c) If
− log P (‖X‖ ≤ 2ε) � − log P (‖X‖ ≤ ε) � ε−α (log 1/ε)αβ ,

then
ln(X) � n−1/α(1 + log n)β−1/α.

(d) If E is K-convex and
ln(X) ≈ n−1/α(1 + log n)β ,

then
− log P (‖X‖ ≤ ε) ≈ ε−α (log 1/ε)αβ .

Parts (a), (b) and (c) of Theorem 3.9 are given by Li and Linde [LL99] and part (d) is a very
nice observation of Ingo Steinwart. There are several natural and important open questions. Does
ln(X) � n−1/α imply a lower estimate for − log P (‖X‖ ≤ ε) ? What is the optimal power for the
log–term in (3.21) ? Recently it is shown in [D-99] that under the sup-norm

ln(Bd,α) ≈ n−α/2(1 + log n)d(α+1)/2−α/2 (3.22)

for the fractional Brownian sheets Bd,α(t), d ≥ 1 and 0 < α < 2; see Section 5.2 for definition. Hence
the best known lower bound (5.8) for Bd,α under the sup-norm over [0, 1]d follows from (3.22) and
part (a) of Theorem 3.9. On the other hand, the correct rates of small ball probabilities for Brownian
sheets Bd,1, d ≥ 3, are still unknown under the sup-norm. See Section 5.3. This suggests that ln(X)
may be easier to work with. In fact, finding the upper bound for ln(X) is relatively easy since we
only need to find one good series expansion for X. But it may not be sharp even for the standard
Brownian motion W (t) = B1,1(t), 0 ≤ t ≤ 1, under the sup-norm since ln(W ) ≈ n−1/2(1 + log n)1/2

and log P
(
sup0≤t≤1 |W (t)| ≤ ε

)
∼ −(π2/8)ε−2. Consequently, we also see that (3.20) does not imply

(3.21) with log–power β in general. At least β + 1/2 is needed.
Finally, we mention that the links to approximation theory are not restricted only to metric

entropy and the l-approximation numbers. The small ball probability for X is also related to many
other different approximation quantities such as Gelfand numbers, Kolmogorov numbers and volume
numbers of the compact linear operator from Hµ to E associated with X, although the links are not
as precise as those with the entropy numbers; see [LL99] and [Pi89].
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3.6 A connection between small ball probabilities

Let X and Y be any two centered Gaussian random vectors in a separable Banach space E with norm
‖·‖. We use |·|µ(X) to denote the inner product norm induced on Hµ by µ = L(X). The following
relation discovered recently in Chen and Li [CL99] can be used to estimate small ball probabilities
under any norm via a relatively easier L2-norm estimate.

Theorem 3.10 For any λ > 0 and ε > 0,

P (‖Y ‖ ≤ ε) ≥ P (‖X‖ ≤ λε) · E exp{−2−1λ2 |Y |2µ(X)}. (3.23)

In particular, for any λ > 0, ε > 0 and δ > 0,

P (‖Y ‖ ≤ ε) · exp{−λ2δ2/2} ≥ P (‖X‖ ≤ λε) P
(
|Y |µ(X) ≤ δ

)
.

Note that we need Y ∈ Hµ(X) ⊂ E almost surely. Otherwise for f /∈ Hµ(X), |f |µ(X) = ∞ and the
result is trivial. Thus the result can also be stated as follows. Let (H, | · |H) be a Hilbert space and Y
be a Gaussian vector in H. Then for any linear operator L : H → E and the Gaussian vector X in E
with covariance operator LL∗

P (‖LY ‖ ≤ ε) ≥ P (‖X‖ ≤ λε) · E exp{−2−1λ2|Y |2H}

for any λ > 0 and ε > 0.
The proof of Theorem 3.10 is very simple and based on both directions of the well known shift

inequalities (3.2). Without loss of generality, assume X and Y are independent. Then

P (‖Y ‖ ≤ ε) ≥ P (‖X − λY ‖ ≤ λε) ≥ P (‖X‖ ≤ λε) · E exp{−2−1λ2 |Y |2µ(X)}.

To see the power of Theorem 3.10, we state and prove the following special case of a result for
Xm(t) given in Chen and Li [CL99], where Xm(t) is defined in (3.12). The particular case of m = 1,
or so called integrated Brownian motion, was studied in Khoshnevisan and Shi [KS98a] using local
time techniques.

Theorem 3.11 We have

lim
ε→0

ε2/3 log P
(

sup
0≤t≤1

∣∣∣∣∫ t

0
W (s)ds

∣∣∣∣ ≤ ε

)
= −κ (3.24)

with
3/8 ≤ κ ≤ (2π)2/3 · 3/8. (3.25)

The existence of the limit is by subadditivity; see Section 6.3. The lower bound for κ in (3.25)

follows from P
(

sup0≤t≤1

∣∣∣∫ t
0 W (s)ds

∣∣∣ ≤ ε
)
≤ P

(∫ 1
0

∣∣∣∫ t
0 W (s)ds

∣∣∣2 dt ≤ ε2
)

and the L2 estimate given

in (3.14). The upper bound for κ in (3.25) follows from Theorem 3.10, the L2 estimate given in (3.14)
and the well known estimate log P

(
sup0≤t≤1 |W (t)| ≤ ε

)
∼ −(π2/8)ε−2. To be more precise, take

Y (t) =
∫ t
0 W (s)ds and X = W (t); then

P
(

sup
0≤t≤1

∣∣∣∣∫ t

0
W (s)ds

∣∣∣∣ ≤ ε

)
≥ P

(
sup

0≤t≤1
|W (t)| ≤ λε

)
· E exp{−2−1λ2

∫ 1

0
W 2(s)ds}.

Taking λ = λε = (π2/2)1/3ε−2/3, the bound follows. It is of interest to note that both bounds rely on
easier L2 estimates and the constant bounds for κ are the sharpest known.
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4 Gaussian processes with index set T ⊂ R

This section focuses on small ball probabilities of Gaussian processes with index set T ⊂ R. For the
sake of easy presentation, we assume T = [0, 1]. Some of the results are covered by general approaches
in the last section. But we still state them in different forms for comparison and historical purposes.

4.1 Lower bounds

We first present a general result on the lower bound.

Theorem 4.1 Let {Xt, t ∈ [0, 1]} be a centered Gaussian process with X(0) = 0. Assume that there
is a function σ2(h) such that

∀ 0 ≤ s, t ≤ 1, E (Xs −Xt)2 ≤ σ2(|t− s|) (4.1)

and that there are 0 < c1 ≤ c2 < 1 such that c1σ(2h ∧ 1) ≤ σ(h) ≤ c2σ(2h ∧ 1) for 0 ≤ h ≤ 1. Then,
there is a positive and finite constant K1 depending only on c1 and c2 such that

P
(

sup
0≤t≤1

|X(t)| ≤ σ(ε)
)
≥ exp(−K1/ε). (4.2)

The above result was given in Csörgő and Shao [CS94], Kuelbs, Li and Shao [KLS95]. It can also
be derived from the Talagrand lower bound in Section 3.4. Its detailed proof is similar to the outline
we give after the Theorem 4.3. The next result is intuitively appealing. It says that the small ball
probability P(sup0≤t≤1 |Xt| ≤ σ(ε)) is determined by P(max1≤i≤1/δε |X(iδε)| ≤ σ(ε)) as long as δ is
sufficiently small. We refer to Shao [S99] for a proof.

Theorem 4.2 Under the condition of Theorem 4.1, there are positive constants K1 and θ depending
only on c1, c2 such that ∀ 0 < δ < 1, 0 < ε < 1

P
(

sup
0≤t≤1

|X(t)| ≤ (1 + δθ)σ(ε)
)
≥ exp

(
−K1 δ/ε

)
P
(

max
0≤i≤1/(δε)

|X(iδε)| ≤ σ(ε)
)
. (4.3)

Our next result is a generalization of Theorem 4.1, which may be useful particularly for a differ-
entiable Gaussian process. An application is given in Section 4.4 for integrated fractional Brownian
motion.

Theorem 4.3 Let {Xt, t ∈ [0, 1]} be a centered Gaussian process with X(0) = 0. Assume that there
is a function σ2(h) such that

∀ 0 ≤ h < 1/2, h < t ≤ 1− h, E (X(t+ h) +X(t− h)− 2Xt)2 ≤ σ2(h). (4.4)

Assume that there are 0 < c1 ≤ c2 < 1 such that c1σ(2h ∧ 1) ≤ σ(h) ≤ c2σ(2h ∧ 1) for 0 ≤ h ≤ 1.
Then, there is a positive and finite constant K1 depending only on c1 and c2 such that

P
(

sup
0≤t≤1

|X(t)| ≤ σ(ε)
)
≥ exp(−K1/ε). (4.5)
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The idea of the proof has been explained in Section 3.4. To illustrate the idea more precisely, it is
worthwhile to outline the proof as follows.

The assumptions already imply that X is almost surely continuous. Therefore,

sup
0≤t≤1

|X(t)| ≤ |X(1)|+
∞∑

k=1

max
1≤i≤2k

|X((i+ 1)2−k) +X((i− 1)2−k)− 2X(i2−k)| a.s.

Without loss of generality, assume 0 < ε < 1. Let n0 be an integer such that

2−n0 ≤ ε ≤ 2−n0+1

and define
εk = σ(ε1.5−|n0−k|)/K, k = 1, 2, . . . ,

where K is a constant. It is easy to see that

∞∑
k=1

εk ≤ σ(ε)/2

provided that K is sufficiently large. Hence by the Khatri-Sidak inequality

P
(

sup
0≤t≤1

|X(t)| ≤ σ(ε)
)

≥ P
(
|X(1)| ≤ σ(ε)/2, max

1≤i≤2k
|X((i+ 1)2−k) +X((i− 1)2−k)− 2X(i2−k)| ≤ εk, k = 1, 2, . . .

)
≥ P(|X(1)| ≤ σ(ε)/2)

∞∏
k=1

∏
1≤i≤2k

P
(
|X((i+ 1)2−k) +X((i− 1)2−k)− 2X(i2−k)| ≤ εk

)
.

A direct argument then gives (4.5).

4.2 Upper bounds

The upper bound of small ball probabilities is much more challenging than the lower bound. This
can be seen easily from the precise links with the metric entropy given in Section 3.2. The upper
bound of small ball probabilities gives the lower estimate of the metric entropy and vice versa. The
lower estimates for metric entropy are frequently obtained by a volume comparison, i.e. for suitable
finite dimensional projections, the total volume of the covering balls is less than the volume of the set
being covered. As a result, when the volumes of finite dimensional projections of Kµ do not compare
well with the volumes of the same finite dimensional projection of the unit ball of E, sharp lower
estimates for metric entropy (upper bounds for small ball probabilities) are much harder to obtain.
Some examples are given in Section 7.6.

We start with the following general result. Although it is not as general as Theorem 4.1, it does
cover many special cases known so far. Note further that the example given in Section 3.4 shows that
L2-norm entropy is not an appropriate tool for the upper bound.

Theorem 4.4 Let {Xt, t ∈ [0, 1]} be a centered Gaussian process. Then ∀ 0 < a ≤ 1/2, ε > 0

P
(

sup
0≤t≤1

|Xt| ≤ ε
)
≤ exp

(
− ε4

16a2
∑

2≤i,j≤1/a(E (ξiξj))2
)

(4.6)
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provided that
a
∑

2≤i≤1/a

E ξ2i ≥ 32ε2, (4.7)

where ξi = X(ia)−X((i− 1)a) or ξi = X(ia) +X((i− 2)a)− 2X((i− 1)a).

As a consequence of the above result, we have

Theorem 4.5 Let {Xt, t ∈ [0, 1]} be a centered Gaussian process with stationary increments and
X0 = 0. Put

σ2(|t− s|) = E |Xt −Xs|2, s, t ∈ [0, 1].

Assume that there are 1 < c1 ≤ c2 < 2 such that

c1σ(h) ≤ σ(2h) ≤ c2σ(h) for 0 ≤ h ≤ 1/2. (4.8)

Then there exists a positive and finite constant K2 such that

∀ 0 < ε ≤ 1, P
(

sup
0≤t≤1

|Xt| ≤ σ(ε)
)
≤ exp(−K2/ε) (4.9)

if one of the following conditions is satisfied.

(i) σ2 is concave on (0, 1);

(ii) There is c0 > 0 such that (σ2(a))′′′ ≤ c0a
−3σ2(a) for 0 < a < 1/2.

When (i) is satisfied, the result is due to Shao [S93]. The original proof is lengthy; a short proof
based on Slepian’s inequality was given in Kuelbs, Li and Shao [KLS95]. Here we use Theorem 4.4.
Let a = εA, where A ≥ 2 will be specified later. Without loss of generality, assume 0 < a < 1/4.
Define ξi = X(ia)−X((i− 1)a). It is easy to see that

a
∑

2≤i≤1/a

E ξ2i ≥ (1− 2a)σ2(a) ≥ 32σ2(ε).

Noting that E (ξiξj) ≤ 0 for i < j, we have∑
2≤i,j≤1/a

(E (ξiξj))2 ≤ σ2(a)
∑

2≤i,j≤1/a

|E (ξiξj)| ≤ σ4(a)/a. (4.10)

Now (4.9) follows from Theorem 4.4.
When (ii) is satisfied, let a = εA, where A ≥ 2, and let ηi = X(ia) +X((i− 2)a)− 2X((i− 1)a).

Noting that

E (η3ηi) = 4σ2((i− 2)a) + 4σ2((i− 3)a)− 6σ2((i− 3)a)− σ2((i− 1)a)− σ2((i− 5)a)

for i ≥ 6, we have by the Taylor expansion∑
6≤i≤1/a

|E (η3ηi)|2 ≤ K
∑

6≤i≤1/a

(a3σ2(ia)/(ia)3)2

≤
∑

6≤i≤1/a

(i2σ2(a)/(ia)3)2

≤ Kσ4(a).

Similarly, one can see that (4.7) is satisfied as long as A is large enough. Hence (4.9) holds, by Theorem
4.4.

We now turn to prove Theorem 4.4 which indeed is a consequence of the following lemma.
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Lemma 4.1 For any centered Gaussian sequence {ξi} and for any 0 < x <
∑

i≤n E ξ2i , we have

P
(∑

i≤n

ξ2i ≤ x
)
≤ exp

(
−

(
∑

i≤n E ξ2i − x)2

4
∑

1≤i,j≤n(E ξiξj)2
)
. (4.11)

The proof of Lemma 4.1 given here is of independent interest. It is easy to see that there exists a
sequence of independent mean zero normal random variables ηi such that

n∑
i=1

ξ2i =
n∑

i=1

η2
i . (4.12)

Let

λ =

∑
i≤n E ξ2i − x

2
∑

i≤n(E η2
i )2

.

Then for any 0 < x <
∑n

i=1 E ξ2i

P(
n∑

i=1

ξ2i ≤ x) = P(
n∑

i=1

η2
i ≤ x)

≤ eλx
∏
i≤n

E e−λη2
i

= exp
(
λx− 1

2

∑
i≤n

log(1 + 2λE η2
i )
)

≤ exp
(
− (
∑
i≤n

E ξ2i − x)λ+ λ2
∑
i≤n

(E η2
i )2
)

= exp
(
−

(
∑

i≤n E ξ2i − x)2

4
∑

i≤n(E η2
i )2

)
.

Note further that ∑
i≤n

(E η2
i )2 =

1
2

Var(
n∑

i=1

η2
i ) =

1
2

Var(
n∑

i=1

ξ2i ) =
∑
i,j

(E (ξiξj))
2

for E ξ2i ξ2j = (E ξ2i )(E ξ2j ) + 2(E ξiξj)2. The lemma follows from the above inequalities.

4.3 Fractional Brownian motions

A centered Gaussian process X = {Xt, t ∈ [0, 1]} is called a fractional Brownian motion of order
α ∈ (0, 2), denoted by X ∈ fBmα, if X0 = 0 and

∀ 0 ≤ s, t ≤ 1, E |Xt −Xs|2 = |t− s|α. (4.13)

When α = 1, it is the ordinary Brownian motion. The name of the fractional Brownian motion was
first introduced in Mandelbrot and Van Ness [MN68], but their sample path properties were already
studied by Kolmogorov in the 1940’s. The study of the fractional Brownian motion was motivated by
natural time series in economics, fluctuations in solids, hydrology and more recently by new problems
in mathematical finance and telecommunication networks.

It is easy to see that the assumption in Theorem 4.1 and condition (ii) in Theorem 4.5 are satisfied
for fractional Brownian motions. Hence we have the following sharp bound of small ball probabilities
due to Monrad and Rootzen [MR95] and Shao [S93].
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Theorem 4.6 Let X ∈ fBmα, α ∈ (0, 2). Then there exist 0 < K1 ≤ K2 < ∞ depending only on α
such that ∀ 0 < ε ≤ 1

−K2ε
−2/α ≤ log P

(
sup

0≤t≤1
|Xt| ≤ ε

)
≤ −K1ε

−2/α. (4.14)

Other small ball probabilities for fractional Brownian motions under non-uniform norms, such as
Hölder norm and Sobolev norm, are discussed in Baldi and Roynette [BR92], Kuelbs and Li [KL93b].
The first result below is given in Kuelbs, Li and Shao [KLS95] and the second in Li and Shao [LS99a]
which include the Lp-norm, p ≥ 1. One may refer to Stolz [St93] for a universal approach to different
norms based on Schauder decomposition and a detailed discussion on the approach is given in [L96].
The third result below is given in Stolz [St96]. Related results for increments can be found in Zhang
[Zh96b]. In Section 6.3, the existence of the small ball constants for results below is indicated.

Theorem 4.7 Let X ∈ fBmα, α ∈ (0, 2) and let 0 ≤ β < α/2. Then there exist 0 < K1 ≤ K2 < ∞
depending only on α and β such that ∀ 0 < ε ≤ 1

−K2ε
−2/(α−2β) ≤ log P

(
sup

s,t∈[0,1]

|Xt −Xs|
|t− s|β

≤ ε
)
≤ −K1ε

−2/(α−2β).

Theorem 4.8 Let X ∈ fBmα, α ∈ (0, 2), and let p > 0, 0 ≤ q < 1 + pα/2, q 6= 1. Then there are
0 < K1 ≤ K2 <∞ depending only on α, p and q such that ∀ 0 < ε ≤ 1

−K2ε
−θ ≤ log P

( 1∫
0

1∫
0

|X(t)−X(s)|p

|t− s|q
dtds ≤ ε

)
≤ −K1ε

−θ,

where θ = 1/(α/2−max(0, q − 1)).

Theorem 4.9 Let X ∈ fBmα, α ∈ (0, 2). For 0 < 1/p < β < 1/2 and 1 < q ≤ ∞,

log P
(
‖Xt‖β,p,q ≤ ε

)
≈ −ε−2/(α−2β)

where the Besov norm

‖f‖β,p,q = ‖f‖p +
(∫ 1

0

(
ωp(t, f)
tβ

)q dt

t

)1/q

with

ωp(t, f) = sup
|h|≤t

(∫
Ih

|f(x− h)− f(x)|pdx
)1/p

and Ih = {x ∈ [0, 1] : x− h ∈ [0, 1]}.

4.4 Integrated fractional Brownian motions

Consider the integrated fractional Brownian motion

Y (t) =
∫ t

0
Xudu,

where X is the fractional Brownian motion of order α ∈ (0, 2). The following result is a very special
case of what is given in [LL99]; see the remarks at the end of Section 3.2. In fact, the so called small
ball constant exists; see Section 6.3 for details. But the proofs given in [LL99] are not probabilistic,
in particular the lower bound. Here we give a direct pure probabilistic proof based on Theorems 4.3
and 4.4.
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Theorem 4.10 There exist 0 < K1 ≤ K2 <∞ depending only on α such that ∀ 0 < ε ≤ 1

−K2ε
−2/(2+α) ≤ log P( sup

t∈[0,1]
|Y (t)| ≤ ε

)
≤ −K1ε

−2/(2+α). (4.15)

We only provide an outline of the proof. For 0 < h < 1/4 and h < s ≤ t ≤ 1− h, we can write

Y (t+ h) + Y (t− h)− 2Y (t) =
∫ h

0
(X(t+ u)−X(t− u))du

and

Y (s+ h) + Y (s− h)− 2Y (s) =
∫ h

0
(X(s+ v)−X(s− v))dv.

Note that∣∣∣E((Y (t+ h) + Y (t− h)− 2Y (t))(Y (s+ h) + Y (s− h)− 2Y (s))
)∣∣∣

=
∣∣∣∣∫ h

0

∫ h

0
E
(
X(t+ u)−X(t− u))(X(s+ v)−X(s− v))

)
dudv

∣∣∣∣
=

1
2

∣∣∣∣∫ h

0

∫ h

0

(
|t− s+ u− v|α + |t− s− u+ v|α − |t− s− u− v|α − |t− s+ u+ v|α

)
dudv

∣∣∣∣
≈ (|t− s|+ h)α−2h4.

Hence, applying Theorems 4.3 and 4.4 yields the result.

5 Gaussian processes with index set T ⊂ Rd, d ≥ 2

There are two versions of extension of the fractional Brownian motion in d-dimensional space. One is
the so called Lévy fractional Brownian motion of order α ∈ (0, 2) defined by

X0 = 0, EXt = 0, E (Xt −Xs)2 = |t− s|α for s, t ∈ [0, 1]d.

The other is the so called fractional Brownian sheet of order α ∈ (0, 2) if the covariance satisfies

∀ s, t ∈ [0, 1]d, E (XtXs) =
d∏

j=1

1
2

(sα
j + tαj − |sj − tj |α).

The classical Brownian sheet corresponds to α = 1.

5.1 Lévy’s fractional Brownian motions

Following Shao and Wang [SWa95], and Talagrand [T93, T95] we have sharp bounds of small ball
probability for Lévy fractional Brownian motions.

Theorem 5.1 Let {Xt, t ∈ [0, 1]d} be a Lévy fractional Brownian motion of order α ∈ (0, 2). Then
there exist 0 < K1 ≤ K2 depending only on α and d such that ∀ 0 < ε ≤ 1

−K2ε
−2d/α ≤ log P

(
sup

t∈[0,1]d
|Xt| ≤ ε

)
≤ −K1ε

−2d/α. (5.1)
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Here is a proof for the upper bound. For i = (i1, . . . , id), write ti = iε2/α. Clearly,

P

(
sup

t∈[0,1]d
|X(t)| ≤ ε

)
≤ P

(
max

1≤i≤ε−2/α
|X(ti)| ≤ ε

)

and for 1 ≤ j ≤ ε−2/α

P
(

max
1≤i≤ε−2/α

|X(ti)| ≤ ε

)
= E

(
I{ max

1≤i≤ε−2/α,i6=j
|X(ti)| ≤ ε}P

(
|X(tj)| ≤ ε | X(ti), 1 ≤ i ≤ ε−2/α, i 6= j

))
.

In terms of Lemma 7.1 of Pitt [P78], there is a positive constant C = C(α, d) such that

Var(X(tj) | X(ti), 1 ≤ i ≤ ε−2/α, i 6= j) ≥ Var(X(tj) | X(s) : |s− ti| ≥ ε2/α) = C ε2.

Hence,
P
(
|X(tj)| ≤ ε | X(ti), 1 ≤ i ≤ ε−2/γ , i 6= j

)
≤ P

(
|ξ| ≤ 1/

√
C
)
< 1,

where ξ is the standard normal random variable, and

P
(

max
1≤i≤ε−2/α

|X(ti)| ≤ ε

)
≤ P

(
|ξ| ≤ 1/

√
C
)

P

(
max

1≤i≤ε−2/α,i6=j
|X(ti)| ≤ ε

)
.

We thus have the upper bound by recurrence.
The lower bound is a consequence of the following general result which can be derived from Theorem

3.8 (see also [SWa95]).

Theorem 5.2 Let {Xt, t ∈ [0, 1]d} be a centered Gaussian process with X0 = 0. Assume that

∀ s, t ∈ [0, 1]d, E |Xt −Xs|2 ≤ σ2(|t− s|) (5.2)

and that there are 0 < c1 ≤ c2 < 1 such that c1σ(2h ∧ 1) ≤ σ(h) ≤ c2σ(2h ∧ 1) for 0 ≤ h ≤ 1. Then,
there is a positive and finite constant K1 depending only on c1 and c2 such that for all ε > 0

log P
(

sup
t∈[0,1]d

|X(t)| ≤ σ(ε)
)
≥ −K1/ε

d . (5.3)

An upper bound for a general class of stationary Gaussian processes was given by Tsyrelson (see
Lifshits and Tsyrelson [LTs86]) in terms of spectral density. In particular, if X is a homogeneous
process on Rd with spectral density f satisfying f(u) � |u|−d−α as u→∞, then

log P
(

sup
[0,1]d

|Xt| ≤ ε
)
� −Kε−2d/α .
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5.2 Brownian sheets

We first state a precise result of Csáki [C82] on the small ball probability of Brownian sheet under L2

norm.

Theorem 5.3 Let {Xt, t ∈ [0, 1]d} be the Brownian sheet. Then

log P
(

(
∫

t∈[0,1]d
|Xt|2dt)1/2 ≤ ε

)
∼ −cdε−2| log(ε)|2d−2, (5.4)

where cd = 2d−2/(
√

2πd−1(d− 1)!).

Various non–Brownian multiparameter generalizations of the above result are given in Li [Li92a].
Next, we consider the case d = 2.

Theorem 5.4 Let {Xt, t ∈ [0, 1]2} be a Brownian sheet. Then there exist 0 < K1 ≤ K2 < ∞ such
that ∀ 0 < ε ≤ 1

−K2ε
−2 log3(1/ε) ≤ log P

(
sup

t∈[0,1]2
|Xt| ≤ ε

)
≤ −K1ε

−2 log3(1/ε). (5.5)

The lower bound is due to Lifshits (see [LTs86]) and Bass [Ba88], and the upper bound to Talagrand
[T94]. A simplified upper bound proof can be found in Dunker [D98]. The following small ball
probabilities under the mixed sup-L2 norm and L2-sup norm may be of some interest.

Theorem 5.5 Let {Xt, t ∈ [0, 1]2} be a Brownian sheet. Then there exist 0 < K1 ≤ K2 < ∞ such
that ∀ 0 < ε ≤ 1

−K2ε
−1 log2(1/ε) ≤ log P

(
sup

t1∈[0,1]

∫ 1

0
|X(t1, t2)|2dt2 ≤ ε

)
≤ −K1ε

−1 log2(1/ε) (5.6)

and

−K2ε
−1 log3(1/ε) ≤ log P

(∫ 1

0
sup

t1∈[0,1]
|X(t1, t2)|2dt2 ≤ ε

)
≤ −K1ε

−1 log3(1/ε). (5.7)

The upper bound of (5.6) follows from (5.4), and the lower bound is given in Horváth and Shao
[HS99]. The lower bound of (5.7) is from (5.5) and the upper bound can be shown with modification
of the arguments used in the proof of the upper bound of (5.5) given in [T94].

For d ≥ 3, the situation becomes much more difficult as the combinatorial arguments used for
d = 2 fail and there is still a gap between the upper and lower bounds.

Theorem 5.6 Let d ≥ 3, and {Xt, t ∈ [0, 1]d} be the Brownian sheet. Then there exist 0 < K1,K2 <
∞ such that ∀ 0 < ε ≤ 1

−K2ε
−2 log2d−1(1/ε) ≤ log P

(
sup

t∈[0,1]d
|Xt| ≤ ε

)
≤ −K1ε

−2 log(2d−2)(1/ε). (5.8)

The upper bound above follows from (5.4), and the lower bound was recently proved by Dunker,
Kuhn, Lifshits, and Linde [D-98] (a slightly weaker lower bound is given in Belinskii [Bel98]). It should
be pointed out that the proofs of the lower bound in [D-98] and [Bel98] are based on approximation
theory and part (IV) of Theorem 3.3, and hence are not probabilistic. Another way to obtain the
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lower bound in (5.4) is to use the estimates on the l-approximation numbers ln(X) (a probabilistic
concept) given in (3.22) and part (a) of Theorem 3.9. But both proofs of (3.22) on ln(X) and part (a)
of Theorem 3.9 use various approximation concepts and hence are also not probabilistic. It would be
interesting to find a pure probabilistic proof of the lower bound in (5.4). The only known probabilistic
proof for the lower bound with d ≥ 2 is presented in Bass [Ba88] which gives 3d− 3 for the power of
the log-term.

Similar to Theorem 5.6, Dunker [D99] obtained the following upper and lower bounds for the
fractional Brownian sheet using methods detailed above.

Theorem 5.7 Let {Xt, t ∈ [0, 1]d} be the fractional Brownian sheet of order α ∈ (0, 2). Then there
exist 0 < K1,K2 <∞ such that ∀ 0 < ε ≤ 1

−K2ε
−2/α log(1+α)d/α−1(1/ε) ≤ log P

(
sup

t∈[0,1]d
|Xt| ≤ ε

)
≤ −K1ε

−2/α log(1+α)d/α−2(1/ε). (5.9)

6 The small ball constants

So far we have been mainly interested in the asymptotic order (up to a constant factor) of the small ball
rate function φ(ε) given in (3.5). In this section, we will present results in which the exact constants
are known or known to exist, and we call them small ball constants. Keep in mind that results of this
type (even just the existence) play a more important role in applications of small ball estimates as
can be seen in Section 7. In the Hilbert space l2, the full asymptotic formula is known. And with the
help of a comparison result, most small ball probabilities under the L2-norm can thus be treated at
least in principle, and in particular when the Karhunen-Loeve expansion for a given Gaussian process
can be found in some reasonable form. This is the case for Brownian motion and Brownian sheets,
etc. Other exact values of small ball constants are known only with a pure analytic representation.
It is no surprise that most of them are related to Brownian motion in one way or another. The most
elusive small ball constants are those shown to exist and they may even connect with each other. It
is challenging to show the existence and to find those unknown but existing ones at least in terms of
a pure analytic representation. We only present some basic tools and results here.

Throughout this section, we use

‖f‖p =

 (
∫ 1
0 |f(t)|pdt)1/p for 1 ≤ p <∞

sup0≤t≤1 |f(t)| for p = ∞

to denote the Lp-norm on C[0, 1], 1 ≤ p ≤ ∞.

6.1 Exact estimates in Hilbert space

Consider a continuous Gaussian process {X(t) : a ≤ t ≤ b} with mean zero and covariance function
σ(s, t) = EX(s)X(t) for s, t ∈ [a, b]. We are interested in the exact asymptotic behaviour of

P
(∫ b

a
X2(t)dt ≤ ε2

)
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as ε→ 0. By the well known Karhunen-Loeve expansion, we have in distribution∫ b

a
X2(t)dt =

∑
n≥1

λnξ
2
n,

where λn > 0 for n ≥ 1,
∑

n≥1 λn <∞, are the eigenvalues of the equation

λf(t) =
∫ b

a
σ(s, t)f(s)ds, a ≤ t ≤ b.

Thus the problem reduces to finding the asymptotic behavior of

P

( ∞∑
n=1

λnξ
2
n ≤ ε2

)

as ε→ 0, where {ξn} are i.i.d. N(0, 1) random variables. Theoretically, the problem has been solved
by Sytaya [Sy74]. Namely

Theorem 6.1 If λn > 0 and
∑∞

n=1 λn < +∞, then as ε→ 0

P

( ∞∑
n=1

λnξ
2
n ≤ ε2

)
∼
(

4π
∞∑

n=1

(
λnγλ

1 + 2λnγλ
)2
)−1/2

· exp

(
ε2γλ −

1
2

∞∑
n=1

log(1 + 2λnγλ)

)
,

where γλ = γλ(ε) is uniquely determined, for ε > 0 small enough, by the equation

ε2 =
∞∑

n=1

λn

1 + 2λnγλ
.

Note that the given asymptotic behaviour is still an implicit expression that is highly inconvenient
for concrete computations and applications. This is primarily due to the series form for the asymptotic
and the implicit relation between ε and γλ in Theorem 6.1. A number of papers, Dudley, Hoffmann–
Jørgensen and Shepp [DHS79], Ibragimov [I82], Zolotarev [Z86], Dembo, Mayer-Wolf and Zeitouni
[DMZ95], Dunker, Lifshits, and Linde [DLL98], have been devoted to finding the asymptotic behaviour
of P

(∑∞
n=1 λnξ

2
n ≤ ε2

)
as ε → 0, or sharp estimates at the log level for some particular λn, after the

work of Sytaya because of the difficulties in applying Theorem 6.1. Most of the results of these papers
involve difficult calculations that most often depend very much on special properties of the sequence
λn. Nevertheless, the problem is considered solved completely when eigenvalues λn can be found
explicitly.

When eigenvalues λn can not be found explicitly, the following comparison principle given by Li
[Li92a] provides a very useful computational tool.

Theorem 6.2 If
∑∞

n=1 |1− an/bn| <∞, then as ε→ 0

P

( ∞∑
n=1

anξ
2
n ≤ ε2

)
∼

( ∞∏
n=1

bn/an

)1/2

P

( ∞∑
n=1

bnξ
2
n ≤ ε2

)
,

where an, bn are positive and
∑∞

n=1 an <∞,
∑∞

n=1 bn <∞. Furthermore, if an ≥ bn for n large, then
P
(∑∞

n=1 anξ
2
n ≤ ε2

)
and P

(∑∞
n=1 bnξ

2
n ≤ ε2

)
have the same order of magnitude as ε → 0 if and only

if
∑∞

n=1 |1− an/bn| <∞.
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The following simple example demonstrates a way of using the comparison theorem, and more
examples can be found in Li [Li92a, Li92b]. Let {B(t) : 0 ≤ t ≤ 1} be the Brownian bridge and
consider weighted L2-norms for B(t).

Proposition 6.1 For α > 0 and β = 1− α−1 < 1 ,

P
(∫ 1

0
B2(tα)dt ≤ ε2

) (
= P

(∫ 1

0

1
tβ
B2(t)dt ≤ αε2

))
∼ cαε

− α−1
2(α+1) exp

(
− α

2(α+ 1)2
· 1
ε2

)
as ε→ 0,

where cα is a positive constant.

To see this, note that by using the Karhunen-Loeve expansion, the eigenvalues are solutions of

Jα/α+1

(
2(α+ 1)−1

√
α/λ

)
= 0

where Jν(x) is the Bessel function. Hence by the asymptotic formula for zeros of the Bessel function,
we have

2
α+ 1

√
α

λn
=
(
n+

α− 1
4(α+ 1)

)
π +O

(
1
n

)
which shows that

∞∑
n=1

∣∣∣∣∣ 4α
(α+ 1)2π2

(
n+

α− 1
4(α+ 1)

)−2

· 1
λn

− 1

∣∣∣∣∣ <∞.

Thus by Theorem 6.2 and Theorem 6.1, we obtain as ε→ 0

P
(∫ 1

0
B2(tα)dt ≤ ε2

)
= P

( ∞∑
n=1

λnξ
2
n ≤ ε2

)

∼ DαP

( ∞∑
n=1

4α
(α+ 1)2π2

·
(
n+

α− 1
4(α+ 1)

)−2

ξ2n ≤ ε2

)

∼ cαε
− α−1

2(α+1) exp
(
− α

2(α+ 1)2
· 1
ε2

)
.

Next we mention that (see [Li92a]) for any positive integer N ,

log P

( ∞∑
n=1

anξ
2
n ≤ ε2

)
∼ log P

∑
n≥N

anξ
2
n ≤ ε2

 as ε→ 0,

which shows that the small ball rate function will not change at the logarithmic level if we delete a
finite number of the terms.

Finally, we mention that for any (even moving) shifts and any (going to zero or infinity) radius in
this l2 setting, the exact asymptotic behaviours similar to Theorem 6.1 are studied in Li and Linde
[LL93] and Kuelbs, Li and Linde [KLL94].
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6.2 Exact value of small ball constants

Let {W (t); 0 ≤ t ≤ 1} be the standard Brownian motion and {B(t); 0 ≤ t ≤ 1} be a standard
Brownian bridge, which can be realized as {W (t) − tW (1); 0 ≤ t ≤ 1}. First we present the exact
value of small ball constants for W (t) and B(t) under the Lp-norm, 1 ≤ p ≤ ∞. Its generalization
and extension to other related processes are given in Theorem 6.4.

Theorem 6.3 For any 1 ≤ p ≤ ∞

lim
ε→0

ε2 log P
(
‖W (t)‖p ≤ ε

)
= lim

ε→0
ε2 log P

(
‖B(t)‖p ≤ ε

)
= −κp, (6.1)

where
κp = 22/pp (λ1(p)/(2 + p))(2+p)/p (6.2)

and

λ1(p) = inf
{∫ ∞

−∞
|x|pφ2(x)dx+

1
2

∫ ∞

−∞

(
φ′(x)

)2
dx

}
> 0, (6.3)

the infimum takes over all φ ∈ L2(−∞,∞) such that
∫∞
−∞ φ2(x)dx = 1.

The cases p = 2 and p = ∞ with κ2 = 1/8 and κ∞ = π2/8 are also well known, and the exact
distributions in terms of infinite series are known; see Smirnov [Sm37], Chung [Ch48] and Doob [Do49].
The only other case, for which the exact distribution is given in terms of Laplace transform, is in Kac
[K46] for p = 1. Namely, for λ ≥ 0

E exp
{
−λ
∫ 1

0
|W (s)|ds

}
=

∞∑
j=1

θj exp{−δjλ2/3} (6.4)

where δ1, δ2, · · · are the positive roots of the derivative of

P (y) = 3−1(2y)1/2
(
J−1/3(3−1(2y)3/2) + J1/3(3−1(2y)3/2)

)
,

Jα(x) are the Bessel functions of parameter α, and θj = (3δj)−1(1 + 3
∫ δj

0 P (y)dy). The extension of
(6.4) to values of λ < 0 remains open as far as we know. By using the exponential Tauberian theorem
given as Theorem 3.5, we have from (6.4), κ1 = (4/27)δ31 where δ1 is the smallest positive root of the
derivative of P (y).

Now from asymptotic point of view for the Laplace transform, it was shown in Kac [K51] using
the Feynman-Kac formula and the eigenfunction expansion that

lim
t→∞

1
t

log E exp
{
−
∫ t

0
|W (s)|pds

}
= −λ1(p) (6.5)

and λ1(p) is the smallest eigenvalue of the operator

Af = −1
2
f ′′(x) + |x|pf(x) (6.6)

on L2(−∞,∞). Thus from (6.6) and the classical variation expression for eigenvalues, we obtain (6.3).
A different and extremely powerful approach was given in Donsker and Varadhan [DV75a] so that the
direct relation between (6.5) and (6.3)

lim
t→∞

1
t

log E exp
{
−
∫ t

0
|W (s)|pds

}
= − inf

{∫ ∞

−∞
|x|pφ2(x)dx+

1
2

∫ ∞

−∞

(
φ′(x)

)2
dx

}
(6.7)
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holds as a very special case of their general theory on occupation measures for Markov processes.
Both approaches work for more general functions V (x) than the ones we used here with V (x) = |x|p,
1 ≤ p <∞, and thus the statement for W in Theorem 6.3 also holds for 0 < p < 1.

On the other hand, from the small ball probability or small deviation point of view, Borovkov and
Mogulskii [BM91] obtained

P
(
‖W‖p ≤ ε

)
∼ c1(p)ε exp{−λ1(p)ε−2}

by using a similar method to that of Kac [K51], but more detailed analysis for the polynomial term.
Unfortunately, they did not realize that the variation expression (6.3) for λ1(p) and the polynomial
factor ε is missing in their original statement due to an algebraic error.

Theorem 6.3 is first formulated explicitly this way as a lemma in Li [Li99c]. And for the Brownian
motion part, it follows from (6.5) or (6.7), which is by Brownian scaling

lim
λ→∞

λ−2/(2+p) log E exp
{
−λ
∫ 1

0
|W (s)|pds

}
= −λ1(p),

and the exponential Tauberian theorem given as Theorem 3.5 with α = 2/p. The result for the
Brownian Bridge follows from Theorem 3.7; see [Li99c] for a traditional argument.

Next we mention the following far reaching generalization of the basic Theorem 6.3.

Theorem 6.4 Let ρ : [0,∞) → [0,∞] be a Lebesgue measurable function satisfying the following
conditions:

(i) ρ(t) is bounded or non-increasing on [0, a] for some a > 0;

(ii) ρ(t) · t(2+p)/p is bounded or non-decreasing on [T,∞) for some T with a < T <∞;

(iii) ρ(t) is bounded on [a, T ] and ρ(t)2p/(2+p) is Riemann integrable on [0,∞).

Then for 1 ≤ p ≤ ∞

lim
ε→0

ε2 log P

((∫ ∞

0
|ρ(t)W (t)|pdt

)1/p

≤ ε

)
= −κp

(∫ ∞

0
ρ(t)2p/(2+p)dt

)(2+p)/p

(6.8)

where κp is given in (6.2).

Before we give some interesting examples, some brief history and remarks are needed. In the case of
the sup-norm (p = ∞) over a finite interval [0, T ], similar results were given in Mogulskii [M74] under
the condition ρ(t) is bounded, in Berthet and Shi [BS98] under the condition that ρ(t) is nonincreasing,
and in Li [Li99b] under the critical case that

∫ T
0 ρ2(t)dt = ∞. In the case of the sup-norm (p = ∞)

over an infinite interval [0,∞), the results were treated in Li [Li99a] as an application of Theorem
2.14. The proof of Theorem 6.4 is given in Li [Li99c] together with connections to Gaussian Markov
processes. For related results and associations to Volterra operators, see Lifshits and Linde [LifL99].
Below we present some interesting examples of Theorem 6.4.
Example 1. Consider X1(t) = t−αW (t) on the interval [0, 1] for α < (2+p)/2p, p ≥ 1. Then Theorem
6.4 together with a simple calculation implies

lim
ε→0

ε2 log P
(∫ 1

0
|t−αW (t)|pdt ≤ εp

)
= −κp

(
2 + p

2 + p− 2αp

)(2+p)/p

. (6.9)
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In Section 7.10 we will see the implication of this result in terms of the asymptotic Laplace transform.
Example 2. Let U(t) be the stationary Gaussian Markov process or the Ornstein–Uhlenbeck process
with EU(s)U(t) = σ2e−θ|t−s| for θ > 0 and any s, t ∈ [a, b], −∞ < a < b < ∞. Then we have for
1 ≤ p ≤ ∞

lim
ε→0

ε2 log P
(
‖U(t)‖p ≤ ε

)
= −2σ2θ(b− a)(2+p)/pκp.

In the case p = 2, the above result and its refinement are given in Li [Li92a] by using the Karhunen-
Loeve expansion and the comparison Theorem 6.2. Other interesting examples that are a consequence
of Theorem 6.4 can be found in [Li99c].

Next we mention the corresponding results in higher dimensions under the sup norm. Let {W d(t); t ≥
0} be a standard d–dimensional Brownian motion and {Bd(t); 0 ≤ t ≤ 1} be a standard d–dimensional
Brownian bridge, d ≥ 1. We use the convention 1/∞ = 0 and denote by “‖ · ‖(d)” the usual Euclidean
norms in Rd.

Theorem 6.5 Let g : (0,∞) 7→ (0,∞] satisfy the conditions:

(i) inf0<t<∞ g(t) > 0 or g(t) is nondecreasing in a neighborhood of 0.

(ii) inf0<t<∞ t−1g(t) > 0 or t−1g(t) is nonincreasing for t sufficiently large;

Then

lim
ε→0

ε2 log P

(
sup

0<t<∞

‖W d(t)‖(d)

g(t)
≤ ε

)
= −

j2(d−2)/2

2

∫ ∞

0
g−2(t)dt,

where j(d−2)/2 is the smallest positive root of the Bessel function J(d−2)/2 and j−1/2 = π/2.

Theorem 6.6 Assume that infa≤t≤b g(t) > 0 for all 0 < a ≤ b < 1. If inf0≤t≤1 g(t) > 0 or both
(1− t)−1g(t) and (1− t)−1g(1− t) are nondecreasing in a neighborhood of 0, then

lim
ε→0

ε2 log P

(
sup

0<t<1

‖Bd(t)‖(d)

g(t)
≤ ε

)
= −

j2(d−2)/2

2

∫ ∞

0
g−2(t)dt,

where j(d−2)/2 is defined in Theorem 6.5.

Both results above, which extend earlier work of Mogulskii [M74] and Berthet and Shi (1998) for
the sup-norm over a finite interval, are given in Li [Li99a] as applications of Theorem 2.14. For some
applications of Theorem 6.6 to weighted empirical processes, we refer to Csáki [C94].

6.3 Existence of small ball constants

As we have seen in the previous section, there are relatively few cases where the exact small ball
constants can be given explicitly or represented analytically. A natural question, the next best thing
we can hope for, is to show the existence of the small ball constants. As we all know, proving the
existence or finding the exact value of various constants plays an important part in the history of
mathematics. The most fruitful benefits are the methods developed along the way to obtain the
existence or the exact value of an interesting constant, the heart of the matter in many problems.
Another benefit, as we can see from (6.10) below, is that related constants can be represented in
terms of a few basic unknown, but proven to exist, constants. For the small ball constants, they
play important roles in problems such as the integral test for lower limits (see Talagrand [T96] ), and
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various functional LIL results; see de Acosta [dA83], Kuelbs, Li and Talagrand [KLT94], Kuelbs and
Li [KL00].

We start with the work of de Acosta [dA83] on the existence of the small ball constants for finite
dimensional vector-valued Brownian motion under the sup-type norm. To be more precise, let E be
a finite dimensional Banach space with norm Q(·) and let µ be a centered Gaussian measure on E.
Let {WE(t) : t ≥ 0} be an E-valued µ-Brownian motion; that is, {WE(t) : t ≥ 0} is an E-valued
stochastic process with stationary independent increments, WE(0) = 0, WE has continuous paths and
L(WE(1)) = µ.

Theorem 6.7 The limit

lim
ε→0

ε2 log P
(

sup
0≤t≤1

Q(WE) ≤ ε

)
= −cµ,Q

exists and 0 < cµ,Q <∞.

Note that in the case µ is the canonical Gaussian measure on E = Rd, d ≥ 1, cµ,Q = j2(d−2)/2/2 in
Theorem 6.5 when Q(·) = ‖ · ‖(d) is the usual Euclidean norm, and cµ,Q = d · j2−1/2/2 = d(π2/8)
when Q(x) = max1≤i≤d |xi| for x = (x1, · · · , xd) ∈ Rd. The method of proof is formulated as a scaling
argument (and same as the well known subadditive argument in this problem) with upper bound on
the probability.

Next we mention the result for the standard Brownian motion on R under the Hölder norms given
in Kuelbs and Li [KL93b].

Theorem 6.8 For any 0 < β < 1/2 the limit

lim
ε→0

ε2/(1−2β) log P

(
sup

0≤s,t≤1

|W (t)−W (s)|
|t− s|β

≤ ε

)
= −cβ

exists and 0 < cβ <∞.

Note that no value of cβ is known, though reasonable upper and lower bounds are given in Kuelbs
and Li [KL93b]. The existence part of the proof is similar to the one used in de Acosta [dA83].

In Khoshnevisan and Shi [KS98a], the existence of integrated Brownian motion is shown by using
the subadditive argument with upper bound on the probability. Related existence results for fractional
integrated fractional Brownian motion are given in Li and Linde [LL98, LL99] under the sup-norm.

For the remainder of this section, we focus on the existence of the small ball constants for the
fractional Brownian motion Bα(t) under the sup-norm, due independently to Li and Linde [LL98] and
Shao [S99]. The definition of fractional Brownian motion can be found in Section 4.4. The following
statement from Li and Linde [LL98] also provides the relation with the constant for the self-similar
Gaussian process Wβ(t), β > 0 given in (6.12).

Theorem 6.9 We have

lim
ε→0

ε2/α log P
(

sup
0≤t≤1

|Bα(t)| ≤ ε

)
= lim

ε→0
ε2/α log P

(
sup

0≤t≤1
|Wα(t)| ≤

√
aα · ε

)
= −Cα, (6.10)

where 0 < Cα <∞,

aα = α−1 +
∫ 0

−∞
((1− s)(α−1)/2 − (−s)(α−1)/2)2ds (6.11)

and

Wα(t) =
∫ t

0
(t− s)(α−1)/2dW (s). (6.12)
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It was proved in Shao [S96] that( .08√
α

)2/α
< Cα <

( 10√
α

)2/α
for 0 < α < 1.

The existence of the constant in (6.10) was explicitly asked in Talagrand [T96] in connection with the
integral test established in that paper. The constants Cα in (6.10) also play the role of the principle
eigenvalues of certain operators in the proper domain. Note that (6.10) can be rewritten as

lim
t→∞

t−1 log P (τ > t) = −Cα, (6.13)

where the exit time τ = inf{t : Bα(t) /∈ [−1, 1]}. In the Brownian motion case, α = 1, the constant
in (6.13) is principle eigenvalue of the Laplacian on the domain [−1, 1]. For other results related to
(6.10), see Theorem 6.10 and (7.36).

Next we discuss three and a half different proofs available for the existence of the small ball
constants for Bα(t) under the sup-norm.

The proof given in Li and Linde [LL98] is based on the following useful representation when α 6= 1
(see [MN68]),

Bα(t) =
√
aα (Wα(t) + Zα(t)) , 0 ≤ t ≤ 1, (6.14)

where aα is given in (6.11), Wα(t) is given in (6.12) and

Zα(t) =
∫ 0

−∞
{(t− s)(α−1)/2 − (−s)(α−1)/2}dW (s).

Furthermore, Wα(t) is independent of Zα(t). Observe that the centered Gaussian process Wβ(t) is
defined for all β > 0 as a fractional Wiener integral and W3(t) is the integrated Brownian motion
mentioned in Section 3.6. The existence of constants for Wβ(t), β > 0, under the sup-norm follows by
using the subadditive argument with upper bound on the probability.

The proof given in Shao [S99] is based on the following correlation inequality: There exists dα > 0
such that

P
(

sup
0≤t≤a

|Bα(t)| ≤ x, sup
a≤t≤b

|Bα(t)−Bα(a)| ≤ y
)

≥ dαP
(

sup
0≤t≤a

|Bα(t)| ≤ x
)

P
(

sup
a≤t≤b

|Bα(t)−Bα(a)| ≤ y
)

for any 0 < a < b, x > 0 and y > 0. The existence part follows from a modified scaling argument
with lower bound on the probability. This approach was first used in an early version of Li and Shao
(1999); see the half proof part below for more details.

The third proof is in Li [Li00] and is based on the representation (6.14) and the Gaussian correlation
inequality given in Theorem 2.14. The existence part follows from a refined scaling lemma that allows
error terms. Various modifications of this approach are most fruitful since the techniques can be used
to show the existence of the limit

lim
ε→0

εγ log P (||X|| ≤ ε) = −κ(|| · ||, X)

for various self-similar Gaussian processes X such as Bα(t) and Wβ under norms || · || such as sup-
norm, Lp-norm and Hölder norm, with 0 < κ(|| · ||, X) < ∞ and suitable 0 < γ < ∞. It seems that
the method also works for the Sobolev type norm given in Theorem 4.8 and the Besov norm given

34



in Theorem 4.9, but the details still need to be checked. It should be emphasized that the refined
scaling lemma formulated in Li [Li00] for the existence of a constant is weaker than all the competing
subadditive type results we examined. Furthermore, the estimates used are for the lower bound on
the probability, rather than the upper bound when using the subadditive argument mentioned earlier.

Now we turn to the “half” proof given in Li and Shao [LS99b]. It asserts the existence of the
constants under the following weaker Gaussian correlation conjecture:

µ(A1 ∩A2) ≥ α2

for any µ(Ai) = α, i = 1, 2. Our early version of the paper in 1997 used the Gaussian correlation
conjecture (2.6). we hope the “half” proof sheds light on the conjecture and points out new directions
for useful partial results.

Finally, we mention the following result given in Kuelbs and Li [KL00] as a consequence of (7.36).
Note in particular that the constant Cα plays an important role here.

Theorem 6.10 Let ρ : [0, 1] → [0,∞) be a bounded function such that ρ(t)2/α is Riemann integrable
on [0, 1]. Then

lim
ε→0

ε2 log P( sup
0≤t≤1

|ρ(t)Bα(t)| ≤ ε) = −Cα

∫ 1

0
ρ(t)2/αdt

where Cα is the small ball constant given in (6.10).

The small ball estimates for weighted Lp-norm of Bα(t) similar to Theorem 6.3 can also be obtained
using the techniques in Li [Li99c, Li00].

7 Applications of small ball probabilities

We have presented some of the direct consequences or implications of the small ball probability in
earlier Sections. In this section we want to point out more applications of the small ball probability
to demonstrate the usefulness of this wide class of probability estimates. Many of the tools and
inspiration for small ball probability come from these applications. For example, the study of the rate
of convergence of Strassen’s functional LIL (Section 7.3) leads to the discovery of the precise links
with metric entropy; the need to complete the link forces the use of the l-approximation numbers and
other approximation quantities. Further, the tools and ideas developed for these applications have
also been used in studying other related problems. Finally, we must stress that we limited ourselves to
Gaussian and related processes in all the applications mentioned in this section, and there are much
more applications for other processes as indicated in the Introduction. In particular, one can use
strong approximation theorems (see Csörgő and Révész [CR81]) to extend the results to partial sum
processes.

7.1 Chung’s laws of the iterated logarithm

Let {W (t), 0 ≤ t ≤ 1} be a Brownian motion. It is well-known that by the Lévy [Le37] law of the
iterated logarithm

lim sup
h→0

sup
0≤s≤h

|W (t+ s)−W (t)|
(2h log log(1/h))1/2

= 1 a.s. (7.1)
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for every 0 ≤ t < 1, and furthermore by the modulus of continuity

lim
h→0

sup
0≤s≤h

sup
0≤t≤1−h

|W (t+ s)−W (t)|
(2h log(1/h))1/2

= 1 a.s. (7.2)

On the other hand, Chung’s LIL [Ch48] gives the lower limit of the convergence rate

lim inf
h→0

sup
0≤s≤h

|W (t+ s)−W (t)|
(h/ log log(1/h))1/2

=
π√
8
a.s. (7.3)

for every 0 ≤ t < 1, while Csörgő and Révész [CR78] obtain the modulus of non-differentiability

lim
h→0

inf
0≤t≤1−h

sup
0≤s≤h

|W (t+ s)−W (t)|
(h/ log(1/h))1/2

=
π√
8
a.s. (7.4)

We refer to [CR81] for more general results on the increments of the Brownian motion. For a
general centered Gaussian process {X(t), t ∈ [0, 1]} with stationary increments, the law of the iterated
logarithm remains true under certain regularity conditions. One can refer to the insightful review of
Bingham [Bi86], to Nisio [N67], Marcus [Ma68] and Lai [Lai73] for real valued Gaussian processes,
and to Csörgő and Csáki [CC92], Csörgő and Shao [CS93] for `p-valued Gaussian processes. A typical
result is

lim sup
h→0

sup
0<s≤h

|X(t+ s)−X(t)|
σ(h)(2 log log(1/h))1/2

= 1 a.s. (7.5)

and
lim
h→0

sup
0<s≤h

sup
0<t≤1−h

|X(t+ s)−X(t)|
σ(h)(2 log(1/h))1/2

= 1 a.s. (7.6)

where σ(h) = (E (X(t+h)−X(t))2)1/2. In particular, (7.5) and (7.6) hold for the fractional Brownian
motions of order α ∈ (0, 2).

On the other hand, we are interested in Chung type LIL such as (7.3) and (7.4). It is well-known
that a key step in establishing a Chung type law of the iterated logarithm is the small ball probability.
The following general result gives a precise implication of the small ball probability to Chung’s LIL.

Theorem 7.1 Let X = {X(s), s ∈ [0, 1]d} be a centered Gaussian process with stationary increments,
that is

σ2(|t− s|) = E |X(t)−X(s)|2. (7.7)

Assume that X(0) = 0, σ(x)/xα is non-decreasing on [0, 1] for some α > 0 and that there is 0 < θ < 2
such that

∀ 0 < h < 1/2, σ2(2h) ≤ θ σ(h). (7.8)

If there exist 0 < c1 ≤ c2 <∞ such that

exp
{
−c2(h/x)d

}
≤ P

(
sup

s∈[0,h]d
|X(s)| ≤ σ(x)

)
≤ exp

{
−c1(h/x)d

}
(7.9)

for some 0 < h0 < 1 and for any 0 < x ≤ h0 h ≤ h2
0, then

1 ≤ lim inf
h→0

sups∈[0,h]d |X(s)|
σ
(
h (c1/ log log(1/h))1/d

) a.s. (7.10)

lim inf
h→0

sups∈[0,h]d |X(s)|
σ(h (c2/ log(1/h))1/d)

≤ 1 a.s. (7.11)
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Note that (7.10) follows from the right hand side of (7.9) and the subsequence method. To prove
(7.11), let

M(h) = sup
s∈[0,h]d

|X(s)|.

For arbitrary 0 < ε < 1, put

sk = exp(−k1+ε), dk = exp(k1+ε + kε), and σk = σ
(
sk (c2/ log log(1/sk))1/d

)
. (7.12)

It suffices to show that
lim inf
k→∞

M(sk)/σk ≤ 1 + εα a.s. (7.13)

To prove (7.13), we use the spectral representation of X, as Monrad and Rootzen (1995) did. In what
follows 〈s, λ〉 denotes

∑d
i=1 si λi. It is known from Yaglom [Y57] that EX(s)X(t) has a unique Fourier

representation of the form

E {X(s)X(t)} =
∫

Rd

(
ei〈s,λ〉 − 1

)(
e−i〈t,λ〉 − 1

)
∆(dλ) + 〈s,Bt〉. (7.14)

Here B = (bij) is a positive semidefinite matrix and ∆(dλ) is a nonnegative measure on Rd − {0}
satisfying ∫

Rd

||λ||2

1 + ||λ||2
∆(dλ) <∞.

Moreover, there exist a centered, complex-valued Gaussian random measure W (dλ) and a Gaussian
random vector Y which is independent of W such that

X(s) =
∫

Rd

(
ei〈s,λ〉 − 1

)
W (dλ) + 〈 Y, s〉. (7.15)

The measures W and ∆ are related by the identity E {W (A)W (B)} = ∆(A ∩B) for all Borel sets A
and B in Rd. Furthermore, W (−A) = W (A). It follows from (7.14) and (7.7) that

σ2(|t− s|) = 2
∫

Rd

(1− cos(〈t− s, λ〉)) ∆(dλ) + 〈t− s,B(t− st)〉.

In particular, for 0 < h < 1 and for every i = 1, 2, . . . , d

σ2(h) = 2
∫

Rd

(1− cos(hλi)) ∆(dλ) + h2 bii ≥ 2
∫

Rd

(1− cos(hλi)) ∆(dλ). (7.16)

For 0 < h < 1 and 1 ≤ i ≤ d, we have∫
Rd, |λi|≥1/h

∆(dλ) ≤ 1
1− sin 1

∫
Rd, |λi|≥1/h

(
1− sin(hλi)

hλi

)
∆(dλ)

=
1

(1− sin 1)h

∫
Rd, |λi|≥1/h

∫ h

0
(1− cos(uλi)) du∆(dλ)

=
1

(1− sin 1)h

∫ h

0

∫
Rd, |λi|≥1/h

(1− cos(uλi)) ∆(dλ) du

≤ 4σ2(h)
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and hence ∫
|λ|≥1/h

∆(dλ) ≤ 4 d σ2(d h) ≤ 4 d3 σ2(h). (7.17)

Similarly, by (7.16)∫
|λ|≤1/h

|λ|2 ∆(dλ) ≤ d h−2
d∑

i=1

∫
Rd,|λi|≤1/h

(hλi)2 ∆(dλ)

≤ 4 d h−2
d∑

i=1

∫
Rd,|λi|≤1/h

(1− cos(hλi)) ∆(dλ)

≤ 4 d2 h−2σ2(h). (7.18)

Define for k = 1, 2 . . . and 0 ≤ s ≤ 1,

Xk(s) =
∫
|λ|∈(dk−1,dk]

(
ei〈s,λ〉 − 1

)
W (dλ), X̃k(s) =

∫
|λ|/∈(dk−1,dk]

(
ei〈s,λ〉 − 1

)
W (dλ).

Clearly,

lim inf
k→∞

M(sk)
σk

≤ lim inf
k→∞

supt∈[0,sk]d |Xk(t)|
σk

+ lim sup
k→∞

supt∈[0,sk]d |X̃k(t)|
σk

+ lim sup
k→∞

sk || Y||
σk

. (7.19)

It is easy to see that

lim sup
k→∞

sk || Y||/σk ≤ || Y|| lim sup
k→∞

sk

(
(log log(1/sk))1/d/(sk c

1/d
2 )

)1−δ
= 0 a.s. (7.20)

By the Anderson inequality [A55],

P
(

sup
t∈[0,sk]d

|Xk(t)| ≤ (1 + εα)σk

)
≥ P(M(sk) ≤ (1 + εα)σk).

Therefore, by (7.9), and (7.12)

∞∑
k=1

P

(
sup

t∈[0,sk]d
|Xk(t)| ≤ (1 + εα)σk

)
(7.21)

≥
∞∑

k=1

P
(
M(sk) ≤ σ

(
sk(1 + ε)(c2/ log log(1/sk))1/d

))
≥

∞∑
k=1

exp
{
−(1 + ε)−d log log(1/sk)

}
= ∞.

Since {supt∈[0,sk]d |Xk(t)|, k ≥ 1} are independent, by the Borel-Cantelli lemma, it follows from (7.21)
that

lim inf
k→∞

sup
t∈[0,sk]d

|Xk(t)|/σk ≤ 1 + εα a.s. (7.22)

38



We next estimate the second term on the right hand side of (7.19). From (7.17), (7.18), and (7.12),
we obtain, for 0 ≤ s ≤ sk

Var(X̃k(s)) = 2
∫
|λ|/∈(dk−1,dk]

(1− cos(〈s, λ〉)) ∆(dλ)

≤
∫
|λ|≤dk−1

|s|2|λ|2 ∆(dλ) + 4
∫
|λ|≥dk

∆(dλ)

≤ 4 d3 s2k d
2
k−1σ

2(sk /(sk dk−1)) + 4 d3 σ2(sk/(sk dk))

≤ 4 d3 (sk dk−1)2δσ2(sk) + 4 d3 (sk dk)−2ασ2(sk)
≤ 8 d4 exp(−ε kε

)σ2(sk).

Therefore
Var(X̃k(t)− X̃k(s)) ≤ σ̃2

k(h) (7.23)

for every 0 < s, t ≤ sk, |s− t| ≤ h ≤ sk, where σ̃2
k(h) = min(σ2(h), 16 d4 exp(−ε kε

)σ2(sk)). Applying
an inequality of Fernique [F75] and the Borel-Cantelli lemma yields

lim sup
k→∞

sup
0≤s≤sk

|X̃k(s)|/σk = 0 a.s. (7.24)

This proves (7.13), by (7.19), (7.20), (7.22) and (7.24), as desired.
For Lévy fractional Brownian motion we have

Theorem 7.2 Let {X(s), s ∈ [0, 1]d} be a fractional Lévy Brownian motion of order α ∈ (0, 2). Then
we have

lim inf
h→0

(log log(1/h))α/(2d)

hα/2
sup

0≤s≤h
|X(s)| = c a.s. (7.25)

for some 0 < c <∞.

The result (7.25) follows immediately from Theorems 5.1 and 7.1 and the zero-one law of Pitt and
Tran [PT79]. In general, it is not too difficult to derive a Chung type law of the iterated logarithm
when the small ball probabilities are available. Below is a direct consequence of Theorem 5.5 on
Brownian sheet. Other liminf types of LIL for Brownian sheet can be found in Zhang [Zh96a].

Theorem 7.3 Let {Xt, t ∈ [0, 1]2} be a Brownian sheet. Then

lim inf
h→0

(log log(1/h))2

h(log log log(1/h))3/2
sup

t∈[0,h]2
|Xt| = c a.s.

for some constant 0 < c <∞.

We end this subsection with the following integral test of Talagrand [T96].

Theorem 7.4 Let {X(t), t ∈ [0, 1]} be a fractional Brownian motion of order α ∈ (0, 2), and a(t) be
a nondecreasing function with a(t) ≥ 1 and a(t)/tα/2 bounded. Then

P
(

sup
s∈[0,t]

|Xs| < a(t), i.o.
)
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is equal to zero or one according to whether the integral∫ ∞

0
a(t)−2/αψ(a(t)t−α/2)dt

is convergent or divergent, where ψ(h) = P
(

sups∈[0,1] |Xs| ≤ h
)
.

The above result for the Brownian motion case, α = 1, dates back to Chung [Ch48].

7.2 Lower limits for empirical processes

Let u1, u2, . . . be independent uniform (0, 1) random variables. We define the empirical process Un by

Un(s) =
1√
n

n∑
i=1

(1{ui≤s} − s) for 0 ≤ s ≤ 1,

and the partial sum process Kn by

Kn(s) =
√
nUn(s) =

n∑
i=1

(1{ui≤s} − s)

for 0 ≤ s ≤ 1.
We let K = {K(s, t), s ≥ 0, t ≥ 0} denote a Kiefer process, that is, K is a Gaussian process with

mean zero and
E{K(s1, t1)K(s2, t2)} = (s1 ∧ s2)

(
(t1 ∧ t2)− t1t2

)
for s1, s2, t1, t2 ≥ 0. It is easy to see that

{K(s, t), s ≥ 0, t ≥ 0} d.= {B(s, t)− tB(s, 1), s, t ≥ 0}

where B is the Brownian sheet.
By the celebrated strong approximation theorem of Komlós-Major-Tusnády [KMT75], there exists

a Kiefer process K (on a possibly expanded probability space) such that

max
1≤i≤n

sup
0≤s≤1

|Ki(s)−K(i, s)| = O
(
n−1/2(log n)2

)
a.s. (7.26)

Hence, many strong limit theorems for the empirical process follow from the corresponding result for
the Kiefer process. We give below several Chung type LIL results for the related empirical processes,
based on the small ball probabilities presented in previous sections. We refer to Shorack and Wellner
[SW86] and Csörgő and Horváth [CH93] for the general theory of empirical processes. The first result
below is given in Mogulskii [M80] and the second is given in Horváth and Shao [HS99]. Other related
work can be found in Shi [Shi91] and Csáki [C94] and the references therein.

Theorem 7.5 Let Un(t) be the empirical process defined above. Then

lim inf
n→∞

(log log n)1/2 sup
0≤t≤1

|Un(t)| =
π√
8

a.s.

and

lim inf
n→∞

(log log n)
∫ 1

0
U2

n(t)dt =
1
8

a.s.
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Theorem 7.6 Let Kn(t) be the partial sum process defined above. Then

lim inf
n→∞

(log log n)1/2

√
n(log log log n)3/2

sup
0≤s≤1

max
1≤i≤n

|Ki(s)| = c1 a.s.

and

lim inf
n→∞

log log n
n(log log log n)2

max
1≤i≤n

∫ 1

0
|Ki(s)|2ds = c2 a.s.

where c1 and c2 are positive finite constants.

7.3 Rates of convergence of Strassen’s functional LIL

Recall that {W (t) : t ≥ 0} is the standard Brownian motion. Then HW ⊆ C[0, 1], the reproducing
Hilbert space generated by the Wiener measure µ = L(W ), is the Hilbert space of absolutely continuous
functions on C[0, 1] whose unit ball is the set

KW =
{
f(t) =

∫ t

0
f ′(s) ds , 0 ≤ t ≤ 1 :

∫ 1

0
|f ′(s)|2ds ≤ 1

}
. (7.27)

Here the inner product norm of HW is given by

|f |W =
(∫ 1

0
|f ′(s)|2ds

)1/2

, f ∈ HW , (7.28)

Let ‖f‖∞ denote the usual sup-norm on C[0, 1]. If

ηn(t) = W (nt)/(2n log log n)1/2, 0 ≤ t ≤ 1,

then Strassen’s functional LIL can be considered to consist of two parts:

lim
n→∞

inf
f∈KW

‖ηn − f‖∞ = 0 (7.29)

and
lim

n→∞
‖ηn − f‖∞ = 0 for all f ∈ KW . (7.30)

It is natural to ask for rates of convergence in (7.29) and (7.30).
Bolthausen [Bol78] was the first to examine the rate of convergence in (7.29) and the problem was

further investigated by Grill [G87], Goodman and Kuelbs [GK91]. Finally Grill [G92] and Talagrand
[T92] have shown that

0 < lim sup
n→∞

(log log n)2/3 inf
f∈KW

‖ηn − f‖∞ <∞. (7.31)

where the lower bound also follows from a result of Goodman and Kuelbs [GK91].
When examining a more general formulation of the problem for any Gaussian measure µ, the rate

is in fact determined by the small ball probability in (3.5). One motivation for proving results about
Gaussian random vectors is that once this is accomplished, then one can translate, in some fashion or
other, the Gaussian result to a variety of non-Gaussian situations. For example, this is the approach of
Strassen [Str64], which produced the functional law of the iterated logarithm for Brownian motion and
then, via Skorohod embedding, for polygonal processes. Goodman and Kuelbs [GK89] also contains
polygonal process results obtained by a suitable strong approximation of their analogous Gaussian
results.
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Next we formulate the results in terms of Gaussian random samples. Let X, X1, X2, . . . denote an
i.i.d sequence of centered Gaussian random vectors in a real separable Banach space E with norm ‖·‖.
Let the small ball function φ(ε) be given as in (3.5). Since the exact computation of φ is in practice
impossible, we state the following result due to Talagrand [T93], requiring only either an upper or a
lower bound for φ.

Consider two continuous and non-increasing functions φ1 ≥ φ ≥ φ2, and assume that for some
constants ci > 1, φi(ε/ci) ≥ 2φi(ε) for all ε > 0 small, i = 1, 2.

Theorem 7.7 Let εn,i be the unique root of the equation

φi(ε)/ε =
√

2 log n/σ, i = 1, 2

for n large enough, where σ2 = sup‖h‖E∗≤1 E (h2(X)). Then for some constants C1 and C2,

lim sup
n→∞

√
log n
εn,1

inf
f∈Kµ

∥∥∥Xn/
√

2 log n− f
∥∥∥ ≤ C1 <∞ a.s.

lim sup
n→∞

√
log n
εn,2

inf
f∈Kµ

∥∥∥Xn/
√

2 log n− f
∥∥∥ ≥ C2 > 0 a.s.

Note that the probability estimates needed for the proof of Theorem 7.7 can be viewed as a type
of refined large deviation estimates (enlarged balls) for which the small ball rate function φ plays a
crucial role in the second order term, see Chapter 7 in [L96]. The result (7.31) follows from Theorem
7.7 by a scaling argument along a suitable exponential subsequence; see [GK91] for details.

The rate of convergence in (7.30) for general Gaussian measure µ is also determined by the small
ball probability in (3.5) and can be viewed as a Chung type functional law of the iterated logarithm;
see next section for details.

7.4 Rates of convergence of Chung type functional LIL

The rate of convergence in (7.30) can also be seen as a functional form of Chung’s law of the iterated
logarithm given in Csáki [C80], and in more refined form in de Acosta [dA83], which implies for each
f in C[0, 1] that with probability one

lim inf
n→∞

log log n ‖ηn − f‖∞ =
{
π/4 · (1− ‖f‖2

W )−1/2 if |f |W < 1
+∞ otherwise.

(7.32)

Note that if f ≡ 0 then (7.32) is just Chung’s law of the iterated logarithm given in (7.1) with a time
inversion. The proof of (7.32) is based on the small ball probability

log P
(

sup
0≤t≤1

|W (t)| ≤ ε

)
∼ −(π2/8)ε−2,

the shifting results given in Section 3.1 and variations of well-known techniques in iterated logarithm
proofs. The precise rates for various classes of functions f with |f |W = 1 can be found in Csáki
[C80, C89], Grill [G91], Kuelbs, Li and Talagrand [KLT94], Gorn and Lifshits [GL99].

When examining more general formulations for Gaussian samples, the rate clearly is determined
by the small ball probability in (3.5) and the function f ∈ Kµ. The following result is given in Kuelbs,
Li and Talagrand [KLT94]. We use the same notations as in the previous section.
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Theorem 7.8 Assume that for ε > 0 sufficiently small the function φ satisfies both of the following:

ε−q ≤ φ(ε) ≤ ε−p for some p ≥ q > 0

and for each α ∈ (0, 1) there is a β > 0 such that

φ(αε)− φ(ε) ≥ φ(βε).

If f ∈ Kµ and dn is the unique solution of the equation

log n(1− I(f, dn)) = φ((2 log n)1/2dn)

where I(f, δn) is defined in Section 3.1, then with probability one

1 ≤ lim inf d−1
n

∥∥∥Xn/(2 log log n)1/2 − f
∥∥∥ ≤ 2.

It is still an open question to find the exact constant in the case of ‖f‖µ = 1.

7.5 A Wichura type functional law of the iterated logarithm

There are various motivations for extending results classical for Brownian motion to the fractional
Brownian motion Bα(t), 0 ≤ α < 2. It is not only the importance of these processes, but also the
need to find proofs that rely upon general principles at a more fundamental level by moving away
from crucial properties (such as the Markov property) of Brownian motion. Below we mention an
extension of a classical result for Brownian motion to fractional Brownian motion by using pure
Gaussian techniques. Let

Mα(t) = sup
0≤s≤t

|Bα(s)|, t ≥ 0 (7.33)

and
Hn(t) = Mα(nt)/(Cαn

α/ log log n)1/2, t ≥ 0 (7.34)

where Cα is given in (6.10). In the Brownian motion case, i.e. α = 1, it is well known that C1 = π2/8.
Denote by M the non-decreasing functions f : [0,∞) → [0,∞] with f(0) = 0 and which are right
continuous except possibly at zero. Let

Kα =
{
f ∈M :

∫ ∞

0
(f(t))−2/αdt ≤ 1

}
(7.35)

for α ∈ (0, 2), and topologize M with the topology of weak convergence, i.e. pointwise convergence at
all continuity points of the limit.

When α = 1, Wichura [W73] proved, in an unpublished paper, that the sequence {Hn(t)} has a
deterministic limit set K1 with probability one, yielding a functional analogue of Chung’s LIL for the
maximum of the absolute value of Brownian motion. Wichura obtained his result for Brownian motion
as a special case of a result for the radial part of a Bessel diffusion. The key probability estimate in
Wichura’s work follows from a computation of the Laplace transform of the first passage time of
the radial part of the Bessel diffusion. The first passage time process in his setting has independent
increments, and hence is relatively easy to study.

Very recently, the following is proved in [KL00] based on the Gaussian nature of these processes.

Theorem 7.9 The sequence {Hn(t)} is relatively compact and all possible subsequential limits of
{Hn(t)} in the weak topology is Kα given in (7.35).
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One of the key steps in the proof is the small ball estimate

lim
ε→0

ε2/α log P
(
aiε ≤ sup

0≤s≤ti

|Bα(s)| ≤ biε, 1 ≤ i ≤ m

)
= −Cα

m∑
i=1

(ti − ti−1)/b2/α
i (7.36)

for any fixed sequences {ti}m
i=0, {ai}m

i=0 and {bi}m
i=0 such that 0 = t0 < t1 < · · · < tm and

0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ai < bi ≤ ai+1 · · · ≤ am < bm,

where Cα is given in (6.10).

7.6 Fractal geometry for Gaussian random fields

There has been much effort devoted to the study of fractal properties of random sets generated by
various stochastic processes. The development of the techniques used in early papers were surveyed
in Taylor [Ta86] and more recent results associated to Gaussian random fields were surveyed in Xiao
[X97]. The crucial ingredient in most of the early works is the strong Markov property. For the
(N, d, α)-Gaussian random fields Y (t;N, d, α) from RN to Rd with

E (|Y (t;N, d, α)− Y (s;N, d, α)|2) = d|t− s|α,

also called Lévy’s multiparameter fractional Brownian motion, the small ball probability

−ε−2N/α � log P

(
sup
|t|≤1

|Y (t;N, 1, α)| ≤ ε

)
� −ε−2N/α (7.37)

plays an important role, where 0 < α < 2 and | · | denotes the Euclidean norm. The upper bound is
proved essentially in Pitt [P78] and the lower bound follows from Theorem 3.8.

The exact Hausdorff measure of the image set of Y (t;N, d, α) in the transient case (2N < dα)
was given in Talagrand [T95], with a significantly shorter proof of previous known special cases, by
using the small ball estimates (7.37) and other related techniques. Later in Talagrand [T98], the
multiple points of the trajectories Y (t;N, d, α) were studied. The key to the success is the use of a
direct “global” approach to obtain a lower bound for a certain sojourn time which is a small ball type
estimate. Furthermore, the detailed arguments rely heavily on the chaining argument and the Khatri-
Sidak lemma as in the proof of Theorem 3.8 mentioned in Section 3.4. Recently, Xiao [X96, X98]
has studied various other aspects of the fractal structure of fractional Brownian motions using various
small ball type estimates.

7.7 Metric entropy estimates

The precise links between the small ball probability and the metric entropy given in Section 3.2 allow
one to establish new results about the metric entropy of the various sets Kµ in instances when one
knows the behaviour of φ(ε). Two examples from [KL93a] are given below.

The first one relates to the unit ball KW , given in (7.27), which is generated by the Wiener
measure. In this case, the small ball function φ(ε) is known very precisely for the L2-norm ‖·‖2 and
the sup-norm ‖·‖∞ on C[0, 1]; see Theorem 6.3. Thus the key relations (3.8) and (3.9) can yield the
following correspondingly precise estimates of H(ε,KW ) which are much sharper than those known
before.
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Proposition 7.1 If KW is as in (7.27), then for each δ > 0 as ε→ 0

(1− δ)(2−
√

3)/4 ≤ ε ·H(ε,KW , ‖·‖2) ≤ 1 + δ (7.38)

and
(1− δ)(2−

√
3)π/4 ≤ ε ·H(ε,K, ‖·‖∞) ≤ π(1 + δ). (7.39)

Note that (7.38) is more precise than what is given in Theorem XVI of Kolmogorov and Tihomirov
[KT61], and for (7.39) there are no constant bounds in Birman and Solomjak [BiS67].

The second is related to the small ball probability for the 2-dimensional Brownian sheet (see
Section 5.2), and it was first solved in Talagrand [T93]. The unit ball of the generating Hilbert space
for the 2-dimensional Brownian sheet is

K =
{
f ∈ C([0, 1]2) : f(s, t) =

∫ s

0

∫ t

0
g(u, v)dudv,

∫ 1

0

∫ 1

0
g2(u, v)dudv ≤ 1

}
.

Thus combining Theorem 5.4 and Theorem 3.3 implies

H(ε,K, ‖·‖∞) ≈ ε−1(log 1/ε)3/2,

which solves an interesting problem left open in approximation theory. Later, a direct proof inspired
by this line of argument was given in Temlyakov [Te95]. Further research in this direction can be
found in Dunker [D98] and for dimensions bigger than two, the analogous problem remains open, as
well as the corresponding Brownian sheet problem discussed in detail in Section 5.2.

7.8 Capacity in Wiener space

Let {WE(t) : t ≥ 0} be an E-valued µ-Brownian motion as given before Theorem 6.7. Define the
E-valued µ-Ornstein-Uhlenbeck process O by

O(t) = e−t/2WE(et), t ≥ 0.

Note that O is also an E–valued stationary diffusion whose stationary measure is µ. Let Q(·) be a
continuous semi-norm on E and define the λ-capacity of the “ball” {x ∈ E : Q(x) ≤ ε} by

Capλ(ε) =
∫ ∞

0
e−λT P

(
inf

0≤t≤T
Q(OE

t ) ≤ ε

)
dT, ε > 0.

We refer the readers to Üstünel [U95] and Fukushima, Oshima and Takeda [FOT94] for details. Then
the following result is given in Khoshnevisan and Shi [KS98b].

Theorem 7.10 Suppose Q is a nondegenerate, transient semi–norm on E. Then, for all λ > 0 and
all κ > 1, there exists a constant c ∈ (1,∞) such that for all ε ∈ (0, 1/c),

µ(x : Q(x) ≤ ε)
c ε2

≤ Capλ(ε) ≤ c µ(x : Q(x) ≤ ε)
(λQ(ε;κ)− ε)2

where
λQ(ε;κ) = sup{a > 0 : µ(x : Q(x) ≤ a) ≤ κµ(x : Q(x) ≤ ε)}, ε > 0

is the approximate inverse to µ(x : Q(x) ≤ ε).

It turns out that, under very general conditions, λQ(ε;κ) − ε has polynomial decay rate. Thus,
Theorem 7.10 and its relatives given in [KS98b] provide exact (and essentially equivalent) asymptotics
between the λ–capacity of a small ball and the small ball probability µ(x : Q(x) ≤ ε). But since
λQ(ε;κ) is much harder to find directly, the results are in fact applications of small ball probabilities
to the λ-capacity.
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7.9 Natural rates of escape for infinite dimensional Brownian motions

For any stochastic process {X(t), t ≥ 0} taking values in a real Banach space with norm ‖·‖, a nonde-
creasing function γ : [0,∞) → (0,∞) is called a natural rate of escape for X if lim inf ‖X(t)‖ /γ(t) = 1
as t→∞ with probability one. The following result and related definitions of a vector valued Brownian
motion and an admissible function are given in Erickson [Er80].

Theorem 7.11 Let X be a genuinely d-dimensional Brownian motion on a Banach space (E, ‖·‖)
with 3 ≤ d ≤ ∞, and let h be an admissible function. Fix b > 1 and put γ(t) = t1/2h(t). Then

lim inf
t→∞

‖X(t)‖ /γ(t) S 1 a.s.

depending on whether ∑
k≥1

h(bk)−2P
(
‖X(1)‖ ≤ h(bk)

) {
converges
diverges

. (7.40)

Since h is nonincreasing and slowly varying at infinity, we see that (7.40) completely depends on
the small ball probability P (‖X(1)‖ ≤ ε) as ε→ 0. A natural conjecture mentioned in [Er80] is that
if X is genuinely infinite dimensional Brownian motion and if P (‖X(t)‖ ≤ ε) > 0 for all ε > 0, t > 0,
then

0 < lim inf
t→∞

‖X(t)‖ /γ(t) <∞ (7.41)

for some γ(t); see also [Co82] for some related works. Note that (7.41) does not hold in the finite
dimensional setting by the Dvoretzky-Erdos test given in [DE51]. The difference between the infinite
and finite dimensional cases is that P (‖X(1)‖ ≤ ε) is o(εn) as ε → 0 for all n when X is genuinely
infinite dimensional, whereas P (‖X(1)‖ ≤ ε) 6= o(εn) for n ≥ d when X is d-dimensional with d <∞.

7.10 Asymptotic evaluation of Laplace transform for large time

When proper scaling properties hold for certain functionals of a given random process, small ball esti-
mates are equivalent to asymptotic evaluation of Laplace transform for large time via the exponential
Tauberian theorem given in Theorem 3.5. Here we present two more examples.

The first one is the consequence of (6.9) from which

lim
λ→∞

λ−2/(2+p) log E exp
{
−λ
∫ 1

0

|W (s)|p

sαp
ds

}
=

(2 + p)2

2 + p− 2αp
·
(
κp/22/pp

)p/(2+p)

by the exponential Tauberian theorem given in Theorem 3.5. Now by using the scaling property of
Brownian motion and (6.2)

lim
t→∞

t−(2+p−2β)/(2+p) log E exp
{
−λ
∫ t

0

|W (s)|p

sβ
ds

}
= − 2 + p

2 + p− 2β
λ1(p)λ2/(2+p)

for β < (2 + p)/2 and λ > 0.
The second one is the consequence of (6.10) from which

log E exp
{
−λ sup

0≤t≤1
|Bα(t)|

}
∼ −(2 + α)(Cα/α)α/(2+α)(λ/2)2/(2+α)
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as λ→∞ by the exponential Tauberian theorem given in Theorem 3.5. Now by the scaling property
of fractional Brownian motion Bα(t), i.e. {Bα(at), t ≥ 0} = {aα/2Bα(t), t ≥ 0} in law,

lim
t→∞

t−α/(2+α) log E exp
{
−λ sup

0≤s≤t
|Bα(s)|

}
= −(2 + α)(Cα/α)α/(2+α)(λ/2)2/(2+α)

for 0 < α < 2 and any λ > 0. Note that Cα is the small ball constant given in (6.10).

7.11 Onsager-Machlup functionals

For any measure ν on a metric space E with metric d(·, ·), the Onsager-Machlup function is defined
as

F (a, b) = log
(

lim
ε→0

ν(x: d(x, a) ≤ ε)
ν(x: d(x, b) ≤ ε)

)
(7.42)

if the above limit exists.
For the Gaussian measure, the existence of (7.42) and related conditional exponential moments

are studied in Shepp and Zeitouni [SZ92], Bogachev [Bog95] and Ledoux [L96]. Both correlation type
inequalities and small ball probabilities play an important role in the study.

In Capitaine [Ca95], a general result in the Cameron-Martin space for diffusions is proved for
rotational invariant norms with known small ball behavior, including in particular Hölder norms and
Sobolev type norms. Other related work can be found in Carmona and Nualart [CN92] and Chaleyat-
Maurel and Nualart [CmN95].

7.12 Random fractal laws of the iterated logarithm

Let {W (t) : t ≥ 0} denote a standard Wiener process, and for any η ∈ [0, 1], set

Eη =
{
t ∈ [0, 1) : lim sup

h→0
(2h log(1/h))−1/2 (W (t+ h)−W (t)) ≥ η

}
. (7.43)

Orey and Taylor [OT74] proved that Eη is a random fractal and established that with probability one
the Hausdorff dimension of this set is given by dim(Eη) = 1 − η2. Recently, Deheuvels and Mason
[DM98] show that one can derive the following functional refinement of (7.43). We use notations given
in Section 7.3 and 7.4, and in particular, the Strassen set KW and the inner product norm | · |W are
given in (7.27) and (7.28).

Theorem 7.12 For each f ∈ KW and c > 1, let E(f, c) denote the set of all t ∈ [0, 1] such that

lim inf
h→0

| log h| × ‖(2h| log h|)−1/2ξ(h, t, ·)− f‖∞ ≤ c2−1/2 π

81/2
(1− |f |2W )−1/2

where ξ(h, t, s) = W (t + hs) − W (t). Then for |f |W < 1, dimE(f, c) = (1 − |f |2W )(1 − c−2) with
probability one.

A key in the proof is the small ball estimate given in de Acosta [dA83] discussed in Section 7.4.
The case |f |W = 1 is also related to Section 7.4. Very recently, Khoshnevisan, Peres and Xiao [KPX99]
present a general approach to many random fractals defined by limsup operations. In particular, their
result yields extensions of Theorem 7.12 by applying appropriate small ball estimates.
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[Kw94] Kwapień, S. (1994). A remark on the median and the expectation of convex functions of
Gaussian vectors. Progress in Probability 35, 271-272, Birkhauser, Boston.
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C.R. Acad. Sci. Paris 315, 1217–1220.

[St96] Stolz, W. (1996). Some small ball probabilities for Gaussian processes under nonuniform norms.
J. Theor. Probab. 9, 613-630.

[Str64] Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrs.
verw. Gebiete 3 , 211-226.

[Sy74] Sytaya, G. N. (1974). On some asymptotic representation of the Gaussian measure in a Hilbert
space. Theory of Stochastic Processes. Ukrainian Academy of Sciences, 2, 93-104.

55



[Su69] Sudakov, V. N. (1969). Gaussian measures, Cauchy measures and ε–entropy. Soviet Math. Dokl.
10, 310–313.

[ST74] Sudakov, V.N. and Tsirelson, B.S. (1974). Extremal properties of half-spaces for spherically
invariant measures. J. Sov. Math. 9, 9-18, (1978); translated from Zap. Nauch. Sem. L.O.M.I.
41, 14-24.

[SzW99] Szarek, S. and Werner, E. (1999). A nonsymmetric correlation inequality for Gaussian mea-
sure. J. Multi. Anal. 68, 193-211.

[T92] Talagrand, M. (1992). On the rate of convergence in Strassen’s LIL. Progress in Probability,
Birkhauser, Boston, 339–351.

[T93] Talagrand, M. (1993). New Gaussian estimates for enlarged balls. Geometric and Funct. Anal.,
3, 502-526.

[T94] Talagrand, M. (1994). The small ball problem for the Brownian sheet. Ann. Probab. 22, 1331-
1354.

[T95] Talagrand, M. (1995). Hausdorff measure of trajectories of multiparameter fractional Brownian
motion. Ann. Probab. 23, 767–775.

[T96] Talagrand, M. (1996). Lower classes for fractional Brownian motion. J. Th. Probab. 9, 191-213.

[T98] Talagrand, M. (1998). Multiple points of trajectories of multiparameter fractional Brownian
motion. Proba. Th. Rel. Fields 112, 545-563.

[Ta86] Taylor, S.J. (1986). The measure theory of random fractals. Math. Proc. Cambridge Philos.
Soc. 100, 383–406.

[Te95] Temlyakov, V. (1995). An inequality for trigonometric polynomials and its application for
estimating the entropy numbers. Journal of Complexity 11, 293-307.

[To80] Tong, Y. L. (1980). Probability Inequalities in Multi-variate Distributions. Academic Press,
New York.
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