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Abstract. Let B0, B1, · · · , Bn be independent standard Brownian motions, starting at 0.
We investigate the tail of the capture time

τn = inf{t > 0 : Bi(t) − bi = B0(t) for some 1 ≤ i ≤ n}

where 0 < bi ≤ 1, 1 ≤ i ≤ n. In particular, we have � τ3 = ∞ and � τ5 < ∞. Various
generalizations are also studied.

1. Introduction

Let B0, B1, · · · , Bn be independent standard Brownian motions, starting at 0.
Define the stopping time

τn = inf{t > 0 : Bi(t) − bi = B0(t) for some 1 ≤ i ≤ n},

where 0 < bi ≤ 1, 1 ≤ i ≤ n. The τn can be viewed as a capture time in a random
pursuit setting. Assume that a Brownian prisoner escapes, running along the path of
B0. In his pursuit, there are n independent Brownian policemen. These policemen
run along the paths of B1, · · · , Bn, respectively. At the outset, the prisoner is ahead
of the policemen by some fixed distances bi, 1 ≤ i ≤ n. Then, τn represents the
capture time when the fastest of the policemen catches the prisoner.

In an elegant paper on coupling various stochastic processes, Bramson and
Griffeath (1991) considered the analogous stopping time τ̃n for continuous time
random walks. It is very likely that the kind of tail estimates which we derive here
for τn are the same for τ̃n. However, for our purposes Brownian motions are easier
to work with, so that we will stick with the setup described above.

Bramson and Griffeath raised the question: For which n is � τn < ∞. A more
animated interpretation is “How many Brownian policemen does it take to ar-
rest a Brownian prisoner?” They showed for continuous time random walks that
� τ̃n = ∞ for n = 2 or 3, and their computer simulations indicated that � τ̃n < ∞
for n ≥ 4.
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Of course τn equals the first exit time by the (n + 1)-dimensional Brownian
motion (B0(t), · · · , Bn(t)) from the “wedge”

{x = (x0, x1, · · · , xn) ∈ �n+1 : xi − x0 < 0, 1 ≤ i ≤ n} (1.1)

starting at (0,−b1, · · · ,−bn). DeBlassie (1987) (see also DeBlassie (1988) and
Bañuelos and Smits (1997)) has shown that

�{τn > t} ∼ c(b)t−γn, as t → ∞, (1.2)

when b0 = 0 < bi, b = (b0,−b1, · · · ,−bn), where γn is determined by the first
eigenvalue of the Dirichlet problem for the Laplace-Beltrami operator on a sub-
set of the unit sphere �n in �n+1. Exact formula for γn is given in next section.
However, as Bramson and Griffeath point out, it seems very difficult to find γn
explicitly by this direct approach and it even seems difficult to show γn > 1 for
n large by this method. Of course, γ1 = 1/2 by the reflection principle, and the
analysis indicated in Bramson and Griffeath (1991) shows that γ2 = 3/4, γ3 < 1.
Further, their simulation suggested that γ3 ≈ 0.91, γ4 ≈ 1.032 and γ10 ≈ 1.4.

Using closely related independent stationary Ornstein-Uhlenbeck processes and
the theory of Large Deviations, Kesten (1992) proves that

c1 log n ≤ γn ≤ c2 log n

for large enough n and hence � τn < ∞ for large enough n. Here and through-
out this paper, we use letter c and its modifications c′, c1 etc for various positive
constants which may be different from line to line.

In this paper, we prove in particular the following

Theorem 1.1. Let γn be given in (1.2). Then

γ2 = 3/4, γ3 < 1 and γ5 > 1.

Thus � τ3 = ∞ and � τ5 < ∞.

For fixed n, our approach is based on some distribution identities which reduce
the first exit problem by n + 1 independent Brownian motions from the “wedge”
region (1.1) into a first exit problem by n independent Brownian motions from a
“nicer” region. Then we can apply the well known results of DeBlassie (1987). The
difference is that γn in (1.2) is now determined by the first eigenvalue of the Di-
richlet problem for the Laplace-Beltrami operator on the “nicer” subset of the unit
sphere �n−1 in �n. In essence, we reduce the dimension by one and the new exit
region is closer to a right circular cone so that we can estimate γ3 by an inscribed
right circular cone and γ5 by the celebrated Faber-Krahn isoperimetric inequality
on spheres. Note that this idea was used in an implicit way to show γ2 = 3/4 and
γ3 < 1 in Bramson and Griffeath (1991). So far we can not push this approach to
settle the conjecture γ4 > 1, or equivalently � τ4 < ∞ of Bramson and Griffeath.
However, as mentioned above, our method represents the first eigenvalue of the
Dirichlet problem for the Laplace-Beltrami operator on a suitable subset of the unit
sphere �n in �n+1 by one in lower dimension. The full strength of this approach
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and its various other applications to principal eigenvalues and harmonic functions
will be given in Li and Shao (2000). Some close related applications to various
capture times are given in sections 4 and 5.

Also worth pointing out is a general framework for this type of problems, and
what leads us to this work from the point of view of the theory of Gaussian pro-
cesses. Let us assume bi = 1, 1 ≤ i ≤ n, for simplicity. First note that estimating
the tail of τn, i.e. � (τn > t) as t → ∞, is the same as estimating the lower level
boundary crossing for the Gaussian process X(k, s) = Bk(s) − B0(s) indexed by
(k, s) ∈ {1, · · · , n} × [0, 1], i.e. �

(
max1≤k≤n sup0≤s≤1(Bk(s) − B0(s)) ≤ ε

)
as

ε → 0. In fact, for any t > 0, by Brownian scaling,

�(τn > t) = �

(
max

1≤k≤n
sup

0≤s≤t

(Bk(s) − B0(s)) < 1

)

= �

(
max

1≤k≤n
sup

0≤s≤1
(Bk(s) − B0(s)) < t−1/2

)
.

Thus the problem can be viewed as a lower level boundary crossing problem for a
real valued Gaussian random process Xt indexed by t ∈ T with mean zero, which
can be formulated as the asymptotic behavior of the probability

�

(
sup
t∈T

(Xt − Xt0) ≤ ε

)
, as ε → 0, (1.3)

with t0 ∈ T fixed. This is different from the small ball problem under the sup-norm,
which considers the absolute value of the supremum of a Gaussian process. That
class of problems has been studied very recently in Bass, Eisenbaum and Shi (2000)
for two sided fractional Brownian motion and generalized in Marcus (2000) to a
larger class of Gaussian processes with stationary increments. Their upper bound
estimate involves a clever application of Slepian’s lemma, which reduces the prob-
lem to the consideration of the probability that planar Brownian motion spends a
unit of time in a certain cone. In Csaki, Khoshnevisan and Shi (2000), where we
learned the pursuit problem, a variation of the random pursuit problem for Brown-
ian particles is used in their upper estimate of log �

(
sup0≤s,t≤1 W(s, t) ≤ ε

)
where

W(s, t) is the standard two dimensional Brownian sheet. More precisely, they used
an upper bound estimate for

�

(
max

1≤k≤n
sup

0≤s≤1
(Bk(s) − δB0(s)) < ε

)

with δ > 0, which is obtained along the approach of Kesten (1992). Very recently,
Li and Shao (1999) provide general upper and lower estimates for the probability
in (1.3). In particular, sharp rates of (log ε−1)d are obtained at the logarithmic level
for d dimensional Brownian sheets. For the fractional Brownian motion on [0, 1],
the exact power of a polynomial rate is unknown and seems challenging to find.
See Sinai (1997), Li and Shao (1999).
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Our way of attacking such problems via reduction of dimension also allow us
to find certain exit probabilities. In our last section, we consider two policemen
coming from both sides of a prisoner. In this case, we can compute more things
and compare with the well-known exit time of a Brownian motion B0(t) from the
interval [a, b] with a < 0 < b. To make everything more precise, let

τab = inf {t > 0 : B0(t) − B1(t) = a or B0(t) − B2(t) = b}
for a < 0 < b.

Theorem 1.2. We have

� τab = |ab| = −ab, � (τab > t) ∼ ca,bt
−3/2 (1.4)

as t → ∞ and

� (B0(τab) − B1(τab) = a) = 1

2
+ 3

π
arctan

a + b√
3(b − a)

(1.5)

� (B0(τab) − B2(τab) = b) = 1

2
− 3

π
arctan

a + b√
3(b − a)

(1.6)

Several remarks are in order here. First, the result � τab = −ab was implicitly
mentioned in Bramson and Griffeath (1991). The expected capture time of various
discrete models are also computed explicitly there. Second, the above results should
be compared with the well-known exit time

σab = inf {t > 0 : B0(t) = a or B0(t) = b} ,
which can be viewed as capture time by deterministic barrier lines. We note that
� τab = � σab = |ab| but � τ 2

ab = ∞, � σ 2
ab < ∞. Furthermore, from the inequality

x >
√

3 tan(πx/6) for 1 > x > 0, we have

� (B0(τab) − B1(τab) = a) > � (B0(σab) = a) = b/(b − a) (1.7)

for b > |a| and the inequality is reversed if b < |a|. Hence it is more (less) likely
to be captured by the nearer (further) one for random pursuit than the deterministic
pursuit or exit. Third, the related problems for random walks are slightly different
and seem hard to find exact formulas. Fourth and most importantly, the method
here may allow us to connect and find harmonic functions on various wedge type
regions in higher dimensions. Finally, by following the proof of Theorem 1.2, we
have for b > a > 0,

� (B1(τ3(a, b)) − B0(τ3(a, b)) = a) = 1

2
+ 3

2π
arctan

√
3(b − a)

a + b
,

� (B2(τ3(a, b)) − B0(τ3(a, b)) = b) = 1

2
− 3

2π
arctan

√
3(b − a)

a + b

where � τ3(a, b) = ∞ and

τ3(a, b) = inf {t > 0 : B1(t) − B0(t) = a or B1(t) − B0(t) = b} .
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The paper is organized as follows. In section 2, we summarize needed works on
cones, based on Bañuelos and Smits (1997), DeBlassie (1987), Burkholder (1977)
and Spitzer (1958) since we need both the general formulations and detailed com-
putations. In section 3, we state and prove our results based on our key distribution
identities to make the reduction. It allows us to conclude � τ3 = ∞ and � τ5 < ∞.
In section 4 we present various results on different capture times for pursuit prob-
lems of m prisoners and n policemen, m = 1, 2 and n = 1, 2, 3. They can all be
viewed as coupling times. The main approach is still based on distribution identities
of different kinds. Several conjectures are proposed at the end of the section. In
particular, we make the conjecture that the probability of capturing ALL n prisoners
by n policemen chasing from one side, before a given time, is a strictly decreasing
function of n. Finally, we prove Theorem 1.2 in section 5. As mentioned before,
the full extent of our approach and its various other applications will be given in an
upcoming paper.

2. First exit time from a generalized cone

To state precisely the results on the first exit time from a generalized cone as for-
mulated in Bañuelos and Smits (1997), we need some notations. Denote by �n−1

the unit sphere in �n. If D is a proper open connected subset of �n−1, the general-
ized cone C generated by D is the set of all rays emanating from the origin 0 and
passing through D. Assume that D is regular for the Dirichlet problem with respect
to L�n−1 , the Laplace-Beltrami operator on �n−1. With this assumption we have
a complete set of orthonormal eigenfunctions mj with corresponding eigenvalues
0 < λ1 < λ2 ≤ λ3 < · · · satisfying{

L�n−1mj = −λjmj on D

mj = 0 on ∂D.
(2.1)

Set

αj =
√
λj +

(n
2

− 1
)2

, aj = αj −
(n

2
− 1

)
> 0

and

Hj = %((aj + n)/2)

%(aj + n/2)

∫
D

mj (θ)dσ(θ),

where σ = σn−1 is the normalized spherical measure on �n−1. The confluent
hypergeometric function is, with b > 0,

F1(a, b, z) = 1 + a

b

z

1!
+ a(a + 1)

b(b + 1)

z2

2!
+ · · · .

Let {Zt , t ≥ 0} be the n–dimensional Brownian motion, denote by � x and �x the
expectation and probability associated with this motion starting at x, and denote by
τC = inf{t > 0 : Zt /∈ C} its first exit time from C.
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Theorem A. Let C be a generalized cone in �n. Then

�x{τC > t} =
∞∑
j=1

Hj

( |x|2
2t

)aj /2

F1

(
aj

2
, aj + n

2
,
−|x|2

2t

)
mj

(
x

|x|
)
, (2.2)

uniformly for (x, t) ∈ K × (T ,∞), where K ⊂ C is compact and T > 0. In
particular, for each x ∈ C,

�x{τC > t} ∼ H1m1 (x/|x|)
(
|x|2/2

)a1/2
t−a1/2 (2.3)

as t → ∞, and hence for p > 0

� x(τ
p
C ) < ∞ if and only if p < a1/2. (2.4)

The above result was first proved by DeBlassie (1987) under somewhat stronger
assumptions on the cones. (2.4) also follows from Lemma 3.1 in Bass and Burdzy
(1996). The special geometric structure of the cone (scale invariance) is essential
for these results. When C is the right circular cone of angle 0 < θ < π given by
% = %θ = {x ∈ �n : φ(x) < θ}, where φ(x) is the angle between x ∈ �n\{0} and
the point (1, 0, · · · , 0) ∈ �n, we have the following more explicit result given in
DeBlassie (1987), based on Burkholder (1977).

Theorem B. Let % = %θ = {x ∈ �n : φ(x) < θ}. Then for each x ∈ %,

�x{τ% > t} ∼ c(x, θ, n)t−p(θ,n)/2 (2.5)

as t → ∞, and hence for r > 0

� x(τ
r
%) < ∞ if and only if r < p(θ, n)/2, (2.6)

where the mapping θ → p(θ, n) is the inverse of p → θ(p, n) and θ(p, n) is the
smallest positive zero θ of

F(−p, p + n − 2; (n − 1)/2, (1 − cos θ)/2), (2.7)

where F(α, β; y, z) is the hypergeometric function given by

F(α, β; y, z) = 1 + αβ

y

z

1!
+ α(α + 1)β(β + 1)

y(y + 1)

z2

2!

+α(α + 1)(α + 2)β(β + 1)(β + 2)

y(y + 1)(y + 2)

z3

3!
+ · · ·

for y > 0, |z| < 1.
For n = 2, p(θ, 2) = π/(2θ). For n ≥ 3, p → θ(p, n) is continuous and

strictly decreasing from (0,∞) onto (0, π) with θ(1, n) = π/2, see Burkholder
(1977), pp. 192–193. Thus θ → p(θ, n) is continuous and strictly decreasing from
(0, π) onto (0,∞), and p(π/2, n) = 1.

We should mention here that formulas for �x{τ% > t} in �2 have existed for
many years. Indeed, Spitzer (1958) in his study of the winding of two dimensional
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Brownian motion derives an expression for �x{τ% > t} from which the two dimen-
sional case (2.5) and (2.6) follows. Furthermore, as pointed out in Bramson and
Griffeath (1991), for 0 < θ < arctan

√
n − 1

� xτ% = x2
1 sec2 θ − |x|2

(n − 1) − tan2 θ
, (2.8)

where x ∈ % and

% = %θ = {x ∈ �n : φ(x) ≤ θ} = {x ∈ �n : |x| ≤ x1 sec θ}.
This can be proved easily by verifying that u(x) = � xτ% for x ∈ �n is the unique
solution of Poisson’s equation 1u = −2 in % vanishing at the boundary. See
Dynkin and Yushkevich (1969) for similar arguments.

Next we find the critical angle θn of the largest right circular cone in �n such
that � τ% < ∞ for all 0 < θ < θn. Formula (2.8) suggests the answer

θn = arctan
√
n − 1 or equivalently θn = arccos(1/

√
n), (2.9)

which is correct and can be proved in the following way. Take p(θ, n) = 2 in (2.7)
and observe from the definition of the hypergeometric function that

F(−2, n; n − 1

2
, x) = 1 − 4n

n − 1
x + 4n

n − 1
x2.

It is easy to see that the smallest positive solution is x = (1 − n−1/2)/2. (2.9) now
follows from (2.6) and (2.7).

3. Main results and proofs

For simplicity, we assume bi = 1, 1 ≤ i ≤ n in this section. The general case
can be obtained similarly and the power γn in (1.2) is independent of 0 < bi ≤ 1,
1 ≤ i ≤ n, which can be seen from (2.2) and (2.3). Throughout the remainder of
this paper, {Wk(t); t ≥ 0}(k = 0, 1, 2, . . . ) denote independent Brownian motions
all starting from 0.

Let Yi(t) = Bi(t) − B0(t), 1 ≤ i ≤ n, 0 ≤ t ≤ 1. Then Yi(t) is a mean zero
Gaussian process indexed by Tn = {(i, t) : 1 ≤ i ≤ n, 0 ≤ t ≤ 1} and Yi(0) = 0
for 1 ≤ i ≤ n. The covariance of Yi(t) can be computed easily

�Yi(s)Yj (t) =
{

min(s, t) if i �= j , 1 ≤ i, j ≤ n, 0 ≤ s, t ≤ 1 ,

2 min(s, t) if i = j , 1 ≤ i ≤ n, 0 ≤ s, t ≤ 1
.

Our key observation is the fact that the Gaussian process {Yi(t) : (i, t) ∈ Tn}
and {Xi(t) : (i, t) ∈ Tn} are the same in law, where

X1(t) = 21/2W1(t),

X2(t) = 2−1/2W1(t) + (3/2)1/2W2(t),

X3(t) = 2−1/2W1(t) + 6−1/2W2(t) + (4/3)1/2W3(t),

X4(t) = 2−1/2W1(t) + 6−1/2W2(t) + (12)−1/2W3(t) + (5/4)1/2W4(t),

X5(t) = 2−1/2W1(t) + 6−1/2W2(t) + (12)−1/2W3(t)

+ 20−1/2W4(t) + (6/5)1/2W5(t)
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and in general for i ≥ 1,

Xi(t) =
i∑

k=1

ai,kWk(t)

with ai,k = ((k + 1)k)−1/2 for 1 ≤ k ≤ i − 1 and i ≥ 2, and ai,i = ((i + 1)/i)1/2.
It is easy to check that for i < j

�Xi(s)Xi(t) =
i∑

k=1

a2
i,k min(s, t) = 2 min(s, t),

�Xi(s)Xj (t) =
i∑

k=1

ai,kaj,k min(s, t) = min(s, t),

which agrees with covariances for the Y’s.
Now by using the above distribution identities for any n ≥ 1, we have

� (τn > t) = �

(
max

1≤i≤n
sup

0≤s≤t

(Bi(s) − B0(s)) < 1

)

= �

(
max

1≤i≤n
sup

0≤s≤t

i∑
k=1

ai,kWk(s) < 1

)

= �

(
max

1≤i≤n
sup

0≤s≤t

i∑
k=1

ai,k(Wk(s) − an+1,k) < 0

)

= �(τG > t)

where τG is the first exit time of the domain

G = Gn =
n⋂

i=1

{
x = (xk) ∈ �n :

i∑
k=1

ai,kxk ≤ 0

}
(3.1)

for the standard �n valued Brownian motion starting at the point

V = (−an+1,1,−an+1,2, · · · ,−an+1,n). (3.2)

Note that the domain G = Gn is a generalized cone with vertex at the origin.

Theorem 3.1. We have τn = τG in distribution and the distribution is given in
(2.2) with C = G = Gn. In particular, for n ≥ 5,

n

n2 − 1
< � τn < ∞.
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Proof of Theorems 3.1 and 1.1. For n = 2, it follows from Theorem B and the
result of Spitzer that γ2 = p(θ, 2)/2 = π/(4θ) = 3/4, where θ = π/3 for the
region

G2 =
2⋂

i=1

{
x = (x1, x2) ∈ �2 :

i∑
k=1

ai,kxk ≤ 0

}

=
{
x = (x1, x2) ∈ �2 : x1 ≤ 0, x1 +

√
3x2 ≤ 0

}
.

Next we need to find the largest right circular cone Cn = {x ∈ �n : φ(x, e) ≤
ρn} of angle 0 < ρn < π inside the domain Gn, where φ(x, e) denotes the angle
between x and the point e ∈ �n with |e| = 1, where | · | denotes the Euclidean
norm in �n. These can be done easily by first finding the point e = (e1, · · · , en)
which satisfies the equations

d(e,Hi) = d(e,Hj ), 1 ≤ i < j ≤ n (3.3)

where

Hi :
i∑

k=1

ai,kxk = 0, x = (x1, · · · , xn) ∈ �n.

with normal vector

hi = (2−1/2ai,1, · · · , 2−1/2ai,i , 0, · · · 0) ∈ �n,

and

d(e,Hi) = 〈e, hi〉 =
i∑

k=1

2−1/2ai,kek

is the distance from e to the hyperplane Hi with normal vector hi . Solving (3.3)
yields e = V/|V |, where the point V is given in (3.2) and hence the angle ρn of
the largest right circular cone inside Gn is given by

sin ρn = d(e,Hi) =
(
n + 1

2n

)1/2

, i.e. ρn = arctan
√
(n + 1)/(n − 1)

In particular,ρn is decreasing inn andρ2 = π/3,ρ3 = arctan
√

3, and limn→∞ ρn =
π/4. Note that ρ3 = θ3 and hence γ3 < 1 and � τ3 = ∞. Furthermore, the expected
exit time of the largest right circular cone Cn = {x ∈ �n : φ(x, e) ≤ ρn} (inside
the domain Gn) from the point V = (−an+1,1,−an+1,2, · · · ,−an+1,n) is

x2
1 sec2 ρn − |x|2

(n − 1) − tan2 ρn

= n

n2 − 1

given in (2.8), with

x2
1 = |x|2 = |V |2 =

n∑
k=1

a2
n+1,k = 2 − a2

n+1,n+1 = n/(n + 1)
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and

ρn = arctan
√
(n + 1)/(n − 1).

Thus we have � τn = � τG > n/(n2 − 1) for all n.

So for the remainder of this section, we will show that γ5 > 1 which implies
� τ5 < ∞. Note that it can be shown that the smallest right circular cone with vertex
at the origin that includes Gn is

{x ∈ �n : φ(x, V/|V |) ≤ ηn}

of angle ηn = arccos(1/n), where φ(x, e) denotes the angle between x and the

point V ∈ �n given in (3.2). Here the angle ηn > θn for all n and thus the smallest
right circular sur-scribed cone of Gn will never allow us to show the finiteness of
� τn for any n. Thus, we invoke the Faber-Krahn isoperimetric inequality

λ1(Gn ∩ �n−1) ≥ λ1(G
∗
n ∩ �n−1),

where G∗
n is a right circular cone with vertex at the origin such that

mn−1(Gn ∩ �n−1) = mn−1(G
∗
n ∩ �n−1)

(see page 87, Chavel (1984)). Recall from section 2 that

γn = 1

2

(√
λ1(Gn) +

(n
2

− 1
)2 −

(n
2

− 1
))

(3.4)

and for the critical right circular cone %n = {x ∈ �n : |x| ≤ x1 sec θn}

1

2

(√
λ1(%n) +

(n
2

− 1
)2 −

(n
2

− 1
))

= 1. (3.5)

Hence for n = 5, we only need to show

m4(G5 ∩ �4) < m4(%5 ∩ �4). (3.6)

Note that for n = 5, θ5 = arccos(1/
√

5) and

m4(%5 ∩ �4) =
∫ θ5

0

∫ π

0

∫ π

0

∫ 2π

0
sin3 φ1 sin2 φ2 sin φ3dφ4dφ3dφ2dφ1

= 2π2(1 − cos θ5 − (1 − cos3 θ5)/3)

= 4π2

3

(
1 − 7

5
√

5

)
= 4.9203... (3.7)
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To calculate m4(G5 ∩ �4), let

B0 =




21/2 0 0 0 0
2−1/2 (3/2)1/2 0 0 0
2−1/2 6−1/2 (4/3)1/2 0 0
2−1/2 6−1/2 (12)−1/2 (5/4)1/2 0
2−1/2 6−1/2 (12)−1/2 (20)−1/2 (6/5)1/2


 ,

B1 =




2−1/2 (3/2)1/2 0 0 0
2−1/2 6−1/2 (4/3)1/2 0 0
2−1/2 6−1/2 (12)−1/2 (5/4)1/2 0
2−1/2 6−1/2 (12)−1/2 (20)−1/2 (6/5)1/2




and

B(ε) =




−2−1/2 (3/2)1/2ε2 0 0 0
−2−1/2 6−1/2ε2 (4/3)1/2ε3 0 0
−2−1/2 6−1/2ε2 (12)−1/2ε3 (5/4)1/2ε4 0
−2−1/2 6−1/2ε2 (12)−1/2ε3 (20)−1/2ε4 (6/5)1/2ε5


 ,

where ε = (ε2, ε3, ε4, ε5) ∈ {±1}4.
For m ≥ 2 and 1 ≤ i, j, k, l ≤ m set

Ui,j,k,l = Ui,j,k,l(m) =
[ (i − 1)π

2m
,
iπ

2m

]
×
[ (j − 1)π

2m
,
jπ

2m

]
×
[ (k − 1)π

2m
,
kπ

2m

]
×
[ (l − 1)π

2m
,
lπ

2m

]
.

Write

G5 ∩ �4 = {x ∈ �4 : B0x
′ ≤ 0} = {φ ∈ [0, π ]3 × [0, 2π ], B0x

′ ≤ 0}
= {φ ∈ [π/2, π ] × [0, π ]2 × [0, 2π ], B1x

′ ≤ 0},

where x = (x1, x2, ..., x5), φ = (φ1, φ2, φ3, φ4) and

x1 = cosφ1,

x2 = sin φ1 cosφ2,

x3 = sin φ1 sin φ2 cosφ3,

x4 = sin φ1 sin φ2 sin φ3 cosφ4,

x5 = sin φ1 sin φ2 sin φ3 sin φ4,
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by using polar coordinates. Thus, we have

m4(G5 ∩ �4)

=
∫

{φ∈[π/2,π ]×[0,π ]2×[0,2π ], B1x
′≤0}

sin3 φ1 sin2 φ2 sin φ3dφ4dφ3dφ2dφ1

=
∑

ε∈{±1}4

∫
{φ∈[0,π/2]4: B(ε)x′≤0}

sin3 φ1 sin2 φ2 sin φ3dφ4dφ3dφ2dφ1

=
∑

ε∈{±1}4

∑
1≤i,j,k,l≤m

∫
{φ∈Ui,j,k,l : B(ε)x′≤0}

sin3 φ1 sin2 φ2 sin φ3dφ4dφ3dφ2dφ1

≤
∑

ε∈{±1}4

∑
1≤i,j,k,l≤m

1{φ(i,j,k,l,ε)≤0}

∫
φ∈Ui,j,k,l

sin3 φ1 sin2 φ2 sin φ3dφ4dφ3dφ2dφ1

=
∑

ε∈{±1}4

∑
1≤i,j,k,l≤m

1{φ(i,j,k,l,ε)≤0}

{ π

2m
(cos

(k − 1)π

2m
− cos

kπ

2m
) (

π

4m
− 1

4
(sin

lπ

m
−sin

(l − 1)π

m
))

×(cos
(i − 1)π

2m
)−cos

iπ

2m
) − 1

3
(cos3 (i − 1)π

2m
) − cos3 iπ

2m
)))
}

:= Km, (3.8)

where φ(i, j, k, l, ε) = B(ε)x(i, j, k, l, ε)′ and x(i, j, k, l, ε) = (x∗
1 , x

∗
2 , ..., x

∗
5 )

with

x∗
1 = cos((i − 1)π/(2m)),

x∗
2 = sin((i − (ε2 + 1)/2)π/(2m)) cos((j + (ε2 − 1)/2)π/(2m)),

x∗
3 = sin((i − (ε2 + 1)/2)π/(2m)) sin((j − (ε2 + 1)/2)π/(2m))

× cos((k + (ε3 − 1)/2)π/(2m)),

x∗
4 = sin((i − (ε2 + 1)/2)π/(2m)) sin((j − (ε2 + 1)/2)π/(2m))

× sin((k − (ε3 + 1)/2)π/(2m)) cos((l + (ε4 − 1)/2)π/(2m)),

x∗
5 = sin((i − (ε2 + 1)/2)π/(2m)) sin((j − (ε2 + 1)/2)π/(2m))

× sin((k − (ε3 + 1)/2)π/(2m)) sin((l − (ε4 + 1)/2)π/(2m)).

In particular, when m = 50, a direct calculation gives

K50 = 4.7078... (3.9)

This proves (3.6), by (3.7) and (3.9).

Several remarks are in order here. First, the argument we presented here to
show γ5 > 1 does not work for the conjecture γ4 > 1 since in that case, we have
m3(G4 ∩ �3) > m3(%4 ∩ �3) which goes the wrong way. Second, it may seem
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surprising in the case n = 5 that we have a relatively big margin when comparing
(3.9) with (3.7). Afterall, both simulation results of Bramson and Griffeath (1991)
and theoritical result of Kesten (1992) suggest that γ4 and γ5 are very close. This
appearent contradiction is due to the way γn depend on λ1(Gn) in the formula
(3.4). In fact, we see from (3.5) that λn(%n) = 2n. Third, as we checked carefully,
the isoperimetic comparision does not work for the variation representation of γn
in terms of the wedge region (1.1) in �n+1 for n = 4. This is mainly due to the
shape of the wedge region which is far away from a right circular cone. Finally, we
mention that the estimate � τn > n/(n2 − 1) is only good for n ≥ 4 small. In fact,
it is not hard to show that � τn ≥ c(log n)−1/2 for some c > 0.

4. m prisoners and n policemen

Let B−i , 0 ≤ i ≤ m − 1 and Bj , 1 ≤ j ≤ n be independent Brownian motions,
starting at 0. If we think of B−i , 0 ≤ i ≤ m − 1, as prisoners and Bj , 1 ≤ j ≤
n, as policemen, we can then define various capture times or coupling times in
applications. For simplicity, we assume that all prisoners start one unit ahead of
the policemen. Note again that different starting positions do not change the decay
rate of the tails of capture times.

Define the first capture time of a prisoner by

τ1,m,n = inf{t > 0 : max
1≤j≤n

Bj (t) = min
0≤i≤m−1

B−i (t) + 1} (4.1)

and the overall capture time of all prisoners by

τm,m,n = inf{t > 0 : max
1≤j≤n

Bj (t) = max
0≤i≤m−1

B−i (t) + 1}. (4.2)

Then we have

�
(
τ1,m,n > t

) = �

(
max

1≤j≤n
sup

0≤s≤t

max
0≤i≤m−1

(Bj (s) − B−i (s)) < 1

)
(4.3)

and

�
(
τm,m,n > t

) = �

(
max

1≤j≤n
sup

0≤s≤t

min
0≤i≤m−1

(Bj (s) − B−i (s)) < 1

)
. (4.4)

Obviously we can also define and study the capture time of exactly i prisoners. But
as we have seen from the previous section, even the tail behavior of τn = τ1,1,n for
n ≥ 3 is hard to compute. So we only deal with several interesting cases. However,
our approach of reducing dimension can be used in more general cases. Further
results will be given in a separate paper.

Let us first observe that by symmetry τ1,m,1 = τ1,1,m = τm in distribution. So
we start with the capture time τ2,2,1 which can also be viewed as the coupling time
of one particle with the other two. Further, throughout this section, we set

Xij (t) = Bj (t) − B−i (t), i ≥ 0, j ≥ 1, t ≥ 0.
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Theorem 4.1. We have

�
(
τ2,2,1 > t

) ∼ ct−3/8 as t → ∞. (4.5)

Proof. Note that we can represent Xi1(t), i = 0, 1, jointly by

X01(t) =
√

2W1(t),

X11(t) = 2−1/2W1(t) + (3/2)1/2W2(t).

And thus

= �
(
τ2,2,1 > t

)
= �

(
sup

0≤s≤t

min
0≤i≤1

Xij (s) < 1

)

= �

(
sup

0≤s≤t

min
(√

2W1(s), 2−1/2W1(s) + (3/2)1/2W2(s)
)
< 1

)

=
(

sup
0≤s≤t

min
(
W1(s) − 2−1/2, 2−1(W1(s) − 2−1/2)

+ (3/4)1/2(W2(s) − 6−1/2)
)
< 0

)
= � (τG > t)

where τG is the first exit time of the domain

G = {x = (x1, x2) ∈ �2 : x1 ≤ 0, or, 2−1x1 + (3/4)1/2x2 ≤ 0} (4.6)

for the standard �2 valued Brownian motion starting at the point (−2−1/2,−6−1/2).
The domain G in (4.6) is a cone with 2θ = 2π − 2π/3 = 4π/3 and hence
p(θ, n)/2 = 3/8 for n = 2 and θ = 2π/3. Our result follows from the work of
Spitzer (1958) as mentioned in section 2.

We next turn to the capture times τ1,2,2, τ2,2,2 and τ1,2,3.

Theorem 4.2. We have � τ1,2,3 ≤ � τ1,2,2 ≤ � τ4 and � τ1,2,3 ≤ � τ6 ≤ � τ5 < ∞.
Furthermore, �(τ1,2,2 > t) ≤ �(τ4 > t), �(τ1,2,2 > t) ≤ ct−1 and �(τ1,2,3 >

t) ≤ �(τ6 > t).

Proof. Let us first work on the case m = n = 2. Note that we can represent Xij (t),
i = 0, 1, j = 1, 2, jointly by

X01(t) =
√

2W1,

X11(t) = 2−1/2W1 + 2−1/2W2 + W3,

X02(t) = 2−1/2W1 + 2−1/2W2 − W3,

X12(t) =
√

2W2.
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And thus

�
(
τ1,2,2 > t

) = �

(
sup

0≤s≤t

max
0≤i≤1

max
1≤j≤2

Xij (s) < 1

)

≤ �

(
sup

0≤s≤t

max (X01(s),X12(s)) < 1

)

= �

(
sup

0≤s≤t

max
(√

2W1(s),
√

2W2(s)
)
< 1

)

= �2

(
sup

0≤s≤t

W1(s) < 2−1/2

)

= �2
(
|W1(t)| < 2−1/2

)
≤ ct−1.

Next by comparing the covariance matrix of Xij (t), i = 0, 1, j = 1, 2 with the
one for Yi(t), 1 ≤ i ≤ 4, given at the begining of section 3 for the case n = 4 and
m = 1, we have by applying the Slepian lemma

�(τ1,2,2 > t) ≤ �(τ4 > t)

for all t ≥ 0 and hence � τ1,2,2 ≤ � τ4.
Finally, we can work on the case of m = 2 and n = 3. Here we present two dis-

tinct but related arguments, in the order in which we found them. We first outline
the proof that � τ1,2,3 < ∞ by the Faber-Krahn isoperimetric inequality similar
to what we did for τ5 in section 3. Note that we can represent Xij (t), i = 0, 1,
j = 1, 2, 3, jointly by

X01(t) =
√

2W1

X11(t) = 2−1/2W1 + 2−1/2W2 + (2−1/2W3 + 2−1/2W4)

X02(t) = 2−1/2W1 + 2−1/2W2 − (2−1/2W3 + 2−1/2W4)

X12(t) =
√

2W2

X03(t) = 2−1/2W1 + 4−1(
√

10 −
√

2)W3 − 4−1(
√

10 +
√

2)W4

X13(t) = 2−1/2W2 + 4−1(
√

10 +
√

2)W3 − 4−1(
√

10 −
√

2)W4

And thus, as before,

�
(
τ1,2,3 > t

) = �

(
sup

0≤s≤t

max
0≤i≤1

max
1≤j≤3

Xij (s) < 1

)

= � (τG > t)

where τG is the first exit time of the domain

G=G1,2,3 = {x=(x1, x2, x3, x4) ∈ �4 : x1 ≤ 0, x2 ≤ 0 x1+x2+x3+x4 ≤ 0,

x1 + x2 − x3 − x4 ≤ 0, x1+2−1(
√

5−1)x3−2−1(
√

5 + 1)x4 ≤ 0,

x2 + 2−1(
√

5 + 1)x3 − 2−1(
√

5 − 1)x4 ≤ 0}
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for the standard �4 valued Brownian motion starting at the point (−2−1/2,−2−1/2,

−10−1/2, 10−1/2). A straightforward calculation shows that

m3(G1,2,3 ∩ �3) < m3(%4 ∩ �3) =
∫ π/3

0

∫ π

0

∫ 2π

0
sin2 φ1 sin φ2dφ3dφ2dφ1

= 2

3
π2 −

√
3

2
π

which implies � τ1,2,3 < ∞.

Now we show that

�
(
τ1,2,3 > t

) ≤ � (τ6 > t) (4.7)

and hence � τ1,2,3 ≤ � τ6 ≤ � τ5 < ∞ by Theorem 1.1. Rewrite

�
(
τ1,2,3 > t

) = �

(
sup

0≤s≤t

max
(i,j)∈H

Xij (s) < 1

)

where H = {(0, 1), (1, 1), (0, 2), (1, 2), (0, 3), (1, 3)}. Comparing the covariance
matrices of {Xij , (i, j) ∈ H } and {Xi, 1 ≤ i ≤ 6} given in section 3 and applying
Slepian lemma, (4.7) follows.

Next we mention two conjectures which are of some interest and may not be
very hard, in particular the first one below. The method of solving them should be
useful for the conjecture � τ4 < ∞.

Conjecture 1. A weaker conjecture than � τ4 < ∞ is � τ1,2,2 < ∞. The estimate
�
(
τ1,2,2 > t

) ≤ ct−1 almost worked.

Conjecture 2. Let

�
(
τn,n,n > t

) ∼ ct−µn as t → ∞.

Then 0 < µn+1 < µn < · · · < µ2 < µ1 = 1/2 and limn→∞ µn = 0. Further-
more, �

(
τn,n,n > t

)
is a strictly increasing function of n.

This seems hard to prove partially due to the mixture of max and min. A related
problem for Brownian sheet is studied in Csaki, Khoshnevisan and Shi (1999a) with
an unknown rate. Note further that

�
(
τ2,2,2 > t

) = �

(
max

1≤j≤2
min

0≤i≤1
(Bj (s) − B−i (s)) < 1, for 0 ≤ s ≤ t

)

= �

(
max

1≤j≤2
min

0≤i≤1
Xij (s) < 1, for 0 ≤ s ≤ t

)
= � (τG > t)

where τG is the first exit time of the domain

G = G2,2,2 = {x1 ≤ 0, x2 ≤ 0} ∪ {x1 + x2 +
√

2x3 ≤ 0, x1 + x2 −
√

2x3 ≤ 0}
∪{x1 ≤0, x1+x2−

√
2x3 ≤0} ∪ {x2 ≤ 0, x1+x2+

√
2x3 ≤ 0}
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in �3 for the standard �3 valued Brownian motion starting at the point (−2−1/2,

−2−1/2, 0). Hence there is no half space, which is the critical right cone for the
power 1/2, inscribed inside G2,2,2.

5. Two-sided capture time

In previous sections, we dealt with various capture times of prisoners by police-
men all chasing from one side. In this section, we consider two policemen coming
from both sides of a prisoner and prove Theorem 2.1. Indeed, we can compute the
probability of the capture by given policeman and compare with the well-known
first exit time σab of [a, b] for a Brownian motion. The fact that this capture time
has finite expectation and its comparison with σab were key ingredient in the in-
variance principle of Bramson and Griffeath (1980) for systems of coalescing or
annihiliating random valks, and in Arratia’s subsequent construction of stochastic
flows of coalescing Brownian motions starting from every point of real line (see
Arratia (1982) for details).

Proof of Theorem 1.2. Recall the joint representation

B1(t) − B0(t) =
√

2W1(t), B2(t) − B0(t) = 2−1/2W1(t) + (3/2)1/2W2(t)

given at the beginning of section 3. We have

� (τab > t)

= � (B1(s) − B0(s) < −a and B0(s) − B2(s) < b for 0 ≤ s ≤ t)

= �
(√

2W1(s) < −a, 2−1/2W1(s) + (3/2)1/2W2(s) > −b for 0 ≤ s ≤ t
)

=
(
W1(s) + a/

√
2 < 0, (W1(s) + a/

√
2) + 31/2(W2(s)

+ (2/3)1/2(b − a/2)) > 0 for 0 ≤ s ≤ t

)
= � (τG > t)

where τG is the first exit time of the domain

G = {x = (x1, x2) ∈ �2 : x1 ≤ 0, x1 +
√

3x2 ≥ 0} (5.1)

for the standard �2 valued Brownian motion starting at the point q = (2−1/2a,

(2/3)1/2(b − a/2)) ∈ �2.
The domain G in (5.1) is a cone with 2θ = π/3 and hence p(θ, n)/2 = 3/2

for n = 2 and θ = π/6. Our results (1.4) follow from the work of Spitzer (1958)
as mentioned in section 2. In fact, τab = −ab is given by (2.8) after an appropriate
rotation of the region and the starting point to fit the formula. Furthermore, from
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the well-known formula for the probability that Brownian motion leaves an angu-
lar region through one of its two rays (see a derivation using only symmetry and
continuity in Dynkin and Yushkevich (1969)) we have

� (B0(τab) − B2(τab) = b) = 3

π
arctan

−2−1/2a

(2/3)1/2(b − a/2)

= 3

π
arctan

−√
3a

2b − a

= 1

2
− 3

π
arctan

a + b√
3(b − a)

which finishes the proof.
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eds. 153–188. Birkhäuser, Boston (1991)

7. Burkholder, D.L.: Exit times of Brownian motion, harmonic majorization and Hardy
spaces, Adv. Math., 26, 182–205 (1977)

8. Chavel, I.: Eigenvalues in Riemannian Geometry, Academic Press, New York (1984)
9. Csaki, E., Khoshnevisan, D., Shi, Z.: Capacity estimates, boundary crossings and the

Ornstein-Uhlenbeck process in Wiener space, Elect. Commun. in Probab., 4 , 103–109
(1999)

10. Csaki, E., Khoshnevisan, D., Shi, Z.: Boundary crossings and the distribution function
of the maximum of Brownian sheet. Stoch. Process. Appl. 90, 1–18 (2000)

11. DeBlassie, R.D.: Exit times from cones in Rn of Brownian motion, Probab. Theory
Relat. Fields, 74, 1–29 (1987)

12. DeBlassie, R.D.: Remark on Exit times from cones in Rn of Brownian motion, Probab.
Theory Relat. Fields, 79, 95–97 (1988)

13. Dynkin, E., Yushkevich, A.: Markov processes: theorems and problems, New York,
Plenum Press, (1969)

14. Kesten, H.: An absorption problem for several Brownian motions, Sem. Stoch. Proc.,
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