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Abstract

Let X (t) :=
∫ t

0
 (s)W (s) ds; t¿0, where W (t); t¿0, is a standard Brownian motion and  is a weight function. We

determine the rate of −logP(supt∈[0; 1]|X (t)|¡�); as �→ 0, for a large class of weight functions. The methods of our
proofs are general and can be applied to many other problems. As an application, a Chung-type law of the iterated
logarithm is given for X (t) with  (t) = t−�; �¡ 3

2 . c© 2000 Elsevier Science B.V. All rights reserved

Keywords: Small ball probabilities; Integrated Brownian motion

1. Introduction

Let W (t); t¿0, be a standard Brownian motion. Consider the Gaussian process

X (t) :=
∫ t

0
 (s)W (s) ds; t¿0; (1)

where  is a nonnegative function. In the monograph of Revuz and Yor (1991) one can �nd considerations
on the a.s. existence of integral (1). Assuming that  ∈Lloc1 ((0;∞)) a criterion for the a.s. �niteness of the
integral

∫ t
0  (s)|W (s)| ds; t ¿ 0, is that∫ t

0
 (s)s1=2 ds¡∞: (2)

When  (t) ≡ 1, the small ball probability

lim
�→ 0

−�2=3P
(
sup

t∈[0;1]

∣∣∣∣
∫ t

0
W (s) ds

∣∣∣∣¡�

)
= c (3)
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for some constant c∈ (0;∞) and the related Chung’s law was studied in a work by Khoshnevisan and Shi
(1998). The main idea in their paper is an indirect approach to (3) by using local time techniques and related
limit laws since other techniques available at that time did not yield a satisfying answer. In particular, the
general lower bound established in Talagrand (1993) and reformulated in Ledoux (1996, p. 257) fails to
produce a sharp estimate for this example.
The main purpose of this note is to show the power and usefulness of the close connection between the

small ball probabilities of Gaussian processes and the entropy numbers of certain corresponding operators.
This relation was discovered by Kuelbs and Li (1993) and improved to its full extend in a recent work by
Li and Linde (1998). The method of using the connection to give sharp lower bound is general and can be
applied to many other problems.
In order to �nd the small ball probabilities for more general weight function  , we need some regularity

conditions. Namely, we require that
( 1)  is nonincreasing in a neighborhood of zero when  is unbounded, and
( 2) we have

∫ 1
0  (s)2=3 ds¡∞.

Keep in mind that the example  (t) = t−� satis�es ( 1), ( 2) and (2) when �¡ 3
2 , and violates ( 2) and

(2) when �= 3
2 .

Now we can state our results with the notation f(�). g(�) as �→ 0 if lim sup�→ 0 f(�)=g(�) is bounded,
and f(�) ≈ g(�) as �→ 0 if f(�). g(�) and g(�).f(�).

Theorem 1. Suppose that  : (0; 1]→ [0;∞) ful�lls ( 1) and ( 2) or that  is bounded then we have

−logP
(
sup

t∈[0;1]
|X (t)|¡�

)
. �−2=3

for � tending to zero.

The above estimate is sharp for all “nice” weight function  . Namely, it holds:

Theorem 2. Assume that there is an interval [a; b]⊂ [0; 1] such that it holds inf t∈[a; b] | (t)|¿ 0. Additionally;
we require that  ′(t) exists for a.e. t ∈ [a; b] and  ′1[a; b] ∈L2([0; 1]). Then we have

−logP
(
sup

t∈[0;1]
|X (t)|¡�

)
¿
∼

�−2=3

for � tending to zero.

The above Theorems are a bit surprising since the asymptotic behaviors are the same (up to constants)
for weights like  (t) = t−�; �¡ 3

2 . As an application, we have the following Chung-type law of the iterated
logarithm. It follows from the estimates given above and a rescaling argument along with an application of
the Borel–Cantelli lemma. We will forgo the proof since it is fairly standard once one has the necessary
probability estimates.

Theorem 3.

lim inf
T →∞

T�−3=2(log log T )3=2 sup
06t6T

∣∣∣∣
∫ t

0
W (s)=s� ds

∣∣∣∣= C� a:s:;

where 0¡C� ¡∞ and �¡ 3
2 . The exact value of C� is unknown.

Finally, we would like to stress that the methods of proofs of Theorems 1 and 2 given in the next section
are the most powerful for Gaussian processes as we understand it at this time. To prove Theorem 1, we use
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the entropy connections back and forth. We are unaware of any pure probabilistic proof of Theorem 1. To
prove Theorem 2, we construct a large enough number of orthonormal functions and then apply Anderson’s
inequality.

2. Proofs of the theorems

Before we formulate the theorems from Li and Linde (1998) which we will apply in our proofs, let us
recall the de�nition of the (dyadic) entropy numbers. Let T :E→F be an operator acting between two Banach
spaces E and F . We denote by BE and BF the unit balls of E and F , respectively. Then the nth entropy
number of T is de�ned as

en(T ) := inf


�¿ 0 :∃x1; : : : ; x2n−1 ∈F such that TBE ⊂

2n−1⋃
i= 1

(xi + �BF)


 :

In the sequel H denotes a Hilbert space and f1; f2; : : : shall be a complete orthonormal system in H . The
variables g1; g2 : : : shall always stand for a sequence of independent N(0; 1)-distributed random variables.

Theorem 4 (Li and Linde, 1998). Let T :H →E be an operator mapping a Hilbert spaces into a Banach
space and suppose that

∑∞
i= 1 giTfi converges a.s. in E. Then for �∈ (0; 2) the following are equivalent:

(i) en(T ). n−1=� (respectively ≈ n−1=�) and
(ii) −logP(∥∥∑∞

i= 1 giTfi
∥∥¡�)). �−2�=(2−�) (respectively ≈ �−2�=(2−�)).

Theorem 5 (Li and Linde, 1998). Let T :H →E be as in Theorem 4 and assume that

−logP
(∥∥∥∥∥

∞∑
i= 1

giTfi

∥∥∥∥∥¡�

)
. �−�

for some �¿ 0. If S is another operator mapping E into another Banach space F with en(S). n−1=
, for
some 
¿ 0; then we have

−logP
(∥∥∥∥∥

∞∑
i= 1

giS(Tfi)

∥∥∥∥∥¡�

)
. �−�
=(�+
):

In the formulation of Theorems 4 and 5 we restricted ourselves to the situation needed in the proofs below.
For more general statements and other applications, we refer the reader to Li and Linde (1998). Next we
need the following lemma whose proof is also instructive.

Lemma 6. For ’∈L2([0; 1]) we de�ne an integral operator I’ :L2([0; 1])→C([0; 1]) by

(I’f) (t) :=
∫ t

0
’(s)f(s) ds:

Then we have for the entropy numbers the estimate en(I’). n−1:

Proof. Without loss of generality, we may assume that ’ 6≡ 0 since for ’ ≡ 0 the statement of the lemma
is trivial. Now, let (Y’(t))t∈[0;1] be the process generated by the operator I’; i.e. Y’ =

∑∞
i= 1 giI’fi, and set
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F(t) :=
∫ t
0 ’(s)

2 ds. Then we observe

EY’(s)Y’(t) =
∫ 1

0
1[0; s](x)’(x)1[0; t](x)’(x) dx

= F(s ∧ t) = F(s) ∧ F(t)

= EW (F(s))W (F(t));

i.e. (Y’(t))t∈[0;1] and (W (F(t)))t∈[0;1] have the same covariance function. Consequently, we can deduce

−logP
(
sup

t∈[0;1]
|Y’(t)|¡�

)
=−logP

(
sup

t∈[0; F(1)]
|W (t)|¡�

)
≈ �−2

using the well-known small ball behavior of the Brownian motion. Finally, we conclude by Theorem 4 that
en(I’). n−1.

Proof of Theorem 1. For ’∈L2([0; 1]) we introduce a multiplication operator M’ mapping f to ’f. By
H�older’s inequality, M’ is a bounded operator from C([0; 1]) into L2([0; 1]). Note that

(I 1=3 ◦M 1=3 ) ( 
1=3W ) (t) =

∫ t

0
 (s)W (s) ds= X (t):

By Lemma 6 it follows from ( 2) that

en(I 1=3 ◦M 1=3 )6‖M 1=3‖en(I 1=3 ). n−1:

It was shown in Berthet and Shi (1998) that ( 1) and ( 2) imply

−logP
(
sup

t∈[0;1]
| (t)1=3W (t)|¡�

)
. �−2:

The same statement was shown for bounded weight functions in Mogulskii (1974), and the critical case
(condition ( 2) is violated) was treated in Li (1998). Combining these two results Theorem 5 yields our
assertion.

Proof of Theorem 2. First of all, it is clear that

−logP
(
sup

t∈[0;1]
|X (t)|¡�

)
¿− logP

(
sup

t∈[0; b]
|X (t)|¡�

)
:

Then, we decompose the process (X (t))t∈[0; b] in the following way:

X (t) = X (t ∧ a) + 1(a; b](t)W (a)
∫ t

a
 (s) ds+ 1(a; b](t)

∫ t

a
 (s) (W (s)−W (a)) ds:

Since the �rst two summands are independent of the last one, it follows from Anderson’s inequality (see
Anderson, 1955) that

−logP
(
sup

t∈[0; b]
|X (t)|¡�

)
¿− logP

(
sup

t∈[a; b]

∣∣∣∣
∫ t

a
 (s) (W (s)−W (a)) ds

∣∣∣∣¡�

)
:

Now, rescaling of the Brownian motion shows that there is no loss of generality if we assume that the interval
[a; b] is the whole unit interval.
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Recall that the Brownian motion is generated (in the sense discussed above) by the operator f 7→ ∫ :
0 f(s) ds.

Thus, we can de�ne an operator T : L2([0; 1])→C([0; 1]) by

(T f) (t) :=
∫ t

0
 (s)

∫ s

0
f(x) dx ds

and obtain the following representation X =
∑∞

i= 1 giT fi. Next, we construct for each n∈N an orthonormal
system. For this purpose, we de�ne ’ : R→R by

’(t) :=
∫ t

0

∫ s

0
1(0;1=4)∪(3=4;1)(x)− 1(1=4;3=4)(x) dx ds

which is compactly supported in [0; 1], and we set

f̃n; k := 1[0;1]D
(
1

 (·)D’
(
n
(
· − k

n

)))

for k=0; : : : ; n−1, where D is the operator of di�erentiation. Finally, we normalize these functions by setting
fn; k = f̃n; k =‖ f̃n; k‖2. Observe that for �xed n the functions fn; k ; k = 0; : : : ; n − 1, have essentially disjoint
supports. The norm ‖ f̃n; k‖2 can be estimated from above as follows. Let c := inf t∈[0;1] | (t)|¿ 0 then we
have

‖f̃n; k‖26
n
c2

∥∥∥∥ ′’′
(
n
(
· − k

n

))∥∥∥∥
2
+

n2

c

∥∥∥∥’′′
(
n
(
· − k

n

))∥∥∥∥
2

6
n
c2
‖ ′‖2‖’′‖∞ +

n2

c
n−1=2‖’′′‖26Cn3=2:

Using again Anderson’s inequality, we conclude for �= C−1‖’‖∞ n3=2

P
(
sup

t∈[0;1]
|X (t)|¡�

)
6P

(
sup

t∈[0;1]

∣∣∣∣∣
n−1∑
k=0

gk(T fn; k) (t)

∣∣∣∣∣¡�

)

6P
(
sup

06k¡n
sup

t∈[0;1]

∣∣∣∣∣gk
’(t)

‖f̃n; k‖2

∣∣∣∣∣¡�

)

6
n−1∏
k=0

P(|gk |¡Cn3=2‖’‖−1∞ �)

6 exp(−C′n) = exp(−C′′�−2=3)

which completes the proof.

For further reading see Berthet and Shi (1998).
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